BREEDING MEASURMENTS FOR HEADING DATE, YIELD AND YIELD COMPONENTS IN WHEAT USING LINE X TESTER ANALYSIS

[38]

Hamada¹, A.A.; E.H. El-Seidy² and H.I. Hendawy¹

ABSTRACT

The presnt study was carried out under the field conditions at Al-Gemmeiza Agricultural Research Station during 2000/2001 and 2001/2002 winter seasons to evaluate thirty five introduced wheat lines which were crossed with four local wheat cultivars, Sids 4, Gemmeiza 9, Giza 168 and Sakha 93 as testers $(T_1, T_2, T_3 \text{ and } T_4)$ respectively) to produce 140 crosses using line x tester to estimate heterosis combining ability effects and gene effects for heading date plant height spike length number of spikes/plant number of kernels / spike, 1000-kernel weight and grain yield / plant. The studied genotypes, i.e. parents, parents vs crosses, crosses, Lines testers and lines x testers exhibited highly significant variance for all traits studied except spike length and number of spikes / plant for lines x testers. The results revealed that the additive gene effects were larger than those of the non additive and played the major role in the inheritance for all traits studied, except heading date and plant height. The parental lines 1, 6, 11, 25, 30 and 32 were the best combiners for yield and yield components and might be selected as parental materials for wheat breeding programmes. However, the hybrids $L_{30} \times T_4$ and $L_{32} \times T_4$ had the highest significant for yield and its components for better parent and specific combining ability effects. Heritability in broad sense (T_b%) was high and exceeded 70 for all studied traits except for spike length where its value was moderate. However narraw sense heritability was high (more than 50%) for plant height, number of spikes / plant, number of kernels / spike, 1000-kernel weight and grain yield / plant and was moderate (30-50%) for heading date and spike length. The highest expected gain expressed as a percentage of the mean was rather high for number of spikes / plant (56.028%) followed by grain yield /plant (54.415%), number of kernels /spike (37.09%), 1000-kernel weight (13.88%), heading date (8.711%), spike length (8.341%) and plant height (8.096%) which showed low genetic gain.

Key words: Combining ability, Hetcrosis, Hertability, Wheat cultivars

(Received July 28, 2002) (Accepted October 5, 2002)

¹⁻ National Wheat Research Program, Field Cro Research Institute, Agriculture Research Center, Giza, Egypt.

²⁻ Department of Agronomy, Tanta University, Tanta, Egypt.

INTRODUCTION

Wheat is one of the most important major cereal crops allover the world .In Egypt, it is used as stable food grain for urban, rural and bedim societies and as a major source of straw for animal feeding .The procedure developed by Kempthorne (1957) as lines x testers analysis to provide information about general and specific combining ability variances and thus the type of gene action controlling the economic traits is still widely used.

Combining ability analysis gives very useful information with regard to selection of parents based on the performance of their hybrids for the development of hybrids. Moreover, this analysis helps the breeders to identify the best combiners which may be hybridized either to exploit heterosis or to build up the favorable fixable genes .In the initial stages of breeding programme the breeders need general knowledge about gene action and genetic system controlling the genetic variation of the studied characters The Lines x tester analysis was used to estimate both general combining ability effects (G.C.A.) and specific combining ability effects (S.C.A.) for yield and its components and important agronomic traits of wheat by several authors such as Hassan and Abd El-Moniem (1991): Salem and Hassan (1991): Singh et al (1994); Gupta & Ahmad (1995); Raiara and Maheshwari (1996).

Many authors studied heterotic effects on yield and yield components such as Hamada et al (1997); El-Hosary et al (2000) Ashoush et al (2001) and Abd El-Aty & Katta (2002). They reported that heterotic effects were positive and significant for spike length, number of spikes / plant, number of kernels /spike, 1000-kernel weight and grain yield /plant

In addition, various values of heritability estimates for wheat yield and its contributing traits were reported by many workers, as; Salem and Hassan (1991); El-Marakby *et al* (1993); Al-Kaddoussi *et al* (1994); Kheiralla *et al* (2001) and El-Morshidy *et al* (2001).

Therefore, the work reported herin was carried out to estimate the magnitude of heterosis, general and specific combining ability variances, additive and dominance gene effects as well as heritability and expected genetic advance for yield and its components using line x tester analysis.

MATERIAL AND METHODS

This study was conducted during the two growing seasons, 2000/ 2001 and 2001/2002 at Al-Gemmeiza Agriculture Research Station to estimate some breeding parameters in bread wheat for grain yield and its contributing characters using line x testers analysis. In 2000/2001 season, thirty five introduced wheat lines (L) were crossed with four local wheat cultivars, Sids 4, Gemmeiza 9, Giza 168 and Sakha 93 as testers (T) to produce 140 crosses. The pedigree of parental genotypes are presented in Table (1). In 2001/2002 season, the 140 F1 crosses and their parental (35 lines and 4 testers) genotypes were evaluated for grain yield and its contributing characters using a randomized complete block design with three replications. Each plot included three rows, 3 m. long and 30 cm. width and plants were spaced at 10 cm, within row for each studied genotype. The recommended agricultural practices were

Table 1. The names and pedigrees of the parental genotypes.

Genotype	Pedigree	Origin
Lines (L)		
1	Weaver CM90320 – A-1B-4y-OB	Mexico
2	Zidane 89 /Kapsw ICW95-OO27	ICARDA
3	Dobuc-2 CM58808-1AP-2AP-1AP-4AP-OAP	ICARDA
4	Cham 4	Syria
5	W3918 A/Jup//GRU 90 -201736 ICW 91 -0147-OTS-	Mexico
	5AP-OTS-OAP	
6	Attila CM 85836 – 4Y-OM-OY-6M-OY	Mexico
7	Kauz*2/YACO??KAUZ CRG 866-8Y-O1OM-OY	Mexico
8	Zarzour /Prew ICW 95 O100	ICARDA
9	Seri 82//Shi#4414 /Crow's ICW 89 -0018-7AP-OAP-	Mexico
	1AP-OTS-4AP-OTS-OAP	
10	Tjb 368 .251/BUC//CUPE CM SW89Y00308-8Y-2M-	Mexico
	3Y-OB	
11	Dove 's'/Buc's'//WW1203	ICARDA
12	Debeira	India /Syria
13	Turaco /chil CM92354-62M-OY-OM-3Y-OB-1B-OY	Mexico
14	Mtl's' /Sham 4 ICW88-O162-1AP-OL-Obr-Obr-2AP-	ICARDA
	OAP	
15	Baviacora N92 CM92066-J-OY-OM-OY-4 M-OY-	Mexico
	OMEX	-
16	Kavko	Kenya
17	Hys/T2484-35T-2T-1T OWW67033-04P-1H-2S-OH	U.S.A
18	Cham 4 //Gh's' /Bow's' ICW89 -0012-8AP-OAP-1AP -	ICARDA
	OTS-2AP-OTS-OAP	Í
19	Laj 2965 //Shi#4414/Crow's'	Mexico/Syria

T	able	1.	Cont

Genotype	Pedigree	Origin
20	Seri 82 CM 33027-F-15N-500Y-ON-87B-OY	Mexico
21	Tia .3 CIGM 81 .69-16B-4Y-3B-2Y-1B-1Y-5B-OY	Mexico
22	Kauz's//Bow's'/ cm 64798.7H.3H	ICARDA
23	Kavz's'//Kea's'/Tan's'	ICARDA
24	Vee 3 7 Kauz's'	ICARDA
25	Koel's'/Vee's' CM64708-2AP-2AP-1AP-OAP	Syria
26	Karawan-2 SWM 6828-6AP-2AP-2AP-1AP-2AP-1AP- OAP	ICARDA
27	AI Fon# 4//Maya 74 /Pvn's' SWM10896-8Y-2Y-OY- IAP-OAP	Mexico/Syria
28	Prl's'/Toni//Attila Cgm7146-3GM-2GM-4GM-OGM	Egypt
29	Van's' //Bb/Kal/3/Ns732/Her ICW 94 - 0195	ICARDA
30	Parus CRG 68 –C-10Y-3B-OY	Mexico
31	Buc'S'/Flk's' CM 50070-24Y-1M-1Y-OY	Mexico
32	Tow's'/Pew's'// V2 (Moroco)#2 ICW 94O252	ICARDA
33	Khyber 79	Pakistan
34	Falke CM56744 -7Y-2Y-1M-1Y-OM-OBGD	Mexico
35	Narch 8	Morocco
Testers (T)	
1	Sids 4 Maya "s"/Mons//CMH74A-592/3/Giza157 ^{*2} SD10001-2sd-3sd-2sd-0sd	Egypt
2	Gemmeiza 9 Ald's'/Huac//CMH 74 A.630/Sx CGm 4583-5Gm-1Gm-OGm	Egypt
3	Giza 168 MRL/BUC//SERI CM93046-8M-0Y-0M-2Y- 0B-0GZ	Egypt
4	Sakha 93 Sakha 92/TR810328 S8871-1S-2S-1S-0S	Egypt

Annals Agric. Sci. 47(2), 2002

-

applied at the proper time. Heading date was recorded at the time of ear emergence. At harvest time, 20 individual guarded plants from each parental genotypes and F1 were used to record data for the following characters: plant height, spike length, number of spikes / plant, number of kernels /spike, 1000-kernel weight and grain yield / plant.

The obtained data were subjected to the biometrical analysis using the procedure of line x tester analysis as outlined by **Kempthorne** (1957). General and specific combining ability variances, gene effects, broad and narrow sense heritability and genetic advance as percentage of the population mean for the studied characters were estimated as described by **Mather and Jinks** (1982).

RESULTS AND DISCUSSION

1. Analysis of variance

The analysis of variance for all traits studied are presented in Table (2). Genotypes i.e. parents and crosses exhibited highly significant variation for all traits studied indicating differences among these thirty nine genotypes under investigation. Data presented in Table 2. show that mean squares of parents vs crosses (which indicated the variance due to heterosis) were found to be highly significant for all characters illustrating the wide range of heterosis values among the hybrids for all traits. Further partitioning of crosses mean squares i.e. line x tester analysis indicated that the difference due to both lines and testers were highly significant for all characters. The contribution of lines x testers interaction were found to be highly significant for all traits studied except spike length and number

of spikes / plant indicating that testers did not express similar orders of ranking according to the performance of their crosses with the four testers. Also, the results in Table (2) reveal that the GCA / SCA ratio exceeded the unity for most traits studied ______, indicating that the nature of the gene effects was predominantly additive for spike length, number of spikes/plant number of kernels / spike, 1000-kernel weight and grain vield /plant. On the other hand, this ratio was less than unity for heading date and plant height, indicating that SCA variance was more important than GCA variance and that the non-additive variance was the predominant variance component controlling the inheritance of both traits. It is evident that the presence of large amount of additive effects suggests the potentiality for obtaining high vield and vield components and improving these components. Also, selection procedures based on the accumulation of additive gene effect would be successful in improving all characters studied. The obtained results are in harmony with those previously reached by Bhullar et al (1981), Srivastava et al (1982); Qualser et al (1985); Al-Kaddoussi et al (1994) and El-Adl et al (1996).

It is worth to mention that the proportional contribution of the lines ,testers and their interaction to the total variance varied according to the studied characters. The proportional contributions of the studied lines varied from 22.792% of the total variation of the studied crosses for grain yield / plant to 68.231% for heading date. However, the highest contribution value for the studied testers was 55.884% for grain yield / plant. The proportional of line x tester contribution to the total variation ranged from 7.573% for

Sources of variation	d.f	Heading date	Plant height	Spike length	No.of spikes / plant	No.of kernels / spike	1000- kernel weight	Grain yield / plant
Replications	2	19.575	22.155**	8.075**	22.810**	52.515**	1.416	0.082
Genotypes	178	223.92**	133.781**	3.163**	9.999**	533.671**	31.585**	44.447**
Parents	38	177.688**	125.311**	1.374*	7.765**	642.275**	28.504**	13.324**
Parents Vs crosses	1	1676.094**	657.107**	159.787**	4.218**	323.578**	449.730**	1344.436**
Crosses	139	226.116**	132.332**	2.526**	10.652**	505.492**	29.419**	43.603**
Lines	34	630.740**	279.551**	4.842**	25.208**	1005.548**	80.924**	40.630**
Testers	3	567.640**	689.890**	17.368**	170.478**	6656.34**	218.587**	1129:035**
Lines x testers	102	81.196**	66.860**	1.317	1.099	157.899**	6.688**	12.670**
Error	356	19.328	2.612	0.866	1.024	14.259	0.290	1.027
GCA		8.854	7.142	0.167	0.049	62.787	2.445	9.780
SCA		20.622	21.415	0.150	0.025	47.879	2.132	3.880
GCA/SCA		0.429	0.333	1.113	1.960	1.311	1.146	2.520
Proportional contribution	n to the	total variation						
Contribution of lines		68.231	51.672	46.890	57.886	48.657	67.282	22.792
Contribution of testers		5.418	11.251	14.838	34.540	28.420	16.035	55.884
Contribution of linesxtesters		26.350	37.075	38.270	7.573	22.921	16.682	21.323

Table 2. Mean squares for heading date, yield and yield components in wheat and their contribution to the total variation.

* and ** indicate significant at 0.05 and 0.01% level of probability, respectively.

Annals Agric. Sci. 47(2), 2002

Hamada; El-Seidy and Hendawy

number of spikes / plant to 38.270% for spike length.

2. Heterosis

Heterosis expressed as the percentage deviation of F1 mean values from better parent values for yield and yield components is presented in Table (3). Significant positive heterotic effect relative to better parents values would be of interest for most traits under investigation, while for heading date and plant height high negative values would be useful from the breeders point of view. In this respect, thirty one out of 140 crosses showed significant negative heterotic effects relative to better parent for heading date and ranged from -7.441% in cross (L₁₅ x T₃) to -22.399 % in cross (L₂₆ x T₃). However, twenty nine crosses showed negative heterotic effects for plant height and ranged from -2.830% in cross ($L_{34} \times T_2$) to -19.082% in cross (L₃₅ x T₂). For spike length, the better parent heterosis was mostly positive and significant in most of the hybrids .Regarding number of spikes /plant, twenty eight hybrids showed positive significant desirable heterotic effects which ranged from 2.338% in cross ($L_{26} \times T_1$) to 51.769 % in cross $(L_{29} \times T_1)$ relative to the respective better parent. Twenty two hybrids showed significant desirable heterosis which ranged from 6.217% in cross (L₂ xT₃) to 29.845% in cross($L_8 \times T_3$) relative to the respective better parent for number of kernels /spike. For 1000- kernel weight thirteen hybrids expressed significant positive heterotic effects relative to better parent values and ranged from 1.107% in cross $(L_{12} \times T_1)$ to 8.964% in cross $(L_{33} \times T_1)$ T_2) comparing to the better parent, forty five hybrids for grain yield /plant expressed significant positive heterotic effects which ranged from 1.713% in cross (L₁₅ xT₁) to 24.018 % in cross (L₂₇ x T₁). Heterosis would be of economical value when the F1 hybrid exceeds its better parents, thereat, if the breeder planned a programme of selection in the advanced segregating generation from such superior specific hybrids, the expected improvement would be fruitful.

Several studies have also demonstrated significant levels of heterosis in wheat (Hassan and Abd-El-Moniem 1991; Khan *et al* 1995; Rajara and Maheshwari 1996); Hamada *et al* 1997; Prassed *et al* 1998 and El-Seidy and Hamada, 2000). They stated that genetic diversity is important for heterotic expression. Therefore, the level of heterosis expressed in this study may reflect a high degree of genetic diversity among these parents.

3. Combining ability

a. General combining ability effects

Estimates of the general combining ability effects (GCA) for the four testers and thirty five lines for seven traits studied are presented in Table (4). High positive values of general combining ability effects would be of interest in most traits while, for heading date and plant height, high negative values would be useful from the plant breeder point of view. The results revealed that lines number 1, 11, 12, 14, 20, 26, 27, 29 and 35 are considered as good donors for earliness, while 1, 3, 7, 26, 27, 30, 31, 32, 34 and 35 for shortness. On the other hand, wheat lines number 1, 5, 9, 12, 19, 32 and 35 gave positive general combining ability effects for spike length.

Characters	Unadina	Dlant	Spiles	Number	Number	1000-	Grain
	date	r iant	Jonath	of spikes	of kernels	kernel	yield /
Genotype	uale	neight	lengu	/ plant_	/ spike	weight	plant
$L_{1} \mathbf{x} T_{1}$	-8.287*	-14.715**	27.019**	-1.435	-6.009	-10.534	-3.818
$L_1 \ge T_2$	-10.624**	0.453	11.675**	-19.355	-3.345	-4.868	7.345**
$L_1 \times T_3$	-10.405**	-6.024**	23.275**	-4.912	4.228	2.020**	8.689**
$L_1 \ge T_4$	-12.705**	-6.297**	19.224**	-12.621	3.482	-4.411	-3.852
$L_2 \ge T_1$	-3.890	-7.389**	15.208**	-18.182	-18.191	-13.215	-4.889
$L_2 \ge T_2$	-1.489	2.215	2.284**	-17.742	-18.080	-5.023	1.797*
$L_2 \ge T_3$	0.388	-4.845**	8.583**	-27.368	6.217**	-5.763	0.703
$L_2 \ge T_4$	16.997	-9.846**	3.608**	-19.417	14.315**	-5.623	-16.314
$L_3 \ge T_1$	4.973	-8.573**	15.320**	-39.235	-2.132	-15.755	3.675**
L ₃ x T ₂	2.234	1.925	1.269	-40.86	-2.923	-10.278	-17.501
L3 x T3	-1.240	-8.543**	8.605**	-45.965	2.950	-9.056	-12.155
L3 x T4	32.847	-7.677**	5.671**	-45.307	0.041	-10.449	-5.891
$L_4 \mathbf{x} T_1$	-21.670**	-3.401**	5.849**	10.899**	-13.635	-10.252	-11.135
$L_4 \ge T_2$	8.496	2.278	-4.060	-38.172	-14.954	-5.486	0.108
L4 x T3	10.087	-0.353	8.308**	-30.526	-18.425	-6.212	-3.492
$L_4 \ge T_4$	34.878	-2.254	2.686**	-27.832	-21.408	-6.114	-17.221
$L_5 \times T_1$	-5.408	0.472	15.598**	-34.440	-12.375	-13.991	10.099**
$L_5 \times T_2$	-2.606	2.969	3.553**	-38.978	-4.655	-8.964	-10.023
L5 x T3	0.413	1.889	16.913**	-26.316	9.601**	-9.805	-12.155
L5 x T4	16.732	1.417	14.626**	-29.450	7.307*	-9.287	-2.870
$L_6 \ge T_1$	-3.832	-1.317	21.487**	-13.418	0.484	-8.770	17.813**
$L_6 \times T_2$	10.358	-7.608**	-8.629	-26,613	-0.866	-1.700	1.917*
L ₆ x T ₃	6.681	5.797	4.132**	-17.895	27.555**	-4.191	-2.544
$L_6 \ge T_4$	45.474	0.506	-1.380	-15.210	12.707**	-2.709	5.740**
$L_7 \times T_1$	0.368	-9.164**	10.863**	-22.352	-20.420	-10.393	-2.428
$L_7 \times T_2$	2.979	8.153	0.761	-24.194	-14.038	-6.491	-14.968
$L_7 \times T_3$	-1.050	3.773	10.629**	-17.895	3.155	-9.206	-6.199
$L_7 \times T_4$	32.891	-7.681**	7.465**	-19.741	9.960**	-9.365	-11.782
$L_8 \ge T_1$	-4.561	8.495	7.520**	-30.641	-1.970	-21.259	-4.532
$L_8 \times T_2$	5.687	13.544	-4.314	-20.430	5.413	-16.770	-1.097
Lex Ta	1.749	5,765	8.473**	-14.035	29.845**	-16.617	2.463**
Lex Ta	35.011	3.275	0.003	-10.680	23.369**	-14.164	-6.344
L _o x T ₁	12.288	12.326	13.649**	-47.044	2.746	-7.923	-2.926
L _o x T ₂	2.076	16.812	9.898**	-39.785	14.182**	-13.138	7.948**
L _o x T ₃	1.765	10.868	14.200**	-26.316	-12.738	-9.206	5.982**
$L_9 \ge T_4$	35.231	10.284	13.617**	-35.599	-15.952	-15.402	-15.106

Table 3. Heterosis percentage relative to better parent for the seven characters studied in wheat crosses.

* and ** indicate significant at 0.05 and 0.01 % of probability, respectively

Annals Agric. Sci. 47(2), 2002

:

Tabl	e 3.	Cont.

Character Genotype	Heading date	Plant height	Spike length	Number of spikes/ Plant	Number of ker- nels / Spike	1000- kernel weight	Grain yield / plant
Lio X T1	9.820	1.606	14.484**	-54.347	-14.216	-9.828	12.241**
$L_{10} \times T_2$	10,765	12.185	-5.076	-26.613	-10.646	-6.414	7.104**
$L_{10} \times T_3$	0.859	3.421	13.946**	-33.390	5.130	-9.805	17.758**
$L_{10} \times T_{4}$	29.933	-0.977	14.029**	-19.015	4.740	-7.120	12.084**
$L_{11} \times T_1$	-2.409	12.582	19.498**	-34.623	-0.096	-0.585	12.598**
$L_{11} \mathbf{x} T_2$	-13.005**	21.790	-7.614	-25.269	-8.011	-5.023	-3.751
$L_{11} \times T_3$	-3.472	20.396	6.140**	-20.351	-13.799	-9.056	2.734**
$L_{11} \times T_4$	14.172	10.968	4.087**	-19.094	-21.235	-6.269	6.344**
$L_{12} \mathbf{x} \mathbf{T}_1$	-21 .046**	6.290	20.501**	-39.137	2.297	1.107*	-1.855
$L_{12} \times T_2$	-19.225**	15.319	-2.791	-19.892	10.501**	1.931**	11.446**
$L_{12} \times T_3$	-21.473**	9.908	29.376**	-26.179	20.640**	-21.931	7.200**
$L_{12} \times T_4$	1.986	1.893	24.477**	-39.704	19.270**	0.003	0.004
$L_{13} \times T_1$	1.692	-1.148	3.252**	-30.968	-7.948	-9.546	-3.818
$L_{13} \mathbf{x} \mathbf{T}_{7}$	3.182	0.853	-6.852	-30.645	-12.631	-11.901	-16.174
$L_{13} \times T_3$	4.740	0.065	-0.569	-26.316	-6.073	-9.356	-7.688
$L_{13} \times T_4$	25.872	-4.128**	-9.213	-25.243	-12.415	-12.307	-4.833
$L_{14} \mathbf{X} \mathbf{T}_1$	-14.155**	15.855	11.699**	-55.399	-21.551	-9.687	17.059**
$L_{14} \times T_2$	-12.424**	22.650	-1.015	-30.855	-13.316	-3.400	-15.089
$L_{14} \times T_3$	-17.054**	16.798	5.188**	-40.617	-19.564	-5.913	-6.740
$L_{14} \times T_4$	7.108	15.213	2.459**	-39.303	-20.693	-6.965	0.755
L ₁₅ x T ₁	-2.199	11.011	11.977**	-39.666	-16.414	-7.288	1.713*
L ₁₅ x T ₂	-3.486	18.551	1.015	-29.839	-15.482	-0.386	-24,979
L ₁₅ x T ₃	-7.441*	16.685	10,644**	-28.421	-8.079	-7.035	-18.652
L15 x T4	21.766	11.646	7.277**	-22.330	-10.194	-5.108	-11.178
L ₁₆ x T ₁	-9.695**	12.522	1.392	-5.742	-28.304	-18.225	6.887**
L ₁₆ x T ₂	-6.736	16.319	-10.914	-8.333	-19.776	-20.325	-15.571
L ₁₆ x T ₃	-8.717*	14.93 2	5.128**	9.473**	1.978	-30.389	-14.185
L ₁₆ x T ₄	25.739	12.121	-0.854	11.003**	11.929**	-20.433	-5.136
L ₁₇ x T ₁	10.190	5.212	3.064**	25.511**	-16.155	-5.312	-8.458
L ₁₇ x T ₂	7.104	9.503	-6.852	-4 032	-6.640	-6.785	10.360**
L ₁₇ x T ₃	8.734	5.673	8.308**	8.070**	1.693	-7.410	18.570**
L ₁₇ x T ₄	32.406	2,446	10.149**	5.177**	-17.307	-6.811	-19.335
L ₁₈ x T ₁	19.317	2.154	3.342**	12.780**	-10.889	-22.247	0.999
L ₁₈ x T ₂	9.641	2.222	-7.106	0.537	-2.923	-20.556	-30,165
$L_{18} \times T_3$	10.755	3.569	0.890	-10,877	24.729**	-22.006	-18.381
L ₁₈ x T ₄	34.348	9.191	-2.985	-1.294	22.977**	-20.975	-28.852

* and ** indicate significant at 0.05 and 0.01% of probability, respectively

Table 3. Cont.

Character	Handing	Dlant	Snike	Number	Number	1000-	Grain
Genetune	data	height	length	of spikes	of kernels /	kernel	yield /
				/ plant	spike	weight	plant
L19x T1	4.082	12.474	25.348**	-7.666	-6.365	-5.383	0.285
L19 x T2	-2.200	14.483	-6.852	-15.054	-27.968	-1.777	-12.676
L19 x T3	0.159	-8.801**	15.133**	-16.140	-20.381	-3.892	-2.680
L19X T4	25.783	2.425	15.820**	-13.916	-28.677	-5.185	-13.746
L ₂₀ x T ₁	-8.593*	-16.717**	-10.306	23.445**	-30.759	-2.067	7.780**
L ₂₀ x T ₂	-11.882**	4.498	1.522*	-19.086	-32.588	0.618	-1.700
L ₂₀ x T ₃	-9.1977*	6.579	22.551**	-8,771	-12.482	-2.170	8.960**
L ₂₀ x T ₄	15.187	7.452	22.686**	-8.414	-9.647	-2.167	9.214**
$L_{21} \times T_1$	16.062	2.540	0.278	-5.952	-31.826	-8.417	-20.236
$L_{21}xT_2$	-5.671	1.571	-3.299	-18.280	-29.340	-1.545	-21.722
L ₂₁ x T ₃	11.123	3.744	7.715**	-11.579	-34.656	-10.479	-15.539
$L_{21} \ge T_4$	28.167	6.318	11.343**	-9.061	-35.412	-3.870	-22.961
$L_{22} \ge T_1$	-1.570	4.702	4.178**	-1.773	-33.570	-5.524	12.776**
L22 x T2	2.708	11.168	-8.883	-16.129	-32.479	-6.955	5.897**
L22 x T3	-5.599	8.125	14.688**	-13.684	-12.400	-5.538	10.990**
L22 x T4	27.064	6.061	13.432**	-4.530	-12.919	-7.043	-2.416
L23 x T1	10.223	4.465	0.003	-36.402	-16.123	-7.006	7.601**
L23 x T2	7.207	1.629	-18.020	-3.225	-8.913	-2.241	-15.330
L23 x T3	28.241	5.573	6.231**	-17.895	2.025	-7.410	-5.793
L23 x T4	20.132	8.788	20.597**	-1 0 356	-4.987	-2.167	-2.568
L24 x T1	-14.657**	21.822	9.749**	5.351**	-25.913	-6.230	-10.778
L ₂₄ x T ₂	3.046	11.866	-6.599	-13.441	-22.447	-0.154	-6.525
L ₂₄ x T ₃	-8.176*	14.768	15.727**	-3.157	-7.758	-2.919	2.328**
L ₂₄ x T ₄	26.181	16.825	8.656**	-3.883	-11.115	0.309	-9.516
L25 x T1	13.062	14.245	18.384**	-30.701	1.615	3.224**	6.887**
L25 x T2	1.228	1.063	4.060**	-1.612	12.811**	3.400**	-2.062
L ₂₅ x T ₃	12.988	6.555	-4.273	-28.070	-32.833	5.913**	7.336**
L25 x T4	20.551	4.783	-7.128	-19.885	-39.999	-0.464	-4.682
$L_{26} \ge T_1$	-19.287**	10.951	8.356**	2.338**	-18.998	-3.831	-0.428
L ₂₆ x T ₂	-10.833**	27.973	-3.045	-7.795	-8.733	0.154	-22.808
L ₂₆ x T ₃	-22.399**	13.412	-1.680	-3.157	-8.101	1.497**	-14.997
L ₂₆ x T ₄	8.167	10.746	-2.016	-19.094	-6.643	-1.083	-7.855
$L_{27} \ge T_1$	-12.544**	7.839	3.064**	-4.306	-24.136	-12.227	24.018**
L ₂₇ x T ₂	-6.574	9.176	-2.538	-26.613	-23.926	-9.196	9.878**
L ₂₇ x T ₃	-13.326**	4.118	-3.163	-14.737	-9.702	-11.452	4.223**
L ₂₇ x T ₄	17.483	2.384	-5.750	-16.505	-24.022	-11.223	6.797**

* and ** indicate significant at 0.05 and 0.01 %of probability, respectively

 $\{ e^{-i} \}_{i \in \mathbb{N}}$

•

7

Table	: 3.	Cont.
-------	------	-------

Character	Heading	Plant height	Spike	Number	Number	1000-	Grain
ł	date		length	of spikes/	of kernels	kemel	yield /
Genotype				Plant	/spike	weight	Plant
L ₂₈ x T ₁	-10.706**	0.032	5.571**	31.418**	-16.607	-11.099	-29.910
L ₂₈ x T ₂	-2.8 09	1.502	-10.406	-1.344	-19.621	-6.955	1.555
L ₂₈ x T ₃	-5.122	-0.228	3.560**	12.280**	-23.107	-13.398	10.720**
L ₂₈ x T ₄	34.878	2.576	-1.791	12.621**	-28.918	-13.777	0.755
L ₂₉ x T ₁	4.746	5.428	5.013**	51.769**	-24.039	-1.009	-11.670
L ₂₉ x T ₂	-17.468**	10.166	-11.168	8.333**	-16.637	6.414**	-20.637
L ₂₉ x T ₃	-18.676**	5.082	8.308**	17.894**	-5.504	0.374	-21.359
L ₂₉ x T ₄	20.794	3.008	12.537**	16.828**	-11.801	0.541	-18.278
L ₃₀ x T ₁	5.835	2.508	1.671*	12.697**	-31.632	-7.641	-26.303
L ₃₀ x T ₂	8.093	4.014	0.507	-3.225	-35.712	-1.081	-11.953
L ₃₀ x T ₃	-0.104	-0.681	2.373**	3.508**	-22.336	-5.464	-3.627
L ₃₀ x T ₄	17.483	-6.989**	6.865**	7.766**	-25.954	-6.888	5.891**
L ₃₁ x T ₁	2.128	-8.141**	11.699**	-17.780	-33.893	-5.101	-4.354
L ₃₁ x T ₂	1.015	-2.369	-6.345	1.075	-32.696	-0.154	-1.218
L ₃₁ x T ₃	-8.378*	-3.103**	8.186**	-1.276	-21.667	0.074	1.922*
$L_{31} \ge T_4$	18.410	-12.713**	3.389**	9.708**	8.661**	-6.269	0.906
L ₃₂ x T ₁	-1.519	7.358	16.991**	29.186**	5.234	-0.303	-12.384
L ₃₂ x T ₂	-2.302	11.430	1.776*	-3.225	11.231**	7.650**	-8.816
L ₃₂ x T ₃	-6.713	8.031	17.192**	10.526**	-32.582	3.443**	-4.845
L ₃₂ x T ₄	26.092	-7.508**	11.982**	4.530**	28.311**	0.387	2.870**
$L_{33} \mathbf{x} T_1$	-5.055	15.309	12.813**	-10.600	-4.103	2.166**	-33.262
L ₃₃ x T ₂	2.945	20.799	1.269	-20.699	-18.982	8.964**	-1.459
L33 x T3	-2.672	16.206	11.570**	-11.579	1.931	4.041**	2.328**
L33 x T4	26.136	12.845	-3.033	-14.887	13.278**	-6.114	-5.891
L ₃₄ x T ₁	-3.906	-4.968**	12.644**	-13.172	-16.607	-2.772	-0.527
$L_{34} \ge T_2$	3.486	-2.830*	-1.015	-16.667	-16.398	-2.395	-8.455
L ₃₄ x T ₃	-1.940	-3.568**	7.983**	-8.421	-13.210	-8.682	-6.063
L34 x T4	34.260	-11.057**	7.983**	-4.530	-34.002	-9.829	-6.948
L35 x T1	-2.909	-18.187**	20.055**	42.583**	-7.883	-8.840	7.601**
L35 x T2	-8.327*	-19.082**	3.553**	6.451**	-7.867	-3.920	-14.124
L35 x T3	-15.296**	-9.984**	18.397**	8.070**	10.471**	-4.341	-5.116
L35 x T4	24.989	-9.519**	11.044**	7.443**	-13.931	-0.345	0.004
L.S.D 5%	7.035	2.586	1,489	1.619	6.043	0.861	1.621
<u>L</u> S.D 1%	9.225	3.391	1.953	2.123	7.923	1.130	2.126

* and ** indicate significant at 0.05 and 0.01% of probability, respectively. Where: T_1 , T_2 , T_3 and T_4 denote tester 1 (Sids 4), tester 2 (Gemmeiza 9), tester 3 (Giza 168) and tester 4 (Sakha 93, respectively).

_

Character	Heading	Plant height	Spike	Number	Number	1000-	Grain
Genotype	date		length	of spikes/	of kernels/ spike	kernel weight	yield /plant
Line 1	-14.756**	-1.976**	1.790**	-0.058	9.509**	0.937**	1.587**
2	-0.381	-0.676	0.462	-1.008	-14.625	-0.354	-0.025
3	7.260	-1.735**	0.065	-2.866	9.524**	-2.146	-1.175
4	2.226	2.081	-0.484	-1.524	2.365**	-0.196	-0.742
5	0.476	0.214	0.632*	-2.041	8.365**	-1.754	-0.192
6	11.193	-0.627	0.098	-0.766	10.682**	0.979**	2.124**
7	7.110	-2.501**	0.240	-0.766	-2.050	-1.004	-1.108
8	8.360	6.073	-0.409	-0.299	17.415**	-4.737	0.449
9	5.168	2.673	0.848**	-2.316	10.040**	-2.079	0.882**
10	9.326	-0.876	0.215	-1.358	4.182**	-0.754	3.757**
11	-8.806**	5.581	-0.109	-1.058	5.365**	0.662**	1.782**
12	-17.054**	6.581	1.237**	-0.533	21.241**	0.854**	2.082**
13	5.668	0.206	-0.626	-1.549	-1.887	-1.821	-1.100
14	-10.223**	3.648	0.215	-1.399	-3.167	0.037	0.316
15	-0.689	2.006	0.440	-1.549	-1.925	0.720**	-2.475
16	-1.881	3.839	-0.776	1.700**	-5.759	-6.971	-0.975
17	6.885	-0.851	-0.451	1.766**	1.582	0.039	1.332**
18	10.226	3.023	-1.026	1.050**	8.424**	-6.596	-3.825
19	4.993	0.931	0.565*	0.066	-7.542	1.137**	-0.850
20	-7.798**	-0.468	0.173	0.400	-15.376	2.304**	2.241**
21	0.951	3.014	-0.401	0.166	-16.250	0.212	-3.773
22	3.118	3.425	-0.213	0.125	-15.200	0.179	2.482**
23	-0.248	7.048	-0.676	-0.141	-1.892	0.829**	-0.267
24	0.835	5.323	-0.076	0.658*	-8.517	1.912**	-0.400
25	-0.427	0.114	-0.217	0.575*	2.440*	4.312**	1.307**
26	-12.514**	-6.135**	-0.442	0.275	-4.300	2.570**	-3.817
27	-11.548**	-2.526**	-0.884	-0.666	-12.250	-1.962	3.374**
28	0.510	2.673	-0.959	2.250**	0.024	-2.079	0.374

 Table 4. Estimation of general combining ability (GCA) effects for heading date , yield and yield components.

Table 4. Cont.

Character	Heading	Plant height	Spike length	Number of spikes/	Number of kernels/	1000- kernel	Grain yield /
Genotype	Gate		Tongth	plant	spike	weight	plant
29	-5.381**	1.889	-0.467	3.100**	-5.384	3.629**	-3,358
30	1.002	-7.485**	-0.509	1.816**	6.934**	0.587**	0.831**
31	-1.456	-6.893**	-0.034	1.925**	-14.892	1.670**	0.816**
32	1.735	-6.676**	0.665*	1.783**	10.382**	4.170**	0.608*
33	4.468	3.589	-0.076	-0.283	0.874	3.970**	-0.900
34	5.660	-10.292**	0.482	0.191	0.404	0.345*	-1.358
35	-4.014**	-14.218**	0.707**	2.333**	1.265	0.395*	-0.001
L.S.D for line 5%	2.487	0.913	0.525	0.572	2.136	0.303	0.572
L.S.D for line 1%	3.261	1.197	0.688	0.750	2.801	0.398	0.750
L.S.D gi-gj 5%	3.516	1.291	0.744	0.809	3.020	0.431	0.809
L.S.D gi-gj 1%	4.610	1.693	0.976	1.061	3.960	0.565	1.061
Testers							
Sids 4 (1)	2.434	-1.432**	0.531*	-1.515	9.616**	1.983**	-3.836
Gemmeiza 9 (2)	-0.854*	3.442	0.047	1.525**	3.021**	-0.305	3.476**
Giza 168 (3)	1.248	0.371	-0.142	-0.356	-4.231	-0.202	1.822**
Sakha 93 (4)	-2.828**	-2.381**	-0.437	0.346**	-8.406	-1.475	-1.462
L.S.D for tester5%	0.840	0.307	0.176	0.192	0.721	0.101	0.192
L.S.D for tester1%	1.102	0.403	0.231	0.251	0.945	0.133	0.251
L.S.D gi-gj 5%	1.187	0.437	0.250	0.272	1.021	0.145	0.272
L.S.D gi-gj 1 %	1.557	0.573	0.328	0.357	1.338	0.190	0.357

* and ** indicate significant at 0.05 and 0.01% of probability, respectively

- -- --

Annals Agric. Sci., 47(2), 2002

Meantime, wheat lines 16, 17, 18, 24, 25, 28, 29, 30, 31, 32 and 35 showed desirable general combining ability effects for number of spikes / plant while lines number 1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 18, 25 and 32 for number of kernels /spike. Obviously, wheat lines no. 1, 6, 11, 12, 15. 19, 20, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34 and 35 showed desirable general combining ability effects for 1000 kernel weight. Concerning grain vield /plant wheat lines no. 1, 6, 9, 10, 11, 12, 17, 20, 22, 25, 27, 30, 31 and 32 were good donors in this respect. The tester cultivar Sids 4 proved to be good general combiner for plant height, spike length, number of kernels /spike and 1000-kernel weight while the tester cultivar Gemmeiza 9 proved to be good general combiner for heading date, number of spikes / plant, number of kernels /spikes and grain vield/ plant .For grain yield / plant, significant positive general combining ability effects was detected for the tester cultivar Giza 168. Therein, tester cultivar Sakha 93 could be considered as an excellent parent in breeding programs towards releasing cultivars that are earlier in heading, shorter in height and higher in number of spikes / plant. However, it is apparent that the parent which possess high in GCA effects for grain yield /plant might be also for one or more traits contributing to yield, while the parent which had high GCA effects for one or more of yield components not necessarily had high GCA effects for yield itself.

b. Specific combining ability effects

Data presented in Table (5) showed that most hybrids exhibited significant and positive specific combining hybrids exhibited ability effects for yield and

yield components traits, while for heading date and plant height, hybrids exhibited significant negative values. Twelve and thirty two out of 140 parental combinations exhibited significant negative effects for heading date and plant height .Earliness, if found, in wheat is favorable for escaping destructive injuries by stress conditions and for intensive production. Seven, five, twenty five, thirty eight and thirty three crosses had significant positive specific combining ability effects for spike length, number of spikes /plant, number of kernels /spike, 1000-kernel weight and grain yield / plant, respectively.

It could be concluded that the parental lines 1, 6, 11, 25, 30 and 32 might be selected as parental materials for wheat breeding programmes since the line no. 1 had the highest general combining ability effect for all studied traits except number of spikes / plant and it gave specific combining ability effect with the third tester Giza 168 ($L_1 \times T_3$) for number of spikes/ plant, number of kernels / spike, 1000kernel weight and grain yield / plant. In addition the line no. 6 was a good combiner for number of kernels / spike, 1000kernel weight and grain yield / plant and also, exhibited high specific combining ability effect with the first tester sids 4 $(L_6 \times T_1)$ for heading date, spike length, number of kernels / spike, 1000-kernel weight and grain yield / plant. Moreover, the line 11 was a good donor for heading date, number of kernels / spike, 1000kernel weight and grain yield / plant and it had relatively high specific combining ability effect with the tester sids 4 (L_{11} x T_1) for plant height, spike length, number of kernels / spike, 1000-kernel weight and grain yield /plant. Concerning the line no. 25 was a good combiner for number of

Character	Heading	Plant	Spike	Number of	Number of	1000-	Grain
~ 1104 LAV 14/1	date	height	length	spikes/	kernels/	kernel	yield /
Genotype			0	plant	spike	weight	plant
$L_1 \times T_1$	-0.409	-7.942**	0.168	-0.342	-0.960	-2.191	-2.101
$L_1 \times T_2$	0.745	9.115	0.118	-0.250	-2.055	-1.136	2.286**
$L_1 \times T_3$	-1.156	-0.346	-0.057	1.664**	5.014*	3.160**	1.140*
$L_1 \times T_4$	0.820	-0.827	-0.229	-0.071	3.295	0.167	-1.325
$L_{2} \times T_{1}$	-1.184	-1.608	0.083	-0.559	-2.391	-2 .166	-0.688
$L_2 \times T_2$	1.770	7.749	0.213	0.899	-4.530	0.088	2.365**
$L_2 \times T_3$	4.334	-0.412	0.003	-0.518	2.223	0.985*	0.686
$L_2 \times T_4$	-4.921	-5.727**	-0,301	0.178	4.698**	1.092*	-2.362
L ₁ x T	4.307	-1.783	0.493	1.165*	2.005	-1.574	2.061**
$L_3 \ge T_2$	-2.204	7.474	0.477	-1.108	-1.680	-0.386	-1.817
$L_3 \times T_3$	-1.506	-3.221**	-0.432	-0.426	-1.593	1.310**	-1.330
$L_3 \ge T_4$	-0.596	-2.469**	-0.537	-0.629	0.248	0.650	1.087
$L_4 \times T_1$	-23.759**	-0.533	-0.090	1.590**	-1.682	-0.924	-1.138
$L_4 \ge T_2$	8.995	0.490	0.327	-1.117	-2.488	-0.269	2.615**
$L_4 \times T_3$	8.793	0.828	0.083	-0.301	1.431	0.627	0.369
$L_4 \ge T_4$	5.970	-0.785	-0.321	-0.171	2 .740	0.567	-1.846
$L_5 \times T_1$	-0.842	0.232	-0.040	-0.092	-6.382	-1.133	2.277**
$L_5 \times T_2$	-0.187	-2.175**	0.210	-0.700	-2.121	-0.211	-0.734
L ₅ x T ₃	7.009	-0.171	-0.066	0.614	3.064	0.585	-2.313
$L_5 \ge T_4$	-5.979**	2.114	-0.104	0.178	6.440**	-1.399	0.770
$L_6 \ge T_1$	-9.726**	0.707	1.359*	-0.067	4.567*	0.759*	1.661**
L ₆ x T ₂	1.862	-10.534**	-0.856	-0.442	-0.938	0.188	0.248
L ₆ x T ₃	2.859	6.103	-0.066	0.139	0.721	0.352	-2.263
$L_6 \ge T_4$	3.289	3.722	-0.437	0.370	-9.643	0.859	0.353
$L_7 \times T_1$	2.290	-6.417**	-0.215	0.098	-4.266	-0.183	1.394
$L_7 \ge T_2$	-1.320	5.840	0.235	-0.142	-0.371	0.105	-1.184
L7 x T3	1.156	4.578	0.025	0.139	0.481	0.102	0.069
$L_7 \ge T_4$	-0.412	-4.002**	-0 .046	-0.096	4.156	-0.024	-0,279
$L_8 \times T_1$	-0.559	2.141	0.034	-0.267	-4.699	-1.583	-1.097
$L_8 \ge T_2$	0.095	2.199	0.218	-0.142	-1.871	-0.594	1.090
$L_8 \times T_3$	0.526	-2.329**	0.208	0.039	3.581	0.535	0.644
$L_8 \ge T_4$	-0.062	-2.010**	-0.462	0.370	2.990	1.642**	-0.637
$L_9 \times T_1$	4.065	1.207	-0.490	-0.184	7.542**	2.058**	-1.230
$L_9 \times T_2$	-2.479	0.432	0.827	-0.525	13.603**	-1.686	3.157**
L9 x T3	-4.881	-1.929**	-0.282	0.889	-11.310	1.177**	1.077
LoxT	3.295	0.289	-0.054	-0.179	-9.835	-1.549	-3.004

 Table 5. Estimation of specific combining ability (SCA) effects for heading date, yield and yield components.

* and ** indicate significant at 0.05 and 0.01% of probability ,respectively

Table 5. Cont.

Character	Heading	Plant	Spike	Number	Number of	1000-	Grain
	date	height	length	of spikes	kernels	kernel	vield /
Genotype		0	0	plant	/spike	weight	plant
$L_{10} \times T_1$	2.107	-0.908	0.243	-1.042	-4.099	-0.166	-1.272
$L_{10} \times T_2$	4.129	4.315	-0.506	0.149	-3.471	-0.111	0.048
L ₁₀ x T ₃	-1.373	-0.979	0.017	0.031	1.848	-0.414	1.102
$L_{10} \ge T_4$	-4.862	-2.427**	0.245	0.861	5.723**	0.692*	0.120
$L_{11} \times T_1$	1.707	-2.067**	1.168*	-0.476	9.283**	2.783**	1.149*
$L_{11} \mathbf{X} \mathbf{T}_2$	-4.970**	1.424	-0.514	0.016	-2.221	-0.928	-0.976
L ₁₁ x T ₃	1.893	3.228	-0.357	0.198	-2.268	-1.497	-0.622
$L_{11} \times T_4$	1.370	-2.585**	-0.296	0. 2 61	-4.793	-0.357	0.448
$L_{12} \mathbf{x} T_1$	-1.074	-0.600	-0.058	0.465	-4.122	3.391**	-2.230
$L_{12} \ge T_2$	0.980	3.424	-1.227	0.157	-0.997	1.880**	2.923**
L ₁₂ x T ₃	-0.325	1.162	0.728	0.839	1.022	-7.422	0.177
L ₁₂ x T ₄	0.418	-3.985**	0.557	-1.463	4.097	2.150**	-0.871
$L_{13} \times T_1$	-2.401	1.407	0.084	-0.084	7.567**	1.033**	0.586
L ₁₃ x T ₂	0.320	-1.434	0.102	-0.158	-0.105	-1.411	-1.526
L ₁₃ x T ₃	6.351	0.837	0.292	0.123	-3.451	0.852**	-0.305
L13 x T4	-4.271	-0.810	-0.479	0.120	-4.010	-0.474	1.245*
$L_{14} \ge T_1$	2.290	-0.133	-0.090	-0.234	-4.316	-0.891	3.069**
L14 x T2	0.845	0.990	0.027	-0.175	1.411	0.396	-2.642
L ₁₄ x T ₃	-0.590	-1.104	0.051	0.473	-0.135	0.527	-1.488
L14 x T4	-2.546	0.247	0.012	-0.063	3.040	-0.032	1.062
L15 x T1	2.557	-1.658	-0.281	-0.284	-0.257	-0.441	2.994**
L15 x T2	0.112	0.199	0.068	-0.058	-1.830	1.013**	-2.584
L15 x T3	-1.656	1.603	0.158	-0.076	-0.210	-0.655	-1.630
L15 x T4	-1.012	-0.144	0.053	0.420	2.298	0.084	1.220*
L16 x T1	-1.084	0.107	-0.331	-0.234	-8.691	2.083**	2.461**
L ₁₆ x T ₂	-1.895	-1.300	-0.281	-0.642	-1.963	0.105	-1.484
L ₁₆ x T ₃	-0.198	0.503	0.508	0.273	3.356	-3.364	-2.030
L16 x T4	3.178	0.689	0.103	0.603	7.298**	1.175**	1.053
$L_{17} x T_1$	0.148	0.966	-0.456	0.165	-3.499	1.173**	-2.713
L ₁₇ x T ₂	0.470	0.124	-0.072	-0.175	2.828	-1.064	3.373**
L ₁₇ x T ₃	-0.065	-0.404	0.051	0.073	5.914**	-0.140	3.727**
$L_{17} \ge T_4$	-0.554	-0.685	0.478	-0.063	-5.243	0.032	-4.387
$L_{18} \mathbf{x} \mathbf{T}_1$	5.140	-0.675	0.151	-0.084	-4.907	-0.191	4.211**
L ₁₈ x T ₂	-0.837	-5.484**	0.468	1.107	-0.580	-0.369	-2.667
L ₁₈ x T ₃	-1.873	-1.079	-0.207	-1.010	5.273*	-0.005	-0.213
L18 X T4	-2.429	7.239	-0.412	-0.013	0.215	0.567	-1.329

* and ** indicate significant at 0.05 and 0.01% of probability ,respectively

	Tab	le	5.	Cont.
--	-----	----	----	-------

Character			0_'!	Number	Number	1000-	Grain
	Heading	Plant height	Spike	of spikes/	of kernels/	kernel	yield /
Genotype	date		iengin	plant	spike	weight	plant
$L_{19} \times T_1$	5.740	8.482	1.193*	0.698	15.725**	0.041	1.102
L19 x T2	-4.304	5.540	-1.089	0.157	-7.746	-0.003	-0,809
L ₁₉ x T ₃	2.226	-13.787**	-0.199	-0.526	-2.726	0.327	0.677
L19X T4	-3.662	-0.235	0.095	-0.329	-5.251	-0.365	-0.971
$L_{20} \times T_1$	-0.334	-15.617**	-2.681	0.932	-1.607	0.441	-0.588
L ₂₀ x T ₂	-1.045	0.574	0.402	-0.675	-4.180	-0.136	-0.867
L ₂₀ x T ₃	0.251	5.712	1.025	-0.160	2.739	-0.072	0.452
L20 x T4	1.128	9.331	1.253*	-0.096	3.048	-0.232	1.003
$L_{21} \times T_1$	5.882	0.432	-0.840	0.465	-1.832	-0.466	0.152
L21 x T2	-10.629**	-5.409**	0.343	-0.342	-0.305	1.021**	-0.426
L ₂₁ x T ₃	2.568	-0.171	-0.066	-0.193	-0.685	-1.680	0.394
L21 x T4	2.178	5, 147	0.562	0.070	2.823	1.125**	-0.121
$L_{22} \times T_1$	0.348	-1.278	-0.560	-0.192	-4.682	0.933**	0.102
L ₂₂ x T ₂	2.404	0.079	-0.576	-0.033	-4.255	-1.278	0.990
L22 x T3	-1.931	0.218	0.529	-0.351	2.564	0.552	0.711
L ₂₂ x T ₄	-0.821	0.980	0.607	0.578	6.373**	-0.207	-1.804
L ₂₃ x T ₁	-4.851	0.999	-0.598	-1.592	0.008	-0.416	1.886**
L ₂₃ x T ₂	-4.129	-6.7 75**	-1.314	1.832**	4.203	0.105	-2.126
L ₂₃ x T ₃	11.668	0.328	0.042	-0.485	-0.476	-0.930	-0.672
L ₂₃ x T ₄	-2.687	5.447	1.870**	0.245	-3.735	1.242**	0.912
L ₂₄ x T ₁	-3.467	6.424	-0.031	0.007	-3.466	-1.133	-1.413
L24 x T2	5.020	- 7.434**	-0.414	-0.233	-1.671	-0.078	0.440
L24 x T3	-2.348	-1.779	0.508	0.114	1.714	-0.014	1.461*
L24 x T4	0.795	2.839	-0.062	0.112	3.423	1.225**	-0.487
L25 x T1	2.794	8.566	1.143*	0.057	13.975**	0.933**	1.477*
L25 x T2	-4.516	-8,709**	1.127*	1.316*	19.936**	-0.944	-0.034
L ₂₅ x T ₃	3.913	-0.471	-1.082	-0.801	-15.776	1.519**	0.986
L25 x T4	-2.191	0.614	-1.187	-0.571	-18.135	-1.507	-1.129
L26 x T1	-1.351	-2.483**	0.168	-0.276	-0.549	-0.658	2.136**
L ₂₆ x T ₂	4.704	6.474	0.418	0.849	6.778**	-0.603	-2.442
L ₂₆ x T ₃	-3.898	-2.287*	-0.424	0.498	-5.235	1.294**	-1.188
L26 x T4	0.545	-1.702	-0 162	-1.071	-0.993	-0.032	1.495*
$L_{27} \ge T_1$	-5.317*	3.241	-0.023	0.065	2.100	-0.091	0.311
L ₂₇ x T ₂	3.570	-0.401	0.927	-0.542	0.694	-0.103	1.198**
L ₂₇ x T ₃	-4.865	-1.996**	-0.449	0.339	1.581	0.060	-1.847
L ₂₇ x T ₄	6.612	-0.844	-0.454	0.136	-4.376	0.134	-0.662

* and ** indicate significant at 0.05 and 0.01% of probability, respectively

_

_

Character				Number of	Number of	1000-	Grain
	Heading	Plant	Spike	spikes/	kernels/	kernel	yield
Genotype	date	neight	iengin	plant	spike	weight	/plant
L ₂₈ x T ₁	-8.442**	0.641	0.351	0.115	-2.407	0.558	-5.954
L ₂₈ x T ₂	-0.420	-2.734**	-0.031	-0.325	-1.146	0.980**	1.898**
L28 x T3	1.176	-1.429	0.025	-0.010	2.606	-0.689	2.752**
L ₂₈ x T ₄	7.687	3,522	-0.346	0.220	0.948	-0.849	1.003
L29 X T1	13,148	0.957	-0.206	0.498	-4.666	-0.383	1.377*
L29 x T2	-8.962**	0.649	-0.622	0.024	0.561	1.038**	-0.501
L ₂₉ x T ₃	-7.131**	-1.179	0.067	-0.326	2.348	-4.264	-1.413
L ₂₉ x T ₄	2.945	-0.427	0.762	-0.196	1.756	-0.390	0.537
$L_{30} x T_1$	1.665	4.032	-0.565	0.382	-10.949	0.075	-3.697
L ₃₀ x T ₂	7.120	0.557	0.952	-0.125	-10.321	0.846**	-0.442
L ₃₀ x T ₃	-2.848	-0.737	-0.557	-0.410	10.364**	0.177	0.611
L ₃₀ x T ₄	-5.937*	-3.852**	0.170	0.153	10.906**	0.691**	3.528**
L ₃₁ x T ₁	3.323	-0.125	0.159	-0.559	-5.324	-0.358	-1.430
L ₃₁ x T ₂	5.312	0.765	-0.422	0.299	-4.763	0.163	0.690
L ₃₁ x T ₃	-5.856*	3,103	0.233	0.014	-4.243	1.560**	0.144
L ₃₁ x T ₄	-2.779	-3.744 **	0.028	0.245	14.331**	-1.365	0.595
L ₃₂ x T ₁	3.032	3.691	0.093	-0.051	9.767**	-0.591	-1.722
L ₃₂ x T ₂	-1.145	2,449	-0.056	-0. 092	18.061**	1.030**	-0.201
L ₃₂ x T ₃	-1.715	2.487	0.133	0.289	-18.118	0.560	-0.313
L ₃₂ x T ₄	-0.171	-8.627**	-0.171	-0.146	-9.710	2.066**	2.237**
L ₃₃ x T ₁	1.798	0.557	0.334	0.015	9.642**	0.775*	-5.113
L ₃₃ x T ₂	1.287	0.582	0.618	-0.192	-7.863	1.796**	2.340**
L33 x T3	-0.215	-0.446	-0.491	0.256	-3.310	1.02 7**	1.961**
L ₃₃ x T ₄	-2.871	-0.694	-0.46 2	-0.079	1.531	-3.599	0.812
L ₃₄ x T ₁	-2.059	2.040	-0.090	-0.496	-2.787	-1.691	0.744
L ₃₄ x T ₂	0.629	-0.798	-0.239	-0.167	-0.606	0.521	-0.134
L ₃₄ x T ₃	-0.640	1.569	0.017	0.081	9.759**	-1.014	-0.647
L ₃₄ x T ₄	2.070	-2.811**	0.312	0.511	-6.365	-1.574	0.037
L35X T1	3.915	-3.001**	0.418	0.332	5.350*	-0.849	1.619**
L35 x T2	-1.329	-8.209**	0.135	0.557	2.011	0.038	-2.059
L35 x T3	-7.331**	3.995	0.025	-0.493	2.931	0.869**	-0.772
L35 x T4	4.745	7.214	-0.573	-0.396	-10.293	-4.421	1.212*)
L.S.D SCA5%	4.974	1.828	1.052	1.144	4.272	0.610	1.146
L.S.D SCA1%	6.522	2.397	1.380	1.501	5.602	0.800	1.503
L.S.D Sij-Sik 5%	7.034	2.585	1.489	1.618	6.04 2	0.862	1.620
L.S.D Sij-Sik 1%	9.223	3.389	1.953	2.122	7.923	1.131	2.125

* and ** indicate significant at 0.05 and 0.01% of probability, respectively

Annals Agric. Sci. 47(2), 2002

- -

Table 5. Cont.

spikes / plant, number of kernels / spike, 1000-kernel weight and grain yield / plant and it had relatively high specific combining ability effect with the first tester sids 4 ($L_{25} xT_1$) for spike length, number of kernels / spike 1000-kernel weight and grain yield /plant. Moreover, the line no. 30 was good donor for plant height, number of spikes / plant, number of kernels /spike, 1000-kernel weight and grain yield /plant and also exhibited high specific combining ability effect with the fourth tester Sakha 93 (L₃₀ xT₄) for heading date, plant height, number of kernels / spike 1000-kernel weight and grain yield / plant. In addition the line no. 32 was a good combiner for all traits studied except heading date and also exhibited high specific combining ability values with the fourth tester Sakha 93 (L₃₂ x T₄) was a good donor for plant height, 1000-kernel weight and grain yield / plant. These parents may be used in suitable selection programmes where they possess high amount of additive genetic variance. It could be noticed that these hybrids were the favorable crosses for grain yield via some components of vield such as number of spikes / plant, number of kernels / spik and 1000-kernel weight. These combinations expressed significant heterotic effects relative to better parents.

The results obtained herein concerning general and specific combining ability effects could indicate that excellent hybrids combinations were obtained from the three possible combinations between the parents of high and low general combining effects i.e. high x high, high x low and low x low consequently it could be concluded that general combining ability effects of the parental lines were generally unrelated to the specific combining ability effects of their respective crosses.

4. Gene effects

The estimates of additive, non additive, degree of dominance and heritabilities in broad and narrow senses with respect all studied traits are presented in Table (6). The results revealed that the additive gene effects were larger than those of the non additive variance (δ^2 $D/\delta^2 A)^{1/2}$ for heading date, plant height, spike length, number of spikes / plant, number of kernels / spike, 1000- kernel weight and grain yield / plant. These could be verified by the ratio which were less than one, revealing the importance of partial dominance and that additive effects played the major role in the inheritance of these traits. Many authors suggested that, additive genetic variance and GCA variance were important for these traits such as Salem and El-Banna (1982); Salem and Hassan (1991); Singh et al (1994); Rajara & Maheshwari (1996) and El-Hosary et al (2000).

Concerning heritability, it is likely to mention that broad sense heritability $(T_b\%)$ was high and exceeded 74% for all traits studied and moderate for spike length (48.606%). However narraw sense heritability was high (more than 50%) for plant height, number of spikes / plant, number of kernels / spike, 1000- kernel weight and grain yield / plant and moderate (30-50%) for heading date and spike length. These results suggest that all traits are highly heritable, so that rapid gain from selection for earliness as well as grain yield and its components would be possible through segregating generations. Similar results were obtained by

Parameters Characters	δ²A	δ²D	δ²e	Ть%	Τ"%	GS.	GS%	$(\delta^2 D / \delta^2 A)^{1/2}$
Heading date	35.418	20.622	19.328	74.355	46.992	8.403	8.711	0.763
Plant height	28.571	21.415	2.612	95.033	54,318	8.114	8,096	0.865
Spike length	0.669	0.150	0.866	48.606	39.692	1.06	8.340	0.473
Number of spikes / plant	6.614	0.025	1.024	86. 635	86.30 9	4.921	56.028	0.061
Number of kernels /spike	251.148	47.8 79	14.259	95.4 48	80.165	29.228	37.090	0.436
1000-kernel weight	9.782	2.132	0.291	97.616	80.145	5.766	13.881	0.466
Grain yield /plant	39.122	3.880	1.027	97. 666	88.852	12.144	54.415	0.314

Table 6. Genetic Parameters of studied agronomic characters.

Where : $\delta^2 A$, $\delta^2 D$, $\delta^2 e$, T_b %, T_n %, Gs and Gs% denote, Additive, Dominance , environmental variance, broad sense heritability, narrow sense heritability, expected advance as mean value and as % of means.

Hamada (1988); El-Marakby et al (1993); Hamada et al (1997) and Hamada & Tawfelis (2001).

Considering the expected genetic advance under 5% selection intensity, the results showed that the highest expected gain (expressed as a percentage of the mean) was reported for number of spikes/ plant (56.028%), grain yield / plant (54.415%) number of kernels / spike (37.09%) and 1000- kernel weight (13.881%) followed by heading date (8.711%), spike length (8.34%) and then plant height (8.096%). Similar trend was detected by Salem and El-Banna (1982); Salem and Hassan (1991); Bijendra et al (1992) and Singh et al (1994).

REFERENCES

Abd El-Aty M.S. and Y.S. Katta (2002). Genetic analysis and heterosis of grain yield and related traits in bread wheat (*Triticum aestivum L.*). J. Agric. Res. Tanta Univ., 28 (2):287-300.

AL-Kaddoussi, A.R.; M.M. Eissa and S.M. Salama (1994). Estimates of genetic variance for yield and its components in wheat (*Triticum aestivum* L.) Zagazig. J. Agric. Res., 21(2)355-366. Ashoush, H.A.; A.A. Hamada and I.H.

Darwish (2001). Heterosis and combining ability in F_1 and F_2 diallel crosses of wheat (*Triticum aestivum L.*). J. Agric. Sci. Mansoura Univ., 26(5): 2579-2592. Bhullar, G.S.; S.P.S. Brar and K.S. Gill (1981). Combining ability for yield and its components characters in durum wheat. *Indian J. Agric.Sci.*, 51 (12)842-846.

Bijendra-Pal, D.K. Grag and B. Pal. (1992). Estimation of genetic parameters in three wheat crosses. *Indian Crop Improvement.* 19(2):149-151.

El-Adl, A.M.; Z.A. Kosba; Z.M. El-Diasty and G.A. Rizk (1996). The relative importance of additive and nonadditive gene variances in new varieties of wheat (*Triticum spp. L.*). J. Agric Sci., Mansoura Univ., 21:1717-1733.

El-Hosary, A.A.; M.E. Riad; R.A. Nagwa and Manal A.H. (2000). Heterosis and combining ability in durum wheat *Proc* 9th Conf. Agron, Minufiya Univ., pp. 101 -117.

El-Marakby, A.M.; A.A. Mohamed and M.F. Abd El-Rahman (1993). Studies on types of gene action and heritability in bread wheat crosses. Fourth Conf. Agric. Dev. Res., Ain Shams Univ. Cairo, Annals, Agric. Sci.Sp. Issue, 1: 151-159.

El-Morshidy, M.A.; K.A.A. Kheiralla and M.M. Zakaria (2001). Studies on grain filling under different planting dates in wheat 2^{nd} Pl. Breed. Conf., Fac. of Agric., Assiut Univ., Egypt.(2): 241-263.

El-Seidy, E.H. and A.A. Hamada (2000). Interaction of wheat genotypes x water sources. *Proc.* 9thConf. Agron., *Minufiva Univ.*, Egypt. 17-34.

Gupta, R.R. and Z. Abmad (1995). Line x tester analysis for some metric traits in macroni wheat. Crop Improvement, 22(2): 224 - 249.

Hamada, A.A. (1988). Studies on Some Selection Criteria in Wheat. pp. 48-63. M.Sc. Thesis, Fac. of Agric. Zagazig Univ., Egypt Hamada, A.A.; M.M. Abd El-Maksoud and G.A. Rizk (1997). Heterosis and types of gene action association with it for earliness and yield components in crosses involving Egyptian and exotic wheat germplasm. J. Agric. Sci., Mansoura Univ., 22 (9): 2833-2844.

Hamada A.A. and M.B. Tawfelis (2001). Genetic and graphical analysis of diallel crosses of some bread wheat (*Triticum aestivum* L.). J. Agric. Res. Tanta Univ., 27(4): 633-647.

Hassan, E.E. and A.M. Abd El-Moniem (1991). Combining ability, heterosis and gene action of some quantitative characters in wheat. *Zagazig J. Agric. Res.* 18(5): 1369-1381.

Kempthorne, O. (1957). An introduction to Genetic Statistics, pp. 475-491. John Wiley and Sons. New York.

Khan, N.U.; M.S. Swati; G.U. Hassan; Q. Ayum Nawaz; G. Hassan and Q. Nawaz (1995). Heterosis exhibited by some morphological traits of diallel crosses in wheat (*Triticum aestivum*) Sarhad. Journal of Agriculture 11(4): 485-489.

Kheiralla, K.A.; M.A. El-Morshidy and M.M. Zakaria (2001). Inheritance of earliness and yield in bread wheat under favourable and late sowing dates. 2^{nd} PL Breed. Conf., Fac. of Agric., Assiut Univ., Egypt. (2): 241-236.

Mather, K. and J.L. Jinks (1971). Biometrical genetics. (2nd Edition) pp. 255-287. Chapman and Hall, Ltd., London.

Prassed, K.D.; M.F. Haque and D. K. Ganguli (1998). Heterosis studied for yield and it's components in bread wheat. (*Triticum aestivum L.*). Indian J. Genet., 58(1): 97-101.

Qualser, C.O; G.T. Scarascia Mugnozza and S. Geng (1985). Biometrical

analysis and inheritances for genetic improvement in durum wheat. Z. Phanzen zuchtung, 95: 230-244.

Rajara, M.P. and R.V. Maheshwari (1996). Combining ability in wheat using line x tester analysis. Madras, Agric. J. 83(2):107-110.

Salem A.H. and M.N. El-Banna (1982). Estimates of genetic variation, heritability, genetic advance and correlation of some growth characters, yield and yield attributes in wheat. Res. Bull. No. 496: 1-18, Fac. Agric. Zagazig Univ., Egypt. Salem, A.H. and E.E. Hassan (1991). Estimates of some breeding parameters for yield and its attributes in wheat using line x tester analysis. Zagazig J. Agric. Res. 18 (5): 1357-1368.

Singh, R.P.; I. Singh; S.C. Sharman and I.D. Tripathi (1994). Impact of genetic background of testers on some biometrical parameters in wheat (Triticum aestivum L.). Indian J. Agric. Res. 28(2): 93-98.

Srivastava R.B.; R.S. Paroda; O.P. Luthra and K.C. Goyal (1982). Genetic architecture of yield and components of yield in durum wheat. Indian J. Agric. Sci., 52:85-92.

بحلة حوليات العلوم الزراعية ، كلية الزراعة ، حامعة عين شمس ، القاهرة، م (٤٧)، ع(٢)، ٥٨٧-٢٠٩ ، ٢٠٠٢ معايير التربية لتاريخ الطرد والمحصول ومكوناته في القمح باستخدام تحليل السلالة × الكشاف

[47]

أسعد احمد حمادة ' - السيد حامد الصعيدي - حمدي ابراهيم هنداوي ' ١ - البرنامج القومي ليحوث القمح - معهد يحوث المحاصيل الحقلية - مركز اليحوث الزراعية - القاهرة ٢- قسر المحاصيان - كليرية الزارعية بطنطيها - جامعة طنطيها - طنطها - مصريه

مستوردة من القمح تم تهجينها مسع أربعة ۲۰۰۰/۲۰۰۱، ۲۰۰۲/۲۰۰۱ و ذل____ك أصناف مصرية وهي سدس ٤ ، جميزة ٩ ، جيزة ١٦٨ ، سخا ٩٣ ونتج ١٤٠ هجينا التالف والفعل الجيني المتحكم لصفات تساريخ قميا بنظام التزاوج القمى وكانت اهم النتائج

أظهرت النتائج معنوية عالية في تحليك التباين في كل الصفات المدروسة لكل مسبن

أجريت هذه الدراسة بمحطية البحيوث في هذه الدراسة خمسية وثلاثيون سيلالة الزر اعية بالحميزة خلال الموسمين الشتوبين بغرض دراسة قوة الهجين والقسدرة علمي الطرد وطول النبات وطول السنبلة وعدد المتحصل عليها كمايلي: السنايل للنبات وعدد حبوب السينيلة ووزن ألف حبة ومحصول الحبوب للنيات. استخدم

الهجين، والسلالات والكشاف والسللات وقدرتها الخاصة على الانتلاف للمحصيول مع الكشاف فيما عدا صفة ط_ول السنبلة ومكوناته. وعدد السنابل للنبات وذلك للسمسلالات مسع الكشاف للسلالات مع الكشاف.

أوضحت النتائج الدور المهم لكل من تأثير الفعل الجيني المضيف والفعل الجيني كانت كفاءة التوريث بالمعنى الخاص عالية الغير مضيف لجميع الصفات تحت الدراسة لجميع الصفات المدروسة ومتوسطة لصفية حيث تفوق الفعل الجيني المضيف على تاريخ الطرد وطول السنبلة وكيان مقيدار الفعل الجيني الغير مضيف لجميع الصفات التحسين المتوقع عاليا لصفة عدد السانابل فيما عدا تاريخ الطرد وطول النبات .

كانت السلالات رقسم ١، ٦، ١١، ٢٥، ٣٠ ، ٣٢ ، افضل السلالات للاستخدام فسى السنبلة (٣٧,٠٩)، ووزن السف حبـــة برامج التربية لقدرتها العالية على الانتلاف (١٣.٨٨) ، تاريخ الطرد (١٨.٧١) ، لصفات المحصول ومكوناته وكانت المهجن وطول السنبلة (٨,٣٤) ثم طمول النبات L₃₂ x T₄ ،L₃₀ x T₄ أفضل الهجن فــي (٨,٠٩).

التراكيب الوراثية ، الأباء ، الأباء مع إظهار قوة الهجين بالنسبة لللب الأفضل

كانت قيم معامل التوريث بالمعنى العمام اكثر من ٧٠% لجميع الصفات المدروسية وكانت متوسطة لصفة طول السنبلة بينما النبات (٢,٠٢%) يليها محصول الحبوب للنبيات (٤,٤١%) ، وعيدد حبيوب

> تحكيم: ١.د على محمد إسماعيل مصطفى ا.د حسب ا.د حسب ان دوام