EFFECTIVENESS OF DUAL INOCULATION WITH BRADYRHIZOBIUM AND ENDOMYCORRHIZAE IN PRESENCE OF DIFFERENT PHOSPHATIC FERTILIZER SOURCES ON GROWTH AND YIELD OF SOYBEAN

Mehasen¹, S.A.S; R.A. Zaghloul² and M.A. El-Ghozoli³

ABSTRACT

Two field experiments were carried out during 1999 and 2000 seasons at the Experimental Farm, Fac. of Agric. Moshtohor to study the effect of dual inoculation with Bradyrhizobium japonicum and vesicular arbuscular mycorrhizae (VAM) Glomus mosseae in presence of either superphosphate or rock phosphate on the nodulation, N2-fixation, mycorrhizal root infection percentage, macro and micro-nutrients content. growth and yield of soybean plants. Results of this study showed that dual inoculation with B. japonicum and VA-mycorthizae increased the nodulation, N2-ase activity, mycorrhizal root infection percentage, plant growth and macro (N,P and K) and micro-nutrients (Fe, Zn and Cu) contents of the plants compared to the application of each inoculum singularly. Application of rock phosphate rather than superphosphate increased the abovementioned parameters. Superphosphate application gave lower records of nodulation, N₂-ase activity, mycorrhizal root infection compared to rock phosphate application. Yield and yield components of soybean plants were significantly increased in treatments inoculated with either Bradyrhizobium or VAM fungus as well as the combination of them and fertilized with rock phosphate compared to that inoculated and fertilized with superphosphate. The highest records of protein and oil yield were observed in the treatment of dual inoculation and fertilization with rock phosphate. Therefore, rock phosphate using combined with dual inoculation by Bradyrhizobium and Endomycorrhizae can be recommended as an alternative for superphosphate to reduce the production costs of soybean.

Key words: Bradyrhizobium, Mycorrhizae, Soybean, Inoculation, Rock phosphate, Superphosphate, Growth and yield

INTRODUCTION

[31]

introduced in Egyptian Agriculture about 1960. Its production is rapidly expanded as a result of the high demand for the seeds, that serve as a major and excellent

(Received May 29, 2002) (Accepted August 17, 2002)

One of the most important leguminous crops is soybean. It was

¹⁻ Agronomy Dept., Fac. Agric. Moshtohor, Zagazig Univ., Egypt.

²⁻ Agric, Botany Dept., Fac. Agric, Moshtohor, Zagazig Univ., Egypt.

³⁻ Soils, Water and Environment. Res. Inst., Agric. Res. Center, Giza, Egypt.

source of oil and protein for human and livestock consumption.

Generally, leguminous crops are fertilized with mineral nitrogen fertilizers as a starter to benefit the symbiotic nitrogen fixation. Rhizobial inocultation becomes an essential practice for efficient and economical soybean management.

Several investigators found increases of soybean yield due to rhizobial inoculation (Hegazy et al 1993; Mehasen, 1994 Ghobrial et al 1995 and Kumrawat et al **1997**). It is well known that legumes have higher requirements of phosphours for growth and effective nutrition nodulation and consequently N₂- fixation. Mycorrhizal symbiosis is widespread on legumes root system and legumes species differ in their growth response to mycorrhizal infection. Also, mycorrhizal symbiosis increases phosphorus uptake and subsequently nodulation, plant growth and No-fixation (Barakah et al 1998 and Mikhaeel et al 2000). Regarding the relation between phosphours forms and mycorrhizal infection, Barea et al 1980; Cardoso, 1986; Yassen, 1993 and Barakah et al 1998) found that mycorrhizal infection was hardly affected by the added rock phosphate, but soluble phosphate significantly depressed the infection by either native or introduced VAmycorrhizae. Many investigators stated that the dual inoculation of soybean Bradyrhizobium plants with and mycorrhizae showed significant increase in their growth characters, nodules dry weight, N2- ase activity, macro and micro-nutrients content in shoot system as well as sed and protein yield compared to the application of each inoculum alone (Cardoso, 1986; Vejsadova et al 1993;

Maksoud *et al* 1995; Soliman *et al* 1996; Shalaby & Hanna, 1998 and Mikaheel *et al* 2000).

In this research, the effectiveness of dual inoculation of soybean with *Brady-rhizobium japonicum* and Endomycorrhizae (*Glomus mosseae*) along with using either superphosphate or rock phosphate as P-fertilizers on nodulation, symbiotic N_2 -fixation, plant growth, nutrients content and soybean yield has been studied.

MATERIAL AND METHODS

Two field experiments were carried out in the Agriculture Research and Experimentation Center of Fac. Agric. Moshtohor, Zagazig Univ. during 1999 and 2000 seasons to study the response of sovbean(Glvcin max c.v. Giza 21) to dual with Bradvrhizobium inoculation and vesicular arbuscular japonicum mycorrhizae (Glomus mosseae) and study their effect on soybean nodulation, growth, yield and yield components. Some characteristics of the experimetal soil are presented in Table (1).

Particle size distribution was estimated according to Jackson (1973). While, chemical analysis was determined according to Black *et al* (1982).

Bradyrhizobium japonicum strain obtained from ARC 502 was Biofertilizers Production Unit, Soils, Water and Environment Res. Inst., Agric., Res. Center, Giza, Egypt. While, fungus Glomus mosseae mycorrhizal (Soil Goettingen strain) was provided Tropical Institute, Goettingen from University, Fedral R. Germany.

Inocula preparation

For preparation of *Bradyrhizobium* inoculum, yeast mannitol broth medium

12-500

Parameters	Sea	ason	Parameters	Se	ason
r arameters	1999	2000		1999	2000
Particle size distribution (%):			Soluble ions meq/l		
Coarse sand	18.3	19. 2	Ca ⁺²	9.27	8.98
Fine sand	15.1	14.6	Mg ⁺²	6.24	6.71
Silt	15.20	13.4	Na^+	2.71	2.92
Clay	51.4	52.8	K ⁺	0.62	0.6 9
Textural class	Clay	Clay	CO3-2	-	-
Organic matter (%)	1.72	1.78	HCO3.	8.37	8.52
P ^H (1:2.5 suspension)	8.21	8.14	cr	4.81	4.95
Total -N (%)	0.23	0.28	SO4 ⁻²	5.32	5.83
			Microelements		
Total-P (%)	0.16	0.21	Available Fe (ppm)	18.7	20.2
Total-K (%)	0.48	0.50	Available Zn (ppm)	5.33	5.62
CaCO ₃ (%)	0.57	0.51	Available Mn (ppm)	3.60	3.90
E.C (dsm^{-1})	1.85	1.93	Available Cu (ppm)	2.71	2.94

Table 1. Some characteristics of the experimental soil

(Vincent, 1970) was inoculated with the effective strain (*Bradyrhizobium japonicum*), then incubated at 32°C for 7 days.

For preparation of Glomus mosseae inoculum, pots of 30 cm diameter were filled with autoclaved clay loam soil. The soil of each pot was inoculated with VAM fungus G.mosseae. Five onion seedlings were transplanted in each pot as a host plant. After 12 weeks, spores of VAM were collected from the rhizosphere and roots of onion were extracted by wet sieving and decantung technique (Gerdmann and Nicolson, 1963). VAM spores were counted by the method described by **Daniels and** Skipper (1982).

Except for control treatments. soybean seeds were successively washed with water and air-dried. Then, seeds were soaked in cell suspension of Bradyrhizobium japonicum (1ml contains about 8.4 x 10^7 viable cells) for 30 min. Gum arabic (16%) was added as an adhesive agent perior to inoculation. The inoculated seeds were air dried for one hour before sowing. In uninoculated treatments with Bradyrhizobium, soybean seeds were treated by using uninoculated N-deficient medium instead of Bradyrhizobium culture.

Before cultivation, the experimental soil plots $10.5m^2$ (3 x 3.5 m) were supplied with either calcium superphosphate or rock phosphate at a rate of 30 kg P₂O₅/fed.

Regarding the mycorrhizal treatments, plots which have been prepared for inoculation with VA-mycorrhizae were provided with a mycorrhizal spore suspension. The extracted mycorrhizal spore suspension containing about 120-150 spores/ml was used as a standard inoculum (20 ml/m²) for mycorrhizal treatments. Nitrogen fertilizer was applied in the form of ammonium nitrate (33.5% N) at a rate of 20 kg N/fed to all treatments in two equal doses before the first and second irrigation.

Experimental design

A split plot design with four replicates was used in this study. The main plots were assigned to the phosphatic fertilizer sources (zero, rock-p and super-p). While, four dual inoculation with *Bradyrhizobium and* mycorrhizal treatments (Br0M0, Br0M1, Br1M0 and Br1M1) were randomly distributed in the sub plots.

Cultivation process

Cultivation process was performed by sowing four inoculated or uninoculated seeds pre hill at ridges with a distance of 10 cm between hills and 60 cm between ridges. Sowing took place on May 25th in 1999 and May 27th in 2000. After sowing, soil was directly irrigated to provide a suitabel moisture for inocula. Before the 1st irrigation, plants were thinned to two plants per hill. The preceding crop was clover in the two seasons. Agronomic practices were followed according to the standard recommendation for soybean.

Sampling and determinations

Rhizosphere soil samples of the developed plants were taken at vegetative (35 days) and flowering (75 days) stages. The samples were analyzed for CO_2 evolution according to Page *et al* (1982), NH₄-N and NO₃-N according to **Bremner and Keeny** (1965) and available phosphorus according to (A.P.H.A, 1992).

Data of nodules number, nodules dry weight/plant, N₂-ase activity of nodules and mycorrhizal root infection were estimated at flowering stage at the 75^{52} day after cultivation N₂-ase activity was estimated according to Hardy *et al* (1973). Mycorrhizal root infection of soybean plants was assessed microscopically according to Mosse and Giovanetti (1980).

Total nitrogen, phosphorus and potassium content were determined in soybean shoots at 35 and 75 days after planting according to A.O.A.C (1980), (A.P.H.A, 1992) and Dewis & Freitas (1970), respectively. Also, iron, zinc and copper were determined in soybean shoots at 35 and 75 days after planting by the atomic absorption, Perkin Elmer model 3110.

Crude protein and oil content were estimated in soybean seeds. Crude protein was calculated according to the following equation:

% Crude protein = % total nitrogen x 6.25 (A.O.A.C, 1980). Also, oil content was determined according to (A.O.A.C, **1980)** by soxholt apparatus using petroleum ether 40-60 as a solvent.

Grwoth characteristics

After 75 days from sowing, ten guarded plants were chosen at random then plant height, number of branches/plant, dry weights of stem, leaves and pods were estimated.

Yield and its components

At harvesting, ten guarded plants were used to estimate number of pods/plant, pods weight/plant, 100-seed weight. Seed yield/plant seed yield/fed and biological yield/fed were recorded from three inner ridges from each experimental plot, then oil yield/fed and protein yield/fed were calculated.

Statistical analysis

Statistical analysis was carried out for growth and yield characters according to Snedecor and Cochran (1989). The differences between the means value of various treatments were compared by Duncan multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on nodulation, N_2 -ase activity and mycorrhizal root infection of soybean plants.

It is clear from data presented in Table (2) that the nodules number and dry

weight were remarkably increased in bradyrhizobial inoculated treatments compared to uninoculated ones. Number and drv weight of nodules in bradyrhizobial inoculation treatments were greater than mycorrhizal inoculation. The highest number and dry weight of nodules were observed with dual inoculation and this was true in the two growing seasons.

Regarding the effect of phosphatic fertilization, obtained data show that soybean plants fertilized with either superphosphate or rock phosphate gave higher nodules number and dry weight than nonfertilized plants. Also, soybean plants fertilized with rock phosphate gave higher nodules number and dry weight compared to the plants fertilized with superphosphate. The same trend of results was observed in the two growing seasons. Generally, obtained data show that the nodules number and dry weight were higher in the 2nd season than in the 1st one.

It is not a surprising result that, N2ase activity was higher in case of bradyrhizobial inoculated treatments than mycorrhizal inoculated ones. This result is in harmony with those obtained by Ghobrial et al (1995), Kumrawat (1997) Mikhaeel et al (2000) and Abd El-Fattah (2001) who found increases of soybean nodulation and N2-ase activity due to rhizobial inoculation. Whereas, the mycorrhizal infection perecentage was higher in case of mycorrhizal inoculated treatments compared to bradyrhizobial inoculated ones. Obtained data also clearly show differences in root colonization of soybean plants grown in VAM inoculated and uninoculated treatments which depended on the

ſ	P-fertilizer	Dual in-		o. of es/plant	•	eight of mg/plant)	-	vity (n moles dry nodules)	Mycorrhizal root infection (%)	
	sources	oculation	1999	2000	1999	2000	1999	2000	1999	2000
ſ		Bro+Mo	12	14	136	148	21.3	23.1	4.0	6.0
	Zara D	Bro+M1	15	18	161	172	35,3	44.1	34.0	39.0
	Zero-P	Br1+Mo	24	23	230	241	69.1	72.4	11.0	14.0
Annals		Brl+Ml	30	33	293	301	78.2	83.5	48.0	51.0
	Me	an	20	22	205	216	51.0	55.8	24.3	27.5
Agric.	Rock-P	Bro+Mo	17	16	196	180	24.2	26.6	10.0	14.0
		Bro+M1	20	25	240	263	63.4	64.5	63.0	66.0
Sci.		Br1+Mo	41	42	481	493	91.5	92.9	19.0	2 1.0
<u> </u>		Br1+ M1	43	45	520	536	121.6	130.7	78.0	80.0
47(2),	Me	an	30	32	359	368	75.2	78.7	42.5	45.3
<u></u> 2		Bro+Mo	16	18	173	184	25.0	29.2	8.0	9.0
2002	Sumar D	Bro+M1	18	22	201	228	47.2	51.3	57.0	59.0
ຊ	Super-P	Br1+Mo	32	38	318	326	86.9	89.8	16.0	18.0
ĺ		Brl+Ml	37	41	390	406	101.5	105.4	73.0	76.0
[Me	an	26	30	271	286	65.2	68,9	38.5	40.5
Γ		Bro+Mo	15	16	168	171	23.5	26.3	7.3	9.7
	Over all	Bro+M1	18	22	201	221	48.6	53.3	51.3	54.7
	means	Brl+Mo	32	34	343	353	82.5	85.0	15.3	17.7
ł		Br1+ M1	37	40	401	414	100.4	106.5	66.3	69

Table 2. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on nodulation, N_2 -ase activity and mycorrhizal root infection of soybean plants after 75 day of cultivation (flowering stage).

Bro, Non bradyrhizobial inoculation. Mo, Non Mycorrhizal inoculation. Br1, Bradyrhizobial inoculation. M1, Mycorrhizal inoculation. Mehasen; Zaghloul and El-Ghozoli

indigenous VAM in the soil. Low percentage of mycorrhizal infection in the uninoculated plants indicated that the native VAM fungi are presented in the soil but in a low density. The highest N₂-ase activity and records of mycorrhizal root infection were observed in case of dual inoculation compared to inoculation with either Bradyrhizobium or VAM individually. N2-ase activity and mycorrhizal root infection were higher when soybean plants fertilized with rock phosphate than those fertilized with superphosphate and this was observed in the two growing seasons.

It is worthy to notice that the higher percentage of mycorrhizal root infection in case of rock phosphate application than superphosphate could be attributed to the soluble phosphate which inhibited the root colonization by either introduced or indigenous VAM fungi while, rock phosphate enhanced the mycorrhizal root infection (Fares, 1997; Saad & Hammad, 1998 and Barakah et al 1998). Also. thev reported that application of soluble phosphate fertilizers greatly reduced the plant benefit from mycorrhizal colonization.

Regarding the interaction effect, data in Table (2) show that dual inoculation with Bradyrhizobium + mycorrhizae combined with phosphatic fertilization gave higher records of soybean nodulation. N₂-ase activity and mycorrhizal root infection percentage compared to either soybean inoculation or phosphatic fertilization separately. These highest records of abovementioned parameters were observed in the treatment of sovbean inoculation with Bradyrhizobium + nycorrhizae accompanied with rock hosphate.

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on rhizospheric N-forms, available phosphorus and CO₂ evolution in rhizosphere of soybean plants

Data in Table (3) show that ammoniacal and nitrate nitrogen levels in rhizosphere of sovbean plants were higher in bradyrhizobial inoculated treatments than uninoculated ones. Bradyrhizobial inoculated treatments gave higher levels of NH4-N and NO3-N than mycorrhizal inoculated ones. The highest levels of NH4-N and NO3-N were observed in case of dual inoculation of soybean plants compared to inoculation with either Bradyrhizobium or VAM individually. This may be due to the synergistic effect between Bradyrhizobium and VAM fungi,

Concerning the phosphatic fertilization effect, obtained results show that NH₄-N and NO₃-N levels were increased with soybean plants fertilized with either super-p or rock-p compared to nonfertilized ones. Moreover, rock-p treatments showed higher levels of NH-N and NO₃-N in rhizosphere than superp treatments. This may be due to the higher number and dry weights of developed nodules as well as N2-ase activity which were observed in case of rock-p treatments (Table. 2). Ammoniacal and nitrate nitrogen content was higher during folwering stage than vegetative one. The same trend of results was obtained with all treatments as well as in the two growing seasons. The higher levels of NH4-N and NO3-N recorded during the flowering stage may be due to the high multiplication of ammonifiers and nitrifiers during flowering stage as a

		· · · · · · · · · · · · · · · · · · ·								
P-fertilizer	Dual -			(ppm)			NO ₃ -N			
sources	inoculation -		ive stage	Floweri	ng stage	Vegetat	ive stage		ng stage	
		1999	2000	1999	2000	1999	2000	1999	2000	
	Bro+Mo	60.6	67.9	62.2	73.5	46.4	50.4	61.3	69.9	
Zero –P	Bro+M1	72.8	94.8	89.8	104.4	68.5	84.2	78.6	100.6	
Zelo -r	Brl+Mo	89.4	101.5	103.0	125.2	79.6	100.0	98.2	103.5	
	Brl+Ml	96.1	107.0	129.3	146.1	98.6	113.4	121.5	123.4	
M	Mean		92.8	96.1	112.3	73.3	87.0	89.9	99.4	
	Bro+Mo	68.3	71.7	71.6	75.4	53,3	57.8	67.9	73.8	
Dool: D	Bro+M1	83.8	107.4	97.1	128.5	72.3	88.0	82.6	113.3	
Rock-P	Brl+Mo	100.1	115.6	113.5	144.8	91.2	126.0	109.3	117.0	
	Brl+Ml	112.5	124.4	181.3	1 87.8	133.4	<u>1</u> 52.3	17 <u>6.1</u>	182.4	
M	lean	91.2	104.8	115.9	134.1	87.6	106.0	109.0	121.5	
	Bro+Mo	68.9	70.2	70.1	74.7	52.2	57,3	68.1	72.4	
Sumar D	Bro+M1	77.2	100.8	92.7	115.9	69.9	86.5	80.5	104.5	
Super –P	Br1+Mo	92.7	109.3	110.4	142.3	83.1	124.7	100.4	116.2	
	Brl+Ml	103.6	121.2	153.4	170.7	114.2	120.2	146.8	180.8	
M	lean	85.6	100.4	106.7	125.9	79.9	97.2	99.0	118.5	
	Bro+Mo	65.9	69.9	68.0	74.5	50.6	55.2	65.8	72.0	
Over all	Bro+M1	77.9	101.0	93.2	116.3	70.2	86.2	80.6	106.1	
means	Br1+Mo	94.1	108.8	109.0	137.4	84.6	116.9	102.6	122.2	
	Brl+Ml	100.7	117.5	154.7	168.2	115.4	128.6	148.1	162.1	

Table 3. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on nitrogen forms, available	phos-
phorus content and CO ₂ evolution in rhizosphere of soybean plants.	

Annals Agric. Sci., 47(2), 2002

.

484

Mehasen; Zaghloul and El-Ghozoli

 S^{\dagger}

1

1

i.

Table 3, Con	1t.
--------------	-----

Annals Agric. Sci., 47(2), 2002

1

			Available	e-P(ppm)		CO_2 evoluted (µg/g dry soil/hr)				
P-fertilizer sources	Dual	Vegetat	ive stage		ering Ige	Vegetative stage		Flowering stage		
		1999	2000	1999	2000	1999	2000	1999	2000	
	Bro+Mo	59.1	68.9	60.2	70.1	30.6	32.4	33.2	35.6	
Zero –P	Bro+M1	112.3	116,4	116.6	121.7	49.7	63.1	57.9	71.5	
Zero –P	Br1+Mo	98.9	110.1	100.7	116.5	36.3	44.4	39.8	53.9	
	Br1+ M1	128.1	136.2	130.2	138.3	73.2	76.2	81.3	89.0	
Mean		99.6	107.9	101.9	111.7	47.5	54.0	53.1	62.5	
Rock-P	Bro+Mo	78.9	91.2	83.4	96 .0	32.5	36.9	37.1	48.6	
	Bro+M1	125.1	126.8	128.0	139.8	64.7	69.8	70.7	74.8	
	Br1+Mo	112.5	118.7	119.8	126.4	41.8	51.9	53.3	63.2	
	Br1+M1	142.8	148.3	145.7	151.4	87.6	90.5	104.9	112.0	
M	ean	114.8	121.3	119.2	128.4	56.7	62.3	66,5	74.7	
	Bro+Mo	70.3	84.8	77.6	87.3	31.9	35.3	36.0	44.7	
Super -P	Bro+M1	121.5	121.1	126.2	130.5	56.8	66.4	62.4	67.1	
Super -r	Brl+Mo	103.3	111.9	115.6	123.1	38.6	50.8	52.1	58.4	
	Br1+ M1	136.3	145.7	139.1	147.2	80.3	81.6	96.8	99.2	
M	ean	107.9	117.1	114.6	122.0	51.9	58.5	61.8	67.4	
	Bro+Mo	69.4	81.6	73.7	84.5	31.7	34.9	35.4	43.0	
Over all	Bro+M1	119.6	123.1	123.6	130.7	57.1	66.4	63.7	71.1	
means	Br1+Mo	104.9	113.6	112.0	122.0	38.9	49.0	48.4	58.5	
	Brl+Ml	135.7	143.4	138.3	145.6	80.4	82.8	94.3	100.1	

Abbreviations: as those stated for Table (2).

Effect Dual inoculation in presence of phospate in soybean

ł

result of the positive qualitative and quantitative changes in nature of the plant root exudates during different growth stages. These results are in harmony with those obtained by Neweigy et al (1997) and Hanafy et al (1998) who found that the amonifiers and nitrifiers bacterial densities were higher in rhizosphere during heading stage of plant growth rather than other plant growth stages. Data also emphasize that available phosphorus content and CO₂ evolution were increased with either mycorrhizal or bradyrhizobial inoculated treatments compared uninoculated to ones **Mycorrhizal** inoculated treatments showed higher available-P and CO₂ evolution than bradyrhizobial inoculated ones. The highest records of available-P and CO₂ evolution were observed with dual inoculation of soybean plants with Bradyrhizobium and VAM fungus. Rockp treatments gave higher values of available phosphorus and CO₂ evolution than super-p ones. This may be due to the higher rates of mycorrhizal root infection which observed with rock-p treatments (Table, 2). The same trend of results was observed in both growth stages and the two growing seasons. Available phosphorus and CO₂ evolution were also higher during flowering stage than vegetative stage. The higher records of available phosphorus at flowering stage may be attributed to the higher multiplication of phosphate rate dissolvers which tended to increase progressively with plant growth. These results are in agreement with those reported by Saad & H ammad (1998); Zaghloul (1999) and Abou-Alv & Gomaa (2002) who reported that available phosphorus content was

increased during flowering stage when the plants were inoculated with phosphate solubilizing microorganisms and amended with rock phosphate.

With regard to the interaction effect, data in Table (3) indicate that dual inoculation with *Bradyrhizobium* + mycorrhizae combined with phosphatic fertilization showed higher rhizospheric NH₄ -N, NO₃ -N, available-P and CO₂ evolution than either inoculation only or phosphatic fertilization separately. Dual inoculation with *Bradyrhizobium* + mycorrhizae and fertilization with rock phosphate gave the highest values of tested parameters.

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on growth characters of soybean plants.

Data in Table (4) indicate that growth characters of soybean plants i.e. plant height, number of branches/plant and dry weight of stem, leaves and pods/plant were significantly increased with either bradyrhizobial or mycorrhizal inoculation compared to uninoculated controls. Generally, significant increases were observed in most plant growth characters with bradyrhizobial inoculation compared to mycorrhizal inoculation. While, dual inoculation of soybean plants with Bradyrhizobium japonicum and VAM fungus (Glomus mosseae) gave higher records of growth characters than the application of each inoculum singularly.

These results are in accordance with those obtained by (Vejsadova et al 1993; Soliman et al 1996; Shalaby & Hanna, 1998 and Mikhaeel et al 2000). They reported that the dual inoculation of

P-fertilizer	Dual inocula-	Plant l (ci	-		anches per lant		ht of stem g)		nt of leaves g)		ht of pods g)
sources	tion	1999	2000	<u>199</u> 9	_2000	1999	2000	1999	2000	1999	2000
	Bro+Mo	62.0f	80.81	2.08c	1.85a	9.92h	8.00c	10.25g	10.27h	9.07j	7.68h
7 D	Bro+M1	75.8e	87.2gh	2.80c	2.45a	13.27f	11.88b	18.90e	16.70g	13.99g	12.07g
Zero-P	Brl+Mo	85.8abc	88.6ef	2.40d	2.75a	14.86de	11.856	19.69d	17.42f	16.86e	13.63c
	Brl+Ml	82.0cde	91.8c	3.28a	2.98a	18.09a	12.65ab	21.08c	19.15c	18.55b	15.25c
Me	an	76.4C	87.1C	2.64B	2.51B	14.04A	11.09B	17.48B	15.89C	14.62C	12.16C
	Bro+Mo	80.5cde	86.2h	2.88bc	2.28a	9.77h	11.68b	18.75e	16.65g	13.63h	12.25g
Rock-P	Bro+M1	90.3a	88.4fg	3.13ab	2.55a	12.05g	12.18b	19.75d	17.60ef	15.68f	13.77c
ROCK-P	Brl+Mo	89.5ab	90.3d	3.13ab	2.90a	17. 99a	12.23b	19.86d	18.15d	17.65d	14.38d
	Br1+ M1	89.3ab	95.4a	3.13ab	3.15a	16.70bc	13.98a	23.53a	21.70a	20.01a	18.50a
Me	Mean		90.1A	3.06A	2.72A	14. 13A	12.51A	20.47A	18.52A	16.74 A	14.73A
	Bro+Mo	77.8de	86.4h	2.78c	2.20a	13.93ef	11.57Ъ	18.19f	16.65g	10.64I	12.07g
Suma D	Bro+M1	83.3bcd	87.8fg	2.80c	2.58a	8.96h	12.07Ъ	20.86c	17.30f	15.57f	12.90f
Super-P	Br1+Mo	82.3cd	89.7dc	3.13ab	2.75a	15.90cd	12.05b	19. 89 d	17.88de	17.99c	14.18dc
	Br1+ M1	85.5abc	93.3b	3.08ab	3.05a	17.34ab	13.15ab	22.93b ·	20.40b	19.85a	16.90Ь
Me	an	82.3B	89.3B	2.94A	2.64AB	14.03A	12.21A	20.47A	18.06B	15.99B	14.01B
	Bro+Mo	73.4B	84.4D	2.58C	2.11D	11.21C	10.42C	15.73C	14.52D	11.11D	10.6 7D
Over all	Bro+M1	83.1A	87.8C	2 .91B	2.53C	11.43C	12.04B	19.84B	17.20C	15.08C	12.92C
means	Brl+Mo	86.0 A	89.5B	2.88B	2.80B	16.25 B	12.04B	19.81B	17.82B	17.47B	14.06B
	Bri+Mi	85.6A	93.5A	3.16A	3.06A	17.38A	13.26A	22.51A	20.42A	19.47A	16.88A

Table 4. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on growth characters of soybean plants

.

ł

Abbreviations : as those stated for Table (2). Means followed by the same letter (s) within each column, are not significantly different from each other at 5% level.

487

soybean plants with *B. japonicum* and mycorrhizae showed significant increase in their growth characters.

Concerning the effect of phosphatic fertilization, rock phosphate fertilization treatments showed significant increase in growth characters compared to superphosphate fertilization ones. The same trend of results was observed in the two growing seasons.

Respecting the interaction effect, data in Table (4) show that dual inoculation with *Bradyrhizobium* + mycorrhizae combined with phosphatic fertilization gave significant increase in growth characters compared to soybean inoculation or phosphatic fertilization separately.

The highly significant increase in soybean growth characters was observed in the treatment of soybean plants Bradyrhizobium + inoculated with mycorrhizae and fertilized with rock phophate. This result could be attributed to the high levels of N₂-ase activity and mycorrhizal colonization (Table, 2) as well as the high levels of NH₄-N, NO₃-N and available phosphorus (Table, 3) which observed in the treatment of sovbean plants inoculated with Bradvrhizobium + mycorrhizae and fertilized with rock phosphate.

Generally except for plant height, soybean growth characters were higher in the 2nd season than the 1st season. This difference between the two growing seasons may be due to the changes in the climatic conditions.

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on macro-nutrinets content of soybean shoots.

Data in Table (5) show that the total nitrogen, phosphorus and potassium content in shoots of soybean plants were increased in the treatments inoculated with either Bradvrhizobium οг mycorrhizae compared to uninoculated treatments. Bradyrhizobial inoculated treatments gave higher levels of total nitrogen than mycorrhizal inoculated ones. Whereas mycorrhizal inoculated treatments gave higher levels of total phosphorus and potassium compared to bradyrhizobial inoculated ones.

Dual inoculation of soybean plants gave higher levels of macro-nutrients content (NPK) than those recorded in treatments inoculated with either of *Bradyrhizobium* or mycorrhizae.

With regard to the phosphatic fertilization effect, obtained data show that macor-nutrients levels (NPK) were higher in the treatments fertilized with rock phosphate than the treatments fertilized with superphosphate. This result can be attributed to the higher N₂-ase activity and mycorrhizal root infection recorded in such case (Table, 2) these parameters were greater in the treatments fertilized with rock phosphate than the treatments fertilized with superphosphate. These results are in harmony with those obtained by Ishac et al (1994), El-Sawy et al (1998), Mikhaeel et al (2000) and Abd El-Fattah(2001) who found that rhizobial inoculation incereased total nitrogen in plant shoots in comparison uninoculated plants. While, with mycorrhizal inoculated plants contained higher levels of phosphorus compared to uninoculated ones (El-Sawy et al 1998; Shalaby & Hanna, 1998 and Mikhaeel et al 2000). Moreover, they reported that the dual inoculation with Bradyrhizobium

			Nitroge	en (%)			Phosp	horus(%)		Potassium (%)				
P-fertilizer	Dual	Vege	etative	Flow	ering	Veg	etative	Flow	ering	Vege	tative	Flow	ering	
sources	inoculation		age	sta	stage		stage		stage		stage		stage	
		1999	2000	<u> </u>	2000	1999	2000	1999	2000	1999	2000	1999	2000	
	Bro+Mo	2.13	2.31	2.17	2.52	0.14	0.15	0.16	0.18	1.45	1.39	1.50	1.65	
Zero-P	Bro+M1	2,97	3.18	2.68	3.65	0.23	0.26	0.27	0.29	1.68	1.56	1.75	1.83	
Lero-P	Br1+Mo	3.59	3.92	3.62	3.93	0.16	0.19	0.20	0.22	1.50	1.52	1.62	1.75	
	Br1+ M1	3.66	3.82	3.64	4.03	0.24	0.28	0.29	0.34	1.95	1.90	2.10	2.08	
M	ean	3.09	3.31	3.03	3.53	0.19	0.22	0.23	0.26	1.65	1.59	1.74	1.83	
	Bro+Mo	3.19	3.30	3.17	3.25	0.24	0.26	0.28	0.27	1.72	1.64	1.91	1.95	
Rock-P	Bro+MI	3.22	3.82	3.62	3.75	0.39	0.35	0.39	0.41	1.96	1.94	2.16	2.16	
ROCK-F	Br1+Mo	3.81	4.12	3.99	4.30	0.29	0.31	0.36	0.34	1.90	1.79	2,10	2.05	
	Brl+ Ml	3.94	4.32	4.16	4.53	0.46	0.49	0.52	0.58	2.40	2.25	2.65	2.62	
M	сал	3.54	3.89	3.74	4.01	0.35	0.35	0.39	0.40	2.00	1.91	2.21	2.20	
	Bro+Mo	2.91	3.12	3.01	3.08	0.18	0.21	0.25	0.24	1.61	1.55	1.83	1.72	
Curren D	Bro+M1	3.18	3.46	3.09	3.68	0.33	0.36	0.36	0.38	1.95	1.90	2.01	2.13	
Super-P	Brl+Mo	3.63	4.10	3.57	4.25	0.23	0.29	0.30	0.32	1.83	1.71	1.80	1.91	
	Brl+Ml	3.73	4.26	3.68	4.35	0.35	0.38	0.36	0.39	2.06	2.11	2.55	2.36	
М	can	3.36	3.74	3.34	3.84	0.27	0.31	0.32	0.33	1.86	1.82	2.05	2.03	
	Bro+Mo	2.74	2.91	2.78	2.95	0.17	0.21	0.23	0.23	1.59	1.52	1.75	1.77	
Over all	Bro+M1	3.12	3.49	3.13	3.76	0.32	0.32	0.34	0.36	1.86	1.80	1.97	2.04	
means	Brl+Mo	3.68	4.05	3.73	4.16	0.23	0.26	0.29	0.29	1.74	1.67	1.84	1.90	
	Br1+ M1	3.78	4.13	3.83	4.30	0.35	0.38	0.39	0.44	2.14	2.09	2.43	2.35	

 Table 5. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on macro - nutrients content of soybean shoots.

Abbreviations : as those stated for Table (2).

Annals Agric. Sci., 47(2), 2002

1

and VAM fungi gave the highest levels of macro-nutrients content of plant shoots. Such trends of results support the obtained results in the current study.

With respect to the interaction effect, data presented in Table (5) indicate that dual inoculation with *Bradyrhizobium* + mycorrhizae combined with phosphatic fertilization gave higher levels of macronutrients content of soybean shoots than either soybean inoculatin or phosphatic fertilization separately. The highest levels of macro-nutrients content were observed in the treatment of soybean inoculation with *Bradyrhizobium* + mycorrhizae accompanied with rock phosphate.

Data also show that macro-nutrients (NPK) content of soybean shoots was higher during flowering stage than vegetative one. The same trend of results was obtained in all treatments as well as during the two growing seasons. Similar results were recorded by (Vejsadova *et al* 1993; Maksoud *et al* 1995 and Mikhaeel *et al* 2000).

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on micro-nutrients content in shoots of soybean plants.

Data presented in Table (6) show that micro-nutrients (iron and copper) content of soybean shoots were higher in mycorrhizal inoculated treatments than bradyrhizobial inoculated ones. Whereas, zinc content of soybean shoots was higher in rhizobial inoculated treatments than mycorrhizal inoculated ones. The same trend was observed in the two growing seasons as well as in different growth stages of soybean plants. The highest micro-nutrients content was observed in the case of dual inoculation compared to inoculation with either *Bradyrhizobium* or VAM individually. This result is in harmony with those reported by (Cardoso, 1986; Soliman *et al* 1996 and Shalaby & Hanna, 1998) who reported that the dual inoculation of soybean plants with *Bradyrhizobium* + mycorrhizae showed the highest increase of micro-nutrients content in shoot system.

Data in Table (6) also indicate that soybean plants fertilized with rock phosphate gave higher micro-nutrients content compared to soybean plants fertilized with superphosphate. This result could be attributed to the higher records of N_2 -ase activity and mycorrhizal root infection rate in case of rock phosphate treatments which previously discussed in Table (2).

Respecting the interaction effect, data recorded in Table (6) show that dual inoculation with *Bradyrhizobium* + mycorrhizae combined with phosphatic fertilization gave higher micro-nutrients content of soybean shoots than either soybean inoculation or phosphatic fertilization singularly. The highest micro-nutrients content was observed in the treatment of soybean inoculation with *Bradyrhizobium* + mycorrhizae and fertilized with rock phosphate.

Micro-nutrients content of soybean shoots was higher during flowering stage than vegetative one and this was true in all treatments as well as during the two growing seasons.

Generally, obtained data show that the micro-nutrients content was higher in the 2^{nd} season than in the 1^{st} one. The differences between the two growing

P-fertilizer	Dual		Iron (ppm)			Zinc	(ppm)			Copper	(pp m)	
sources	inoculation	Vegetati	ve stage	Floweri	ng stage	Vegetat	ive stage	Floweri	ng stage	Vegetat	ive stage	Floweri	ng stage
		1999	2000	1999	2000	1999	2000	1999	2000	1999	2000	1999	2000
	Bro+Mo	783.0	786.1	794.2	799.5	225.3	227.3	228.1	230.0	75.9	80.2	77.6	81.3
Zero-P	Bro+M1	1100	1138.6	1342.0	1369.1	312.3	327.8	349.7	358.5	149.7	148.3	156.9	158.7
Zero-P	Brl+Mo	917	987.2	1003.1	995.4	320.7	348.0	358.6	366.0	144.6	146.7	142.6	156.2
	Br1+M1	1339	1372.5	1373.2	1407.3	415.8	397.2	418.2	414.1	162.5	163.2	164.3	170.0
М	ean	1035	1071.0	1128	1143	318.5	325.1	338.7	342.2	133.2	134.6	135.4	144.6
	Bro+Mo	798	887.2	886.7	972.8	241.7	283.1	249.1	346.0	78.2	84.3	80.4	89.5
Deal D	Bro+M1	1306.0	1363.3	1370.3	1382.4	369.5	389.0	382.0	421.2	16 8 ,3	168.9	169.8	173.7
Rock-P	Br1+Mo	1113.7	1248.5	1230.0	1260.7	380.6	391.6	396.2	428.1	180.5	187.3	189.9	198.8
	Br1+M1	1368	1399.1	1442.0	1495.6	427.2	482.0	436.5	493.6	191.2	187.1	198.2	200.6
M	ean	1147	1225	1232	1278	357.8	386.4	365.9	422.2	152.6	156.9	159.6	165.7
	Bro+Mo	792.0	863.4	809.5	962.5	233.1	256.6	240.9	308.0	77.3	83.1	78.8	85.6
Sugar D	Bro+M1	1270	1283.7	1355. <u>6</u>	1371.2	348.9	387.2	368.3	398.0	160.1	165.2	167.1	169. 2
Super-P	Brl+Mo	1103	1215.1	1216.2	1236.3	355.4	362.1	384.8	381.8	156.2	159.8	163.7	166.1
	Brl+Ml	1341	1390.8	1390.1	1418.2	418.1	462.0	426.4	479.8	170.5	185.9	172.4	189.3
М	ean	1127	1188	1193	1247	338.9	367.0	355.1	391.9	141.0	148.5	145.5	152.6
	Bro+Mo	791	846	830	91 2	233.4	255.7	239.4	294.7	77.1	82.5	78.9	85,5
Over all	Bro+M1	1225	1262	1356	1374	343.6	368.0	366.7	392.6	159.4	160. 8	1 64 .6	167. 2
means	Br1+Mo	1045	1150	1150	1151	352.2	367.2	379.9	392.0	160.4	164. 6	165.4	173.7
	Br1+M1	1349	1387	1402	1440	420.4	447.1	427.0	462.5	174.7	178.7	178.3	186.6

Table 6. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on micro-nutrients of soybean shoots

Abbreviations: as those stated for Table (2).

Annals Agric. Sci., 47(2), 2002

Τ.

1

seasons may be due to the changes in the meterological factors.

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on yield and yield components of soybean plants.

It is obvious from data given in Table (7) that pods number and weights/plant, weight of seeds/plant, 100-seed weight, seed yield/fed and biological yield/fed were significantly increased with either bradyrhizobial or mycorrhizal inoculated treatments compared to uninoculated ones and this observation was consistent in the two growing seasons.

Data in Table (7) also show that significant increases in most studied traits were observed with bradyrhizobial treatment compared to inoculation mycorrhizal inoculation. Whereas, dual inoculation of soybean plants with B. japonicum and VAM fungus (Glomus mosseae) gave higher values of yield and vield components in comparison with the application of each one solely. These results are in harmony with those obtained by Kumrawat et al (1997); Shalaby & Hanna (1998), Mikhaeel et al (2000) and Abou-Aly and Gomaa (2002). The higher yield and yield components which was observed in case of dual inoculation could be attributed to the high N₂-ase activity, mycorrhizal colonization intensity (Table, 2). In addition, higher levels of NH4-N, NO3available phosphorus and CO₂ N. evolution (Table, 3). As well, higher records of soybean growth characters (Table, 4) which were observed in case of dual inoculation treatments.

Taking the p-source into account, data in Table (7) show that yield and yield components of soybean plants were significantly increased in the treatments fertilized with rock phosphate compared to the treatments fertilized with superphosphate.

These results indicate the important role of VAM in phosphorus mobilizing from the unavailable sources such as rock phosphate. Therefore, rock phosphate as a cheap source of phosphorus could substitute superphosphate for soybean fertilization in the presence of vesicular arbuscular mycorrhizae (VAM).

With respect to the interaction effect, data presented in Table (7) indicate that dual inoculation with Bradyrhizobium + mycorrhizae combined with phosphatic fertilization showed significant increase in yield and yield components of soybean plants compaerd to sovbean inoculation or phosphatic fertilization separately. The high significant increase of yield and vield components of soybean plants was observed in the treatment of sovbean inoculation with Bradyrhizobium + mycorrhizae accompanied with rock phosphate.Similar results were observed by (Barakah et al, 1998; El-Sawy et al; 1998 and Zaghloul, 1999).

Effect of phosphatic fertilizer sources, dual inoculation and their interaction on protein and oil yield of soybean seeds

Data in Table (8) indicate that protein and oil yield (kg/fed.) were significantly increased in soybean plants inoculated with either *Bradyrhizobium* or mycorrhizae compared to uninoculated ones.

P-fertilizer	Dual	No. of po	ds /plant	Weight of po	ds/plant (g)	Weight of see	ds/plant (g)
sources	Inoculation	1999	2000	1999	2000	1999	2000
	Bro+Mo	40.3g	36.4g	25.77f	22.33j	12.43b	12.55h
Zero-P	Bro+M1	51.8de	46.4gh	34.90cde	33.30gh	17.90a	16.67efg
2.ero-P	Brl+Mo	53.1c	50.5ef	35.95abcd	36.78de	19.63a	17.35de
	Brl+Ml	54.7b	55.1bc	36.38abc	39.47bc	20.98a	19.42c
Me	an	49.9C	47.1C	33.25B	32.97C	17.73B	16.50C
	Bro+Mo	51.1e	44.7hi	35.13bcde	31.77hi	18.05a	16.27fg
Rock-P	Bro+M1	52.1d	50.3ef	34.43de	36.25ef	18.45a	17.48de
ROCK-P	Brl+Mo	54.4b	53.3cd	35.35dcde	38.60cd	20.30a	18.15d
	Brl+Ml	56.5a	57.9a	37.45a	42.97a	22.00a	22.35a
Me	an	53.6A	<u>51.5A</u>	35.59A	37.40A	19.70A	18.56A
}	Bro+Mo	50,1f	42.8I	34.00e	30.05i	17.83a	15.77g
Supar B	Bro+M1	51.5de	48.2fg	35.38bcde	34.75fg	18.33a	17.22dei
Super-P	Br1+Mo	54.1b	52.1de	35.53bcde	37.83cde	19.80a	17,63de
	Brl+Ml	55.6a	56.7ab	36.78ab	40.67b	21.38a	20.65b
Me	an	52.8B	49.9B	35.39A	35.83B	19.33A	17.82B
E	Bro+Mo	47.1D	41.3D	31.63C	28.05D	16.10C	14.87D
	Bro+M1	51.8C	48.3C	34.87B	34.77C	18.23BC	17,13C
Over all means	Br1+Mo	53.9B	52.0B	35.61B	37.73B	19.91AB	17.71B
·	Brl+Ml	55.6A	56.6A	36.87A	41,04A	21.45A	20.81A

 Table 7. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on yield and yield components of soybean plants

ł

Table 7. Cont.

P-fertilizer	Dual	Weight of	100-seed (g)	Seed yield	(Kg/fed.)	Biological yiel	d (ton/fed.)
sources	Inoculation	1999	2000	1999	2000	1999	2000
	Bro+Mo	15.43h	12.52i	865g	823j	2.83e	3.50h
Zero-P	Bro+M1	17.10f	16.60fg	1154e	1090gh	3.53abcd	3.97efg
2010-P	Brl+Mo	17.77de	17.02f	1280c	1130ef	3.58abcd	4.09cde
	Br1+ M1	18.40c	19.00c	1312bc	1178c	3.78ab	4.25ab
Me	Mean		16.29C	1153C	1057C	3.43A	3.76C
	Bro+Mo	16.90fg	16.25gh	1089f	1078h	3.45cd	3,88g
Bask D	Bro+M1	17.33ef	17.15ef	1220d	1133ef	3.55abcd	3.92fg
Rock-P	Br1+Mo	18.20cd	18.10d	1312bc	1165cd	3.68abc	4.04cdef
	Br1+ M1	20.02a	20.58a	1389a	1315a	3.81a	4.18bc
Me	Mean		18.02A	1253A	1173A	3.62A	4.09A
	Bro+Mo	16.50g	15.95h	1086f	1020i	3.38d	3.87g
Sumar D	Bro+M1	17.10f	16.98f	1181e	1109fg	3.49bcd	4.02def
Super-P	Br1+Mo	18.02cd	17.75de	1303bc	1145de	3.65abcd	4.16bcd
	Br1+ M1	19.15b	19.65b	1329b	1218b	3.80a	4.33a
Me	an	17.69A	17,58B	1225B	1123B	3.58A	4.00B
F	Bro+Mo	16.27D	14.91D	1013D	974D	3.22C	3.50B
	Bro+M1	17.17C	16.91C	1185C	1111C	3.52B	3.97C
Over all means	Br1+Mo	18.00B	17.63B	1298B	1147 B	3.64B	4.09B
	Brl+ Ml	19.19A	19.74A	1343A	1240A	3.80A	4.25A

Abbreviations : as those stated for Table (2). Means followed by the same letter (s) within each column, are not significantly different from each other at 5% level.

Mehasen; Zaghloul and El-Ghozoli

1

1

1

÷

	P-fertilizer sources	Dual inoculation	Protein p in s	ercentage eeds	Protein yield (Kg/fed)		Oil percentage in seeds		Oil yield (Kg/fed)	
Ĺ			1999	2000	1999	2000	1999	2000	1999	2000
		Bro+Mo	33.70a	33.10ef	291.5g	272.4j	19.35a	18.95e	167.4g	155.6i
	7 D	Bro+M1	35.13a	37.16a	405.1e	372.2gh	20.15a	20.80bcd	232.4e	226.7fg
	Zero-P	Brl+Mo	34.95a	32.94f	447.3c	390.7ef	21.10a	20.75bcd	271.8c	234.5de
ξ		Brl+MI	35.42a	32.92f	464.9b	418.6c	21.90a	21.38ab	286.5b	253.7Ь
Annals	Ме	ลก	34.80B	34.03A	402.02C	363.5C	20.63B	20.47A	239.5C	217.6C
SA		Bro+Mo	34.75a	34.05cde	378.4f	366.9h	20.13a	20.48cd	219.4f	220.6g
Agric.	Rock-P	Bro+M1	35.20a	34.35cd	429.4d	389.0f	20.75a	21.17abc	254.7d	239.8cd
2		Br1+Mo	35.28a	35.03bc	462.9b	408.0d	21.67a	20.80bcd	284.7Ъ	242.3c
Sci.,		Brl+Mi	35.75a	35.70Ъ	496.6a	469.4a	22.60a	21.67a	313.9a	285.2a
47(2),	Mean		35.24A	34.78A	441.8A	408.3A	21.29A	21.03A	268.2A	247.0A
<u></u>		Bro+Mo	34.63a	33.72def	375.2f	344.0i	19. 73 a	20.17d	211.2f	205.8h
2002	0	Bro+M1	35.10a	34.25cd	414.5e	379.9g	20.58a	20.90bcd	248.7d	231.8ef
ន	Super-P	Br1+Mo	35.33a	34.78bcd	460.3bc	398.2e	20.75a	21.40ab	271.2c	245.1c
		Brl+Ml	35.70a	35.42Ъ	474.4b	431.3b	21.92a	21.38ab	291.3b	260.3b
[Me	an	35.19A	34.54A	431.1B	388.4B	20.74B	20.96A	255.6B	235.7B
ſ		Bro+Mo	34.36B	33.63C	348.4D	327.7D	19.73D	19.87C	199.3D	194.0D
{	Over all	Bro+M1	35.14AB	35.25A	416.4C	380.4C	20.49C	20.96B	245.3C	232.8C
	Means	Brl+Mo	35.18AB	34.25B	456.8B	399.0B	21.17B	20.98B	275.9B	240.6B
ł		Br1+M1	35.63A	34.68AB	478.6A	439.8A	22.14A	21.48A	297.2A	266.4A

 Table 8. Effect of Phosphatic fertilizer sources, dual inoculation and their interaction on percentage and yield of protein and oil of soybean seeds

Abbreviations: as those stated for Table (2).

Means followed by the same letter (s) within each column, are not significantly different from each other at 5% level.

Effect Dual inoculation in presence of phospate in soybean

1

T

Data in Table (8) also show that significant increases were observed in the percentages and yields of protein and oil when soybean plants inoculated with *Bradyrhizobium* compared to mycorrhizal inoculated one. The highest records of protein and oil yield of soybean were observed in case of dual inoculation with *Bradyrhizobium japonicum* and *Glomus mosseae* and this was observed in the two growing seasons. These results are in accordance with thse reported by Vejsadova et al (1993); Maksoud et al (1995) and Shalaby & Hanna (1998).

Concerning the effect of phosphatic fertilization, data in Table (8) clearly show that rock phosphate fertilization treatments showed significant increase in protein and oil yield of soybean plants in comparison with superphosphate fertilization treatments. The same trend of results was observed in both seasons.

Regarding the interaction effect, data in Table (8) show that dual inoculation with Bradyrhizobium japonicum + mycorrhizae combined with phosphatic fertilization showed significant increase in the percentages and yields of protein and oil of soybean compared to soybean inoculation or phosphatic fertilization separately. The high significant increase abovementioned parameters was of obtained in the treatment of soybean inoculation with Bradyrhizobium japonicum + mycorrhizae accompanied with rock phosphate.

CONCLUSION

Generally, it could be concluded that nearly about 50 % of the nitrogen requirements of soybean could be saved by *Bradyrhizobium japonicum* inoculation. That is of great interest especially when public health and environmental pollution were considered.

Also, dual inoculation of soybean with *Bradyrhizobium japonicum* and *G. mosseae* gave vigorous growth and high yield as well as yield components of soybean plants especially with rock phosphate. Thereby, the use of rock phosphate at a rate of 30 kg P_2O_5 /fed combined with dual inoculation can be recommended to substitute superphosphate application for reducing the production costs of soybean.

REFERENCES

Abd El-Fattah, F.K. (2001). Stimulatory effect of Azospirillum and Azotobacter on symbiotic efficiency between Bradyrhizobium and soybean under different rates of nitrogen fertilization. J. Agric. Sci., Mansoura Univ., 26 (6): 3961-3973.

Abou Aly, H.E. and A.O. Gomaa (2002). Influence of combined inoculation with diazotrophs and phosphate solubilizers on growth, yield and volatile oil content of coriander plants (*Coriandrum sativum L*). Bull. Fac. Agric., Cairo Univ., 35: 93-114.

A.O.A.C., Association of Official Agricultural Chemists (1980). Official methods of analysis. 10th Ed. Washington, D. C., U. S.A. P:832.

A.P.H.A, American Public Health Association (1992). Standard methods for the examination of water and waste water. Washington, D. C., U. S. A.

Barakah, G.N.; S.H. Salem and A.M. Heggo (1998). Effect of inoculation with endomycorrhizal fungi (VAM) and *Rhizobium meliloti* on nodulation,

nutrition and N₂-fixation of alfalfa grown in calcareous soil. Annals Agric. Sci., Ain Shams Univ., Cairo, 43 (1): 49-64. Barea, J.M.; J.L. Escudero and C.C. Azcon (1980). Effect of introduced and indigenous VA-mycorrhizal fungi on nodulation, growth and nutrition of Medicago sativa in phosphate-fixing soils as affected by p-fertilizers. Plant and Soil, 54: 283-296.

Black, C.A.; D.O. Evans; L.E. Ensminger; J.L. White; F.E. Clark and R.C. Dinauer (1982). Methods of Soil Analysis. Part 2, 2nd Ed., pp. 62-68 Chemical and microbiological properties. Soil Sci. of Am: Inch. Publ., Madison, Wisconsin, U. S. A.

Bremner, J.M. and D.R. Keeny (1965). Steam distillation method for determination of ammonium, nitrate and nitrite. Annals Chem. Acta 32: 485-495.

Cardoso, E.J.B. (1986). Effectiveness of vesicular arbuscular mycorrhizal fungi on soybean inoculated with *Rhizobium japonicum* and receiving rock phosphate as a function of soil type. *Revista Brasileria de Ciencia do Solo, 10(1): 17-23.*

Daniels, B.A. and H.D. Skipper (1982). Methods for recovery and quantitative estimation of propagules from soil. In Methods and Principles of Mycorrhizal Research. Am. Phytopathological Society, pp: 29-35.

Dewis, G. and F. Freitas (1970). Physical and chemical methods of soil and water analysis. F.A.O., Bull., No (10).

Duncan, D.B. (1955). Multiple range and multiple F. test. *Biometrics*, 11:11-24.

El-Sawy, M.; E.A. Saleh; M.A. El-Borollosy; T.H. Nokhal; L Fendrik and M.S. Sharaf (1998). Effectiveness of dual incoulation with diazotrophs and vesicular arbuscular mycorrhizae on the growth and khellin content of *Ammi* visnaga. Arab Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 8 (2): 357 - 371.

Fares, Clair, N. (1997). Effect of indigenous and introduced vesicular arbuscular mycorrhizal fungi on wheat plants. *Annals Agric. Sci., Ain Shams Univ., Cairo, 42 (1): 61-71.*

Gerdmann, J.W. and T.H. Nicolson (1963). Spores of mycorrhizal *Endogone* species extracted form soil by wet sieving and decanting. *Trans. Brit. Mycol. Soc.*, 46: 235-244.

Ghobrial, W.N.; Dawlat, N. Abadi; R.Y. Abd El-Kodoos and M.H. Hegazy (1995). Nitrogen fixation potential as affected by B. japonicum strains and sovbean cultivars for maximizing soybean productivity. Annals Agric. Sci., Ain Shams Univ., Cairo, 40(1): 117-128. Hanafy, Ehsan, A.; N.A. Newigy; R.A. Zaghioul and El-Sayeda, H. El-Badawy (1998). Inoculation efficiency of rice plants with Azolla as a biofertilizer in the presence of different levels of phosphorus. Arab. Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 6(1):49-76.

Hardy, R.W.F.; R.C. Burns and R.D. Holsten (1973). Application of the acetylene ethylene assay for measurement of nitrogen fixation. *Soil Biol. Biochem.*, 5: 47-81.

Hegazy, M.H.; M.S. Abo-Soliman; Dawlat, N. Abadi and Faiza, K. Abd El-Fattah (1993). Effect of Bradyrhizobium japonicum inoculation and methods of p-application on soybean. Egypt. J. Appl. Sci., 8 (9): 373-387.

Ishac, Y.Z.; J.S. Angle; M.A. El-Borollosy; M.E. El-Demerdash; M.L. Mostafa and Clair, N. Fares (1994).

Growth of Vicia faba as affected by inoculation with vesicular arbuscular mycorrhizae and *R.ieguminosarum* by. Vicieae in two soils. Biofertil. Soils, 17: 27-31.

Jackson, M.L. (1973). Soil Chemical Analysis. pp. 46-52, Prentic-Hall of India, Private, New Delhi.

Kumrawat, B.; H.M. Dighe R.V.; Sharma and G.V. Katti (1997). Response of soybean to biofertilizers in black clay soils. Crop Research Hisar, 14 (2): 204 – 214.

Maksoud, H.H.; H. Moawad and R.V. Saad (1995). Performance of soybean as affected by *Bradyrhizobium japonicum* and VA-mycorrhizae under different levels of P and N fertilization. *Egyptian* J. of Microbiology, 30 (3): 401 – 414.

Mehasen, S.A.S. (1994). Effect of Irrigation Treatment, Bacterial Inoculation and Nitrogen Fertilization on Soybean Productivity. pp. 92-104, Ph.D. Thesis, Fac.of Agric. Moshtohor, Zagazig Univ. Egypt.

Mikhaeel, F.T.; A.M. Shalaby and Monna, M. Hanna (2000). Dinitrogen fixation and nitrogen assimilation as influenced by dual (VA-mycorrhizal fungi-*Rhizobium*) inoculation in soybean plants. *Annals Agric. Sci., Ain Shams Univ., Cairo 45 (1): 67-77.*

Mosse, B. and M. Giovanetti (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. *New Phytopathology*, 84: 489-500.

Neweigy, N.A.; Ehsan, A. Hanafy; R.A. Zaghloul and El-Sayeda, H. El-Badawy (1997). Response of sorghum to inoculation with *Azospirillum*, organic and inorganic fertilization in the presence of phosphate solubilizing microorganisms. Annals. of Agric.Sci., Moshtohor, 35(3):1383-1401.

Page, A.L.; R.H. Miller and D.R. Keeny (1982). Methods of Soil Analysis, Part 2, 2^{nd} Ed. pp. 60-64, Am. Soc. Agronomy, Inc. Mad. Wisconsin, U. S. A. Saad, O.A.O. and A.M.M. Hammad (1998). Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and VA-mycorrhizae as alternative for Ca-superphosphate. Annals Agric. Sci., Ain Shams Univ., Cairo, 43(2): 445-460.

Shalaby, A.M. and Monna, M. Hanna (1998). Interactions between VAmycorrhizal fungus Glomus mosseae, Bradyrhizobium japonicum and Pseudomonas syringae in soybean plants. Acta Microbiol. Polonica, 47(4): 385-391.

Snedecor, G.W. and W.G. Cochran (1989). Statistical Methods. 8th Ed., Iowa State Univ., Press, Iowa, U.S.A.

Soilman, S.; LA. El-Ghandour and Khadra, A. Abbady (1996). Effect of nitrogen, phosphorus supply and *Bradyrhizobium* and VAM fungus inoculants on dinitrogen fixation in soybean. Folia Microbiologica, 41 (2): 197-200.

Vejsadova, H.; D. Siblikova; M. Gryndler; T. Simon and I. Miksik (1993). Influence of inoculation with Bradyrhizobium japonicum and Glomus claroideum on seed yield of soybean under greenhouse and field conditions. J. of Plant Nutrition, 16 (4): 619-629.

Vincent, J.M. (1970). Manual for the Practical Study of Root-Nodule Bacteria. IBP Handbook No. 15, Blackwell Sci. Pub., Oxford,pp. 14-25.

Yassen, A.M. (1993). Studies on Endomycorrhizae in Egypt pp. 32-40.M.

Sc. Thesis, Fac. Agric. Ain Shams Univ., Cairo, Egypt.

Zaghloul, R.A. (1999). Effectiveness of dual inoculation with Azospirillum and phosphate solubilizing microorganisms on growth and yield of zea mays. Zagazig J. Agric. Res. Vol. (26) No. (4): 1005-1025.

٣-معهد يحوث الأراضي والمياه والبينة – مركز البحوث الزراعية – الجيزة – مصر

أقيمت تجربتان حقليتان خلال موسمي أدى التلقيح الممرزدوج لفول الصبوي ٢٠٠٠، ١٩٩٩ لدراسة تأثير التلقيب ج ببكتريا العقد الجذرية وفطر الميكوريز المرزدوج ببكتريــا العقـد الجذريـة الداخلية إلى زيادة تكوين العقد، زيادة معدل Bradyrhizobium japonicum و فط____ تثبيت الأزوت متمثلا في زيادة نشاط انزيم الميكوريز الداخلية Glomus mosseae وذلك النيتر وجينيز ، زيادة نسية الإصابية في وجهود التسميد الفوسفاتي بالسوبر بالميكوريزا وكذلك زيادة محتوى النبات من فوسفات أو صخر الفوسفات علمي تكويس العناصر المغذية الكربري (N, P and K) العقد الجذرية و تشببت النبتر وجبن و نسبية والصغري (Fe. Zn and Cu) حيث انعكس اصابة الجذور بالميكوريزا، محتوى النبات كل ذلك على زيادة صفات النمو التي درست من العناصر المغذية الكبرى والصغرى في حالة التلقيح المزدوج وذلك بالمقارنة بتلقيح فول الصويا ببكتريا العقد الجذرية أو فطر الميكوريز ا الداخلية كل على حده.

وكذلك على نمو وإنتاجية فول الصويا ولقد أوضحت نتائج هذه الدر اسة ما يلى:-

أيضاء أوضحت نتانج هذه الدراسة زيادة معنوية في كل الصفات السابقة وذلك عنـــد التسميد بصخر الفوسفات مقارنا بالسموبر المزدوج والتسميد بصخر الغوسفات. فوسفات حیث لوحظ نقص فی نشاط انزیہے النيتروجينيز ونسبة إصابة الجيذور تلقيح فول الصويا ببكتريا العقد الجذرية عند بالميكوريزا عند التسميد بالسوبر فوسفات.

كذلك أدى التلقيح ببكتريا العقد الجذريـــة وفطر الميكوريزا الداخلية سواء كسل علسي حدة أو مختلطين معـــا والتسـميد بصنخــر الفوسفات إلى حدوث زيسادة معنويسة فسي محصول فول الصويما ومكوناته وذلك بالمقارنة بالمعاملات الملقحة والمسمدة بالسوير فوسقات.

كذلك أوضحت النتائج أن أعلمي محصول للبروتين والزيت قد تحقق عند إجراء التلقيح

من نتائج هذه الدراسة يتضبح أن إجراء الزراعة يقلل من استخدام الأسمدة النيتر وجينية المعدنية وهذا يقلل من تلـــوث البيئة الناتج من استخدام الأسمدة الكيماوية. أيضا عند تلقيح فسول الصويسا بفطريسات الميكوريزا الداخلية يمكن التسميد بصخر الفومىفات الأرخص ثمنا كبديل لسماد السوبر فوسفات مما يقلل من تكاليف إنتــــاج فــول الصبوبا .

> تحكيم: أ.د عبد العظيم احمد عبد الجواد أ.د إحسبان احمد حنفي