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Abstract

A Maultilayer Perceptron  with error backpropagation learning
algorithm was used 10 build neural network mode! to predict specific draft
(kN/m) of different tillage implements from the field data. The neural
network model was trained and tested with different sites, tillage
implements, plowing depths, and forward operating speeds as input
parameters and the measured specific draft as ovtput parameler. The
architecture of the neural networks consisted of two hidden layers with 24
nodes in the first hidden Jayer and 12 nodes in the second layer. The hidden
and outpul layers have a sigmoid transfer funclions in neural networks
model and the learning rule was momentum with 0.9 and step size 1.0. The
best result was aclieved at 65000 training runs that gave minimum mean
squared error equals to 0.0004 during training process. The resuits showed
that the variation of measured and predicted specific draft was small and
the correlation coefficient was 0.987 and mean squared error between

measured and predicted specific dralt was 0.1445.
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Introduction

The availability of draft requirement data of tillage implelhents is an
important factor in seleéling suitable tillage implements for a particular
farming situation. Farm managers and consultants use draft requirement
data oftillage implements in specific soil to determine correctly the proper
tracior size. Also, using accurate drafi data can only minimize ownership
and operating costs of both tractors and implements. Therefore, prediction
of implement draft requirement is important for tractor selection and -
imp!emen{ matching. Many studies have been conducted to measure draft
and power requirements of til!age implements under various soil conditions
(Al-Janobi and Al-Suhaibani, 1998; Bashford et al. 1991, Harrigan and
Rotz, 1994, Mckyes, 1984; Yasin et al. 1991 and Grisso et al. 1994). ASAE
Standards (1994) provide mathematical expressions for drafi and power
requirements for tillage implements in several soil types as part of the
ASAE Data D497. Implement width, plowing depth, and forward speeds
are the main factors that affect specific draft of a tillage implement. Dyaft
per unit width or cross-sectional area of the tilled zone is a function of soil
type and forward speed at which the implement is pulled. |

Neufal Networks are compuiational systems whose architecture émd
operation are inspired from our knowledge about biological neural cells
(neurons) in the brain. Neural Networks can be described either as
mathematical and computational model for non-linear function
approximation, data classification, clustering and non-paramefric
regression or as simulations of the behavior of collections of model
biological neurons (Ruan et ai, 1995). These are not simulations of real
neurons in the sense that they do not model the biology, chemistry, or

physics of a real neuron. They do, however, model several aspects of the
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information combining and pattern recognition behavior of real neurons in
a simple yet meaningful way. Neural modeling has shown incredible
capability for emulation, analysis, prediction, and association.

Biological models have inspired technology of neural Networks. The
building blocks of neural neiwork are neurons or processing elements.
- Neurons operate by receiving inputs from individual dendrites. These
inputs are weighted according to the synapses and the resulting quantities
are summed. 1f the sum is greater than the threshoid for the neuron, the
neurone executes a transfer function on the weighted sum and passes the
value onto the next neuron. '

The operation of a processing element parallels its biological
equivalent with synapses being replaced by conpection weights. The
processing elements are combined into layers. The paratlel structure of the
neural network distinguishes it from traditional serial processing
computers. This results in some of the fundamental properties-of neural
networks. The learning or training phase of a neural network typically
requires paired input-output data. The inputs are fed into the network, and
transferred through the network layers. Ultimately a predicted output is
calculated. This predicted output is subsequently compared with the actual -
output and the comnection weights between the processing elements are
modified to minimize the deviation between the predicted and actual
oulput. This process continues until a defined accuracy has been reached.
During this training phase, many factors ot neural network structure, such
as the number of hidden layers and the number of nodes in each layer, are
adjusted by a trial and error approach (o obtain the optimum network {Ruan
et al. 1995). |

A‘ppiications of neural networks .'m agricultural engineering and
biclogical industries are stil! in its infancy. However, some research works
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have erendy chown great promise. Noguchi et al. (1993) sudied the

optimal control of agricultural vehicles by neural networks system through
nonlinear controller. The results showed that, the output of neural networks
were in good agreement with the experimental data, and were more
accurate than the output of the physical model neglecting slip angle.

Hassan and Tolunaz (1995) used the neural networks to evaluate the
tractive performance of a rubber-tired skidder operating on soft organic soil
in the Coastal Plain region of North Carolina. They used three tire sizes
inflated at each of three inflation pressures (69, 103, and 172 kPa). They
used a neural net\#ork consisted of 4 neurons/input layer, 5 neurons/first
hidden layer, 3 neurons/second hidden layer, and 1 neuron/output layer
€4-5-3-1). The results indicated that, the neura! network simulation of the
pull-load relationship was in close agreement with the statistical model of
the actual pull-load data.

Sato et al. (1993) investigated the possibility of using neural networks
for operator's voice recognition under tractor noise. The neural networks
were initially trained to recognize input voice and noise, and later during
recognition, it compared the learned signals and test signals to distinguish
between the tractor noise and operator's voice. All investigations were
carried out ai a fixed tractor noise levél at 2500 rpm of the engine and it
was observed that the neural networks could be successfully used to
recognize the operator's voice under the tractor noise.

Kanali (1997) made prediction of axle loads induced by sugarcane
transport vehicles using statistical and neural network models. Inputs to the
networks were payloads and empty trailer axle loads and the outputs were
the measured trailer and tractor rear axle loads. The results showed that the
neural network model achieved 70% prediction as compared with 65%
prediction achieved by the statistical model.
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Kushwaha and Zhang (1997) studied the soil-tool interacting system
and used the radial basis function neural networks to recognize soil-tool
response and evaluate the system performance. They used two neural
networks, in the first one, the inputs included soil types, five tools, and
operating speed and dralt was the output. In the second neural networks,
they used soil types, tools, soil moisture, depth, and speed as inputs and the
outputs were draft, specific energy, and overall energy efficiency. The
overall results showed that, the neural networks gave a good prediction of
tool response to the system inputs,

Other potential applications for neural networks have also been
discussed by researchers (Muttiah and Engel, 1991, Bolte, 1989; Zhuang
and Engel, 1990; Verdenius et al. 1997; Yang et al. 1996; Moshou et al.
1997 and Zaidi et al. 1999).

The objective of this paper is to apply the Mulitlayer Preceptron
(MLP) neural networks to predict specific draft for tillage implements
relating to varying initial soil conditions, splowing depth, and forward
operating speed.

Materials and methods

Tillage experiments

A set of primary tillage implements comprising chisel plow, an ofset
disk harrow, a moldboard plow, and a disk plow were used over a wide
range of forward speed and plowing depths. Implement specifications are
given in Table (1). Al-Suhaibani and Al-Janobi (1997) have performed a
number of field experiments of tillage operation using those implements at
various plowing depth and forward operating speed. The experiments were

conducted on sandy loam soi} in two fields with different initial conditions
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of moisture content and cone index. The characteristics of tested field are

piven in Table (2).

Table (1): Specifications of tillage implements used:

Tillage implement

Symbol

Width* .m

Specifications

Chisel plow

P1

2.1

Heavy duty type capable of
accommodating 13 shanks
arranged in twe fows, 355 mm
between shanks in each row and
450 mm between rows, Massey
Ferguson {Denmark), model MF
38. Serial No. L4078.Widih of
shank 70 111;11 and shank stem

angle 55°,

Muoldboard plow

P2

1.15

General purpose  type. Three
bodies in the frame each of
width 360 mm, Overum-$
{Sweden), model 7073331,

Offset disk harrow

r3

Thirty six disks each of 510 mm
diamcler, 18 cach intwo rows,
inclined to the direction of
travei, with 210 mm between
disks in each row. Massey
Ferguson {Denmark). model M¥F
38, Serial No. 1.4082.

Disk plow

74

1315

Three disks each of 660 mm
diameter with tilt angle of 22°
disk anple of 45° and 600 mm
between disks. EBRO (Spain),

model ADE 300.

* actual width.
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Table (2): Soil characteristics of the tested fields.

Test | Symbol | Sand | Silt | Clay | Moisture | Cone index*
fields content* |
% | % % %, d.b kPa

Field 1 Fl 55 | 27 i8 8.3-134 1204-2160

Field2 | F2 79 | 1.} 10 | 7.3-104 480-1278
- * at depth of 70-210 mm., '

Neural network architectures

The NeuroSolution software version 3.0 from NeuroDimensibn, Inc.
was used for the neural network analysis. This software provides the user
with an easy to use system to organize and process the data and gives the
user the choice to select from several network architectures. Multilayer
~ Perceptron (MLP) with the error backpropagation (BP) learning algorithm
was used in this study. Demuth and Beale (1998) provide the complete
description of MLP and BP.

Using the data provided by Al-Suhaibani and Al-Janobi (1997) and
~ the binary coding, each input parameter had only two distinct values:
0 and 1 for tillage implements and two fields, Wlwreas p!owing_depth' and
forward operating speed had numeric values. o

The input processing elements in neural networks were F1, FZ,P!, P2,
P3, P4, plowing depth, and forward operating speed and the output was
specific drafl. The architecture of the neural network employed is shmfm in.
Fig. (1).

The hidden and output layers have sigmoid transfer funcfions in
neural networks model. The learning rule was momentum with 0.9 and step

size 1.0. The number of hidden layers and the number of nodes in each

Misr J. Ag. Eng., July 2001 705



layer were adjusted by a trial and error approach to obtain the optimum
network.

Tlowing
depth

4
Specilic deall
fjal
2
1
12

144,

Input nyer First higden layer Second hidden layer  Owiput lnyer

Fig. (1): The architecture of the neural networks.

The optimum solution was decided based on minimizing the
difference between the neural networks and the desired outputs. The mean
squared error (MSE) and linear correlation coelTicient (r) were used for the
determination of neural network performance. As the networks learn, its
MSE wvalue decreases, and the closer the value i1s to zero the better the
convergence. The mean sqﬁai'ed error (MSE) for all input ﬁattems is:
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1

where:
%; = measured specific draft , KN/m .

yi = predicted - specific draft by neural network , kN/m

n = total number of patterns.

Results and discussion

The optimal values of neural network parameters such as number of
hidden layers and number of nodes in each hidden layer neededto be
determined. The data was separated into two groups. A total of 59 cases
which is about two-third of the data was set as training data and the rest for
testing. Several neural networks model were trained with various design
including number of hidden layers and number of nodes in each hidden
layer. The selection of the optimum model was based on minimizing the
difference between the neural network resulis and the desired oulput. The
best model in this study was a neural network consisted of two hidden
layers with 24 nodes in the first hidden layer and 12 nodes in the second
layer.

The MSE was decreasing with increasing of learning iteration
(epoch). The best resuits were achieved at 65000 training runs, which gave
- minimum MSE equals to 0.0004 during training process. Fig. (2) shows
the error curve for training process. Afier the training process preformed,
the neural network was tested and the predicted specific draft from neural
network was compared with measured values and error analysis performed.
The MSE between measured and predicted specific draft was 0.1445 and
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the fincar correlation cocflicient was 0.987. The higher correlation
coefTicient indicates that the predicted specific draft by neurél network with
experimental values is excellent. Fig. {3) shows the variation of measured
and predicted specific drafi of tillage implements for different data points,
The relatively lower correlation was observed and this is probably due to
the slightly higher expertmental variations found. So, the neural network

predicted specific draft well.
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Fig. (2): Error curve for training, showing learning runs (epochs) |

plotfed against mean squared error.
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Fig. (3): Relationship between experimental and predicted specific
draft. '

Conclusion

In neural networks modeling applications, the number of hidden
layers, the number of neurons in the hidden layer, and learning iterations
need to be optimized before using the neural nehﬁoﬂm. In this study, a
Multilayer Perceptron with 'errorr backpropagation learning algorithm was
used to construct neural network model to predict the specific draf_i (kN/m)
of four different tillage implements from the field data. The neural
networks were trained and tested with different sites, tillage implements,
plowing depths, and forward operating speeds as inputs and the measured
specific drafi as output. The neural network model consisted of two hidden

layers with 24 nodes in the first hidden layer and 12 nodes in the second.
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The hidden and output layers have sigmoid transfer functions in neural

network model and the output layer transfer function was sigmoid and the

leaming rule was momentum with 0.9 and step size 1.0. The best resulis
during training process were achieved at 65000 training runs that gave
minimum mean squared error equals to 0.0004. The proposed neural
network model, by testing, indicated that there is a small variation of
measured and predicted data with linear correlation coefficient equals to
0.987 and mean squared error between experimental and predicted specific
draft equals to 0.1445,
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