TRIAL FOR PREPARATION AND EVALUATION OF INACTIVATED ALHYDRA - GEL COMBINED VACCINE FOR FOOT AND MOUTH DISEASE AND RIFT VALLEY FEVER

By

Daoud, A. M.; Wafaa, El Deghaidy; Shawky, M.; Hassan, K.Z. and Taha, M. M.

Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo

ABSTRACT

A combined vaccine was constructed to contain RVF ZH_{501} and FMD O₁ strains derived from propagation of both strains on BHK₂₁ cell culture and inactivated with Binary Ethyleneimine (BEI) and adsorbed on Alhydra - gel. A comparative studies were conducted to evaluate the three prepared vaccines (2 monovalent FMD & RVF alone and the 3rd combined one). There was no difference in efficacy of the immunization response between combined RVF / FMD and RVF & FMD alone. At the same time RVF virus did not interfere with FMD as measured by serological and challenge studies.

INTRODUCTION

Combined vaccines are important approach to control the risk of live stock as well as human being diseases. Combined vaccines gave the ability to use more than one antigen at the same time to stimulate the immune response, save time, effort and considered more economic. It is important to study how to produce a new constituent antigens. Darie et al., (1979) found that administration of various combination of vaccine containing clostridia, Anthrax and FMD did not affect the duration of the immune response in sheep compared with each vaccine. Gihan, (1990) cleared that there was no difference in the obtained result of serological tests used for combined RVF & FMD and RVF vaccines. Mouaz et al., (1998) explained that there is no alteration in immunity of sheep vaccinated with combined RVF & PPR vaccine, RVF vaccine and PPR vaccine alone. Zaki et al., (1999) reported were no significant differences noted in serological and that there immunological tests of the single and combined Binary inactivated vaccines of RVF, Pasteurella haemolytica and Pasteurella multocida. Ismail et al., (2000) proved the same result of combined RVF & PPR with combined FMD & PPR vaccine. So it is important to carry more trials to produce polyvalent

vaccines for sheep and cattle which enable the veterinary authorities to safe time, effort and cost to control such diseases affecting live stock.

MATERIAL AND METHODS

1. Viruses:

- I. Rift Valley Fever Zagazig Human strain (ZH 501 strain), isolated from patient in Zagazig, Sharqyia Province (1977) was used in this study. It was kindly supplied by RVF vaccine production department, Serum & Vaccine Research Institute, Abbasia, Cairo.
- II. Foot and Mouth Disease $(O_1 / 3 / 93 \text{ aga strain}) Egypt, of cattle origin, locally isolated from infected cattle, Aga, Dakahlia, during the outbreak of 1993.$

2. Testing the power of Alhydra - gel adsorption:

Estimation of adsorption power of Alhydra gel to both FMD & RVF viruses was studied by preparation of different concentrations of dry matter of Alhydra gel (0.5, 1, 1.5 & 2%). After 24 hours at 37° C adsorption of the virulent viruses on Alhydra gel, supernatant collected after centrifugation at 1500 rpm for 10 minutes, then supernatant of each concentration inoculated into tissue culture cell line and I / P inoculation of weaned mice.

3. Preparation of monovalent FMD, RVF and combined FMD and RVF vaccines:

The experimental batches of FMD and RVF viruses were titrated and then inactivated with BEI. Safety test was conducted for each inactivated virus in baby mice. Alhydra gel was added to each inactivated virus (FMD & RVF) with ratio of 1: 2. The same ratio also used in combined vaccine, FMD virus dose adjusted to be $1 \times 10^8 \text{TCID}_{50}$ / ml, and RVF virus dose adjusted to be $1 \times 10^6 \text{MLD}_{50}$ / ml. Potency test using cattle for FMD vaccine and adult mice for RVF vaccine was conducted. All groups were clinically observed till the end of experiment, and serum samples were collected for detection of specific antibody to FMD & RVF virus.

Specific neutralizing antibodies against FMDV were determined on monolayer of BHK clone 21 cell line in microtiter plates as described by **Ferreira**, (1976) and by liquid phase blocking ELISA using antigen prepared by inoculation of FMDV type (O_1) into BHK₂₁ cell culture and supernatant collected(after 80% cytopathic effect) as described by **Hamblin** *et al.*, (1986).

Antibodies against RVF virus detected using VNT and ELSA.

The three vaccines were inoculated to different groups of sheep as explained in the following table:

Groups	No. of animals	Type of vaccine	Titer/Dose	challenge				
GĀ1	3			Not challenged				
GA2	3	FMD vaccine	1X10 ⁸	Challenged with FMD virus				
GB1	3	RVF vaccine	3X10 ⁶	Not challenged				
GB2	3	KVF vaccine	3X10	Challenged with RVF virus				
GC1	3	FMD&RVF	171108	Not challenged				
GC2	3	combined	$1X10^{8} + 3X10^{6}$	Challenged with FMD virus				
GC3	3	vaccine	3X10°	Challenged with RVF virus				
GD1	2			Not challenged				
GD2	2	Non vaccinated		Challenged with FMD virus				
GD3	2	control		Challenged with RVF virus				

Table (1): Groups inoculated with RVF & FMD monovalent vaccine and RFV / FMD combined vaccine.

RESULTS

Regarding to result illustrated in Table (2) showed that all concentrations of dry matter of Alhydra gel were safe when inoculated into T. C. and I/P in weaned mice, 1.5 dry matter concentration of Alhydra gel was used for preparation of the three vaccines to be sure that all virus particles were completely adsorbed.

From Table (3) it is clear that the result of potency test of FMD vaccine was 3.00 PD50 and 0.002 ED50 for RVF vaccine when applied in weaned mice as a routine of vaccine evaluation. Regarding to Tables (4 & 5) which explain the result of serological tests (SNT & ELISA) of different groups of vaccinated, challenged as well as control sheep group. There were no significant difference between the result of SNT or ELISA of animals vaccinated with all previous mentioned groups.

•

- -

Dry matter		-	FMD				
Concentration	in mice	e	in T. C.		In T. C.		
%	Titer before adsorption	Titer after	Titer before adsorption	Titer after	Titer before adsorption	Titer after	
0.5	3x10 ⁶ ML D ₅₀ /ml	-ve	3x10 ⁶ TCID ₅₀ / ml	-ve	1x10 ⁸ TCID ₅₀ / ml	-ve	
1.0	3x10 ⁶ ML D ₅₀ /ml	-ve	3x10 ⁶ TCID ₅₀ / ml	-ve	1x10 ⁸ TCID ₅₀ / ml	-ve	
1.5	3x10 ⁶ ML D ₅₀ /ml	-ve	3x10 ⁶ TCID ₅₀ / ml	-ve	1x10 ⁸ TCID ₅₀ / ml	-ve	
2.0	3x10 ⁶ ML D ₅₀ /ml	-ve	3x10 ⁶ TCID ₅₀ / ml	-ve	1x10 ⁸ TCID ₅₀ / ml	-ve	

Table (2): Adsorption power of Alhydra – gel for RVF and FMD viruses

۰,

_ ..._

Table (3): Potency test for RVF, FMD and RVF / FMD vaccines.

vaccine	Potency in mice	Potency in cattle			
RVF	0.002 ED ₅₀				
FMD		3.00 PD ₅₀			
Combined RVF & FMD	0.0019 ED ₅₀	3.00 PD ₅₀			

.

....

Groups	No.	treatment	We	eks post	vaccina	tion	Days post challenge						
Groups			0	1	2	3	1	3	5	7	10	15	
GA2			0.5	0.8	1.07	1.13	1.00	2.0	2.2	2,5	3.0	3.0	
(VNT)*	3	FMD	0.5	0.0	1.07	1.15	1.00	2.0	2.2	2.5			
GA2(ELI		vaccine	0.063	0.074	0.088	0.134	0.098	0.163	0.170	0.186	0.230	0.232	
SA) ⁺													
GB2			0.5	1.1	2	2.5	1.7	2.8	3.5	3.2	3.1	3.3	
GB2	3	RVF											
ELISA	F	vaccine	0.015	0.026	0.035	0.061	0.030	0.063	0.084	0.078	0.073	0.075	
GC2FMD	<u> </u>			 									
SNT		Combined FMD / RVF vaccine	0.05	0.4	0.93	1.2	1.1	1.9	1.9	2.2	2.9	3.0	
GC2 FMD													
ELISA			0.057	0.063	0.084	0.097	0.190	0.220	0.222	0.227	0.230	0.237	
GC3 RVF	3	Combined / RVF vac											
VNT		, dD/ c	0.5	1.1	1.8	2.4	1.5	2.5	3.4	3.0	2.9	3.0	
GC3RVF	1		0.016	0.023	0.030	0.058	0.028	0.060	0.079	0.070	0.067	0.072	
ELISA			0.010	0.023	0.050	0.058	0.028	0.000	0.079	0.070	0.007	0.072	
GD2 FMD	-	•	0.2	0.3	0.3	0.6	0.3	0.6	0.7	0.9	0.9	1.2	
VNT	2	2 ted									•		
GD2 FMD	ļ	ccin	0.025	0.032	0.025	0.036	0.027	0.038	0.044	0.096	0.097	0.145	
ELISA		n Va							_				
GD3 RVF	ļ	N	0.5	0.5	0.4	0.5	0.4	0.3	0.7	0.9	1.3	1.5	
VNT	2	Control Non Vaccinated	 					 					
GD3,RVF ELISA		Ŭ	0.015	0.014	0.013	0.015	0.012	0.010	0.019	0.022	0.030	0.035	
ELISA		l	L	<u> </u>						L			

Table (4): Result of serological tests of challenged sheep as well as control sheep.

No. = number of animals

* VNT : represented as neutralizing indices \log_{10}

+ ELISA: represented as optical densities cut off

RVF cut off = 0.02 FMD cut off = 0.07

ELISA cut off was estimated after the formula of *Edouard (1985)*.

Groups	N.	Treat ment	Weeks post vaccination													
	No		0	1	2	3	4	5	6	8	12	16	20	24		
GAI(VNT)	3	FMD vaccin	0.4	0.8	0.9	1:2	1.5	1.5	1.5	1.6	1.5	1.5	1.3	0.7		
GAI(ELISA)	3	FMD vaccine	0.050	0.062	0.079	0.092	0.098	0.096	0.096	0.110	0.095	0.103	0.094	0.060		
GBI(VNI)		R. Vac	0.5	1.2	2	2.5	2.9	2.5	2.5	2.3	2.0	2.0	1.7	1.7		
GB2(ELISA)	3	RVF vaccine	0.014	0.027	0.037	0.061	0.065	0.060	0.062	0.059	0.037	0.037	0.030	0.031		
GC1FMD (VNI)		e D	0.6	0.6	0.1	1.3	1.3	1.4	1.5	1.5	1.5	1.6	1.2	0.6		
GC1FMD (EL I SA)	3	Combined FMD & RVF vaccine	0.068	0.077	0.086	0.165	0.169	0.181	0.095	0.095	0.095	0.141	0.083	0.065		
GC1RVF (VNI)		J	5	ombine 8 RVF v	0.4	1.1	1.8	2.4	2.5	2.3	2.4	2.3	2.0	2.1	1.9	1.7
GC1RVF (ELISA)		Co B	0.011	0.025	0.030	0.055	0.060	0.058	0.060	0.058	0.040	0.042	0.035	0.030		
GD! FMD (VNT)	2	u	0.6	0.6	0.5	0.6	0.4	0.6	0.6	0.6	0.4	0.6	0.6	0.5		
GD! FMD (ELISA)		Control Non vaccinated	0.068	0.068	0.062	0.068	0.060	0.068	0.068	0.068	0.060	0.068	0.068	0.063		
GD!RVF (VNI)] -	Contr vacci	0.4	0.5	0.4	0.4	0.6	0.4	0.4	0.4	• 0.6	0.4	0.4	0.5		
GD! RVF (EL I SA)		_	0.011	0.015	0.011	0.011	0.018	0.011	0.011	0.011	0.019	0.011	0.011	.0.014		

Table (5): result of serological tests of vaccinated sheep as well as control sheep.

RVF cut off = 0.02 FMD cut off = 0.07 No. = number of animals

DISCUSSION

Effective animal vaccine have been developed against RVF, FMD diseases. The produced vaccine have been evaluated according to **O. I. E.** (1996), it had 3 PD₅₀ for FMD vaccine, this agree with Vianna Fiho *et al.*, (1993), and 0.02 for RVF vaccine, this agree with the protocol of vaccine production. At the same time the potency of combined vaccine not differ from those of monovalent one (Table 2), this results agree with the data mentioned by Barteling and Vreeswijk, (1991) and Vianna *et al.*, (1993).

From Tables (4 & 5), it is clear that the combined vaccine can protect animals against both viruses when challenged 3 weeks post-vaccination with virulent RVF virus (dose of 3×10^4 MLD₅₀/ml) and FMD virus (dose of 1×10^4 MLD₅₀/ml), these results agree with the data obtained by **Gihan**, (1990) who prepared RVF / FMD combined vaccine which protect animal against challenge with virulent virus, and **Darie** *et al.*, (1979) who found that the animals respond well for a combination of vaccine and did not affect the duration of immune response in sheep compared with each vaccine.

The serological response as measured by either neutralizing index or ELISA, indicated that there were no difference in efficacy between the monovalent vaccine and combined one as the neutralizing indices still protective till 24 weeks for RVF according to the data recorded by **Randall** *et al.*, (1964) who showed that the protective level was 1.7 log $_{10}$ for RVF, and 1.2 log $_{10}$ for FMD according to **Bengel Sdorff**, (1989).

Beni-Suef Vet. Med. J. Vol. XI., No. (2) Oct., (2001).

Finally and, for the previously mentioned data it is clear that the RVF / FMD combined vaccine could be used safely for protection of sheep against both diseases, and could produced for commercial use.

REFERENCES

Barteling, S. Z. and Vreeswijk, Z. (1991): Foot and Mouth Disease vaccines Vaccine, 9–75–88

Bengel Sdorff, H. J. (1989): Potency test of FMD vaccines correlation between response to challenge and corresponding neutralizing antibody titers of vaccinated cattle Berl Munch Tierarzt Wschr, 102: 193-198

 Darie, P.; Ionita, C.; Petrosonu, D.; Eustarievici, O.; Simon, M. and Mircescu, G. (1979): Simultaneous vaccination of intensively reared lambs against anaerobes, anthrax and FMD. Lucrarile Insituta des Cercetari Veterinare Şi Biopreparate "Pasteur" 15:75-86

Edouard, K. (1985): Progress in Enzyme immunoassays: Production of reagents, experimental design and interpretation. Bull. World Health Organ.,63 (4):793-811

Ferreira, M. E. V. (1976): Microtiter neutralization test for the study of FMD antibodies BLTN. Centro Panamericano des Fiebre Aftosa 21: 17 – 24

Gihan, K. M. (1990): Studies on Rift Valley Fever among animals in Egypt. Ph. D Thesis, Inf. Dis., Fac. of Vet. Med., Zagazig Univ., Egypt.

Hamblin, C.; Barnett, I. T. R. and Crowther, J. (1986): A new enzyme linked immunosorbent assay (ELISA) for detection of antibodies against FMD virus J. Immunol. Methods 93; 115 – 121

Ismail, I; Degheidy, W.; Shawky, M. E. and Daoud. A. M. (2000): Immune response of sheep vaccinated with combined PPR&FMD vaccine Suez Canal Veterinary Medical Journal, 111 (1), 319 – 325

Mouaz, M. A.; Gihan, K. Mohamed; Khairate A. Elian; Aida I. El dedagy and Khodeir,
M. H. (1998): Evaluation of immune response in Egyptian Balady sheep vaccinated with attenuated RVF and PPR vaccines Assiut Vet. Med. J. 38 (76): 329 – 341

Office International Des Epizooties "OIE" (1996): Manual of standards for diagnostic tests and vaccine List A Diseases P, <u>47</u> & <u>102</u>

Randall, R.; Binn, L. N. and Harison, V. R. (1964): Immunization against Rift Valley Fever virus. Studies on the immunogenicity of lyophilized formalin inactivated vaccine.

J. Imm., 93 (2): 293-299

Vianna Fiho, Y. L.; Astudillo, V.; Gomes, I.; Fernanze, G.; Rozas, C. E. E.; Ravison, J. A. & Alonso, A. (1993): Potency control of Foot and Mouth Disease vaccine in cattle. Comparison of the 50% protective dose and protection against generalization

605

.....

Vaccine, 11 – 14, 1424 – 1428

Zaki, F. F.; Khirat; A. Elian.; Hala, A. Fadl. And Wassel, M. S. (1999): Trials for production and evaluation of combined vaccine from Rift Valley Fever, Pasteurella haemolutica and Pasteurella multocida inactivated with binary in cattle Egyptian Journal of Agriculture Research.

الملخص العربي

تم تحضير وتقييم لقاح مركب يحتوى على عترتين من فيروس الحمى القلاعية العترة (O₁) وفيروس حمى الوادى المتصدع العترة (ZH₅₀₁) وذلك بتمرير هما على خلايا BHK₂₁ وعمل تثبيط لهما بإستخدام مادة بينارى إثيلين أمين وتخليطهما مع مادة الهيدر اجيل.

وقد أجريت عدة تجارب على كل من اللقاحين منفردين ومقارنتهما مع اللقاح المركب، أثبتت النتائج أنه لايوجد أى إختلافات فى الإستجابة المناعية للحيو انات المحصنة بكل نوع من اللقاحات الثلاثة وكذلك لايوجد تعارض بين استخدام الفيروسين فى لقاح مركب والتأثير على خواص كليهما.