The Effect of N Source on Chemical Analysis of Green Bean Grown under Different Water Levels

M.A. El-Nemr, U.A. El-Behairy*, Omaima M. Sawan and A.F. Abou-Hadid*
Horticulture Research Department, National Research Centre and *Department of Horticulture, Faculty of Agriculture, AinShams University, Cairo, Egypt.

THE EXPERIMENT was carried out during two successive growth seasons 1999-2000 and 2000-2001 in the experimental farm of the arid land laboratory, Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt. This work aimed to study the effect of N source $\left[\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right.$ and $\left.\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\right]$ on chemical analysis of green bean (Phaseolus vulgaris L.) grown under different water regime $(100 \%, 80 \%$ and 60% of field capacity). The results reported that chemical analysis (total- N and nitrate nitrogen) percentage in leaves and pods of bean plants increased with low irrigation level (60% of field capacity) in comparison with high irrigation levels. Low irrigation level (60% of field capacity) recorded the highest nitrate and protein content (\%) in pods. The results in this study indicated that nitrate nitrogen (\%) and total-N (\%) in leaves and pods and nitrate content (\%) in pods were higher for plants supplied with $\mathrm{NO}_{3}-\mathrm{N}$ compared with $\mathrm{NH}_{4}-\mathrm{N}$. Protein content (\%) in pods increased with $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$.

Water requirement and N fertilizer are two factors affect yield of snap bean plants (Phaseolus vulgaris L.), whereas frequent or excessive amounts of water and nitrogen fertilizer would lead to unfavourite effect on the growth and yield of snap bean plants and will lead to increasing losses amounts of water and nitrogen fertilizer.

Leaf $\mathrm{NO}_{3}-\mathrm{N}$ increased with increasing NO_{3} concentration in the nutrient solution has been reported by Ikeda \& Osawa (1983). They indicated that fertilization with $\mathrm{NH}_{4}-\mathrm{N}$ reduced leaf, shoots and roots concentration of $\mathrm{NO}_{3}-\mathrm{N}$ compared with plants supplied with $\mathrm{NO}_{3}-\mathrm{N}$. Raikova et al. (1986) reported that
bean plants grown in summer-autumn had higher nitrate content than bean plants grown in spring-summer. On the other hand, Veiga \& Ruschel (1987) reported that the high concentration of ammonium sulphate caused leaf drop.rose. The reduction in N accumulation was greatest with the $\mathrm{NH}_{4}-\mathrm{N}$ treatment as reported by Nathan et al. (1989), Zou-ChunQin et aL. (1996), Sarro et al. (1998) and Vale et al. (1998). They reported that total- N in blades of recently fully expanded leaves was higher when N was supplied as $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ than as $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$. On the contrary, Macleod \& Ormrod (1985) found that nitrate-treated plants had lower total- N than ammonium-treated plants.

Researches also indicated that the highest percentage of protein content when treated with (75% and 65%) of field capacity compared to high water levels (100%) and (125%-excessive water) of field capacity as reported by Karas (1997). Costa et al. (1988) and Durge et al. (1988) found that N promoted a marked plant adaptation to water stress by reducing its effect. Castrillo et al. (1990) found that nitrate reductase activity in leaves decreased in non-watered plants from 40% of the activity in control plants. On the contrary, Hegde \& Srinivas (1990) found that nitrogen application increased water use efficiency but had no marked effect on water relations and canopy temperature.

Material and Methods

Two experiments were carried out during two successive growth seasons of 1999/2000 and 2000/2001 at the farm of the arid land laboratory, Department of Horticulture, Faculty of Agriculture, Ain Shams University, Shobra EI-Khima, Kalubia Governorate, Egypt. Seeds of snap bean (Phaseolus vulgaris L.) cv. Bronco were sown on September $15^{\text {th }}$ in autumn season and on February $15^{\text {th }}$ in summer season. Plastic pots, 30 cm in diameter were used. Each pot contained 10 kg of sandy soil. Field capacity (F.C) of used soil was 13% and (EC) 0.4 mmhos $/ \mathrm{cm}$. Each pot contains three plants. Irrigation treatments were started four weeks after seed sowing, while nitrogen treatments were started once the first true leaf appeared.

Treatments of irrigation

Plants of both seasons were subjected to different levels of irrigation as follows:-
-60% of field capacity. $\quad-80 \%$ of field capacity. -100% of field capacity.
Treatments started after four weeks from sowing of seeds.

Treatments of nitrogen fertilization

The amounts of nitrogen fertilizers were applied to each pot in treatments as follows: -
-100% of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\left[4 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} /$ pot $]$.
-100% of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\left[5.42 \mathrm{~g}\right.$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} /$ pot $]$.

- 75% of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+25 \%$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\left[3 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 1.36 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} /$ pot $]$.
-50% of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+50 \%$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\left[2 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 2.71 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} /$ pot $]$.
-25% of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+75 \%$ of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\left[1 \mathrm{~g}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 4.07 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} /$ pot $]$.

Blades of five recently fully expended trifoliate leaves were taken from each replicate for chemical analysis according to Nathan et al. (1989). Samples of leaves were taken three times on 45,60 and 75 days after sowing. The samples were oven dried at $70^{\circ} \mathrm{C}$ then ground in a blender and stored in glass vials for chemical analysis. The following measurements were recorded in leaves and pods: Total nitrogen content (\%) was determined by Kjeldahel method according to Chappman et al. (1961). Nitrate content (\%) was determined by extracting NO_{3} from the sample using $0.04 \mathrm{~N} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ according to Cottenie (1980) and then determining the NO_{3} concentration of extract colorimetrically by Brucine method reported by Holty \& Potworowski (1972). Total protein content (\%) of pods was determined as $\mathrm{g} / 100 \mathrm{~g}$ dry weight using Micro-Kjeldahel method according to Chappman et al. (1961). The experimental design was arranged in split plots design (three treatments of irrigation levels and five sub-treatments of nitrogen levels) with four replicates. All data were subjected to statistical analysis according to Snedicor \& Cochran (1980).

Results

Total nitrogen and nitrate nitrogen (\%)

The effect of irrigation levels on total nitrogen (\%) and nitrate nitrogen (\%) in leaves and pods of bean plants shown in Tables (1A, 2A and 3A). Resuits reported that total-N (\%) and nitrate nitrogen (\%) increased with decreasing the amount of irrigation level. Low irrigation level (60% of field capacity) recorded the highest total -N content and nitrate nitrogen content, while the lowest total -N and nitrate nitrogen recorded with irrigation high level of 100% of field capacity. Generally, the results in Tables (1B, 2B and 3B) indicated that total-N (\%) and nitrate nitrogen (\%) in leaves and pods increased with $100 \% \mathrm{NO}_{3}-\mathrm{N}$ followed by $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$ and the lowest total-N (\%) and nitrate nitrogen (\%) in leaves and pods was obtained $100 \% \mathrm{NH}_{4}-\mathrm{N}$ treatment.

Regarding the effect of interaction between irrigation levels and nitrogen treatments on total-N (\%) and nitrate nitrogen (\%) in leaves and pods it had been shown in Tables (1C, 2C and 3C). The combination between low irrigation (60% of field capacity) level with $100 \% \mathrm{NO}_{3}-\mathrm{N}$ and $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$ had the highest total-N (\%) and nitrate nitrogen (\%) in bean leaves and pods followed by low irrigation with $50 \% \mathrm{NH}_{4}-\mathrm{N}+50 \% \mathrm{NO}_{3}-\mathrm{N}$. The lowest total-N and nitrate nitrogen was recorded when high irrigation level was combined with $100 \% \mathrm{NH}_{4}-\mathrm{N}$ treatment. Also, the results showed an increase in total-N and nitrate nitrogen in leaves and pods of plants grown at summer season compared to those grown at autumn season.

Total protein and nitrate content of pods (\%)

It is clear from Table 4A that total protein (\%) and nitrate content (\%) in pods of snap bean plants increased with decreasing the amount of irrigation level. The results reported that total protein and nitrate content in pods increased with plants grown at low levels of irrigation (60% and 80% of field capacity) relative to those grown at high level (100% of field capacity). Generally, results in Table 4B showed the total protein (\%) and nitrate content (\%) in pods increased with $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$ followed by $50 \% \mathrm{NH}_{4}-\mathrm{N}+50 \% \mathrm{NO}_{3}-\mathrm{N}$, while the lowest value recorded with $100 \% \mathrm{NH}_{4}-\mathrm{N}$ treatment.

TABLE 1. Effect of different treatments on total-N (\%) in leaves of snap bean plants at 45, 60 and 75 days after sowing.
(a):- Effect of irrigation treatments.

Treatments	Suminer season						Autumn season					
\% of field	First season			Second season			First season			Second season		
capacity	45 days	60 days	75 days	46 days	60 days	75 days	45 days	60 days	75 days.	45 days	60 days	75 days
60\%	4.137	3.740	3.877	3.367	3.641	4.373	5.422	3.638	3.417	3.239	2.739	2.543
80\%	4.243	3.488	3.503	3.693	3.108	4.011	4.647	3.766	3.336	3.109	2.567	2.421
100\%	3.144	3.287	3.045	3.683	2.490	3.169	4.091	3.559	3.188	2.878	2.339	2.160
L.S.D at 0.05	0.154	0.128	0.189	0273	0.229	0.288	0.112	0.058	0.089	0.102	0.133	0.085

(b) :- Effect of nitrogen treatments

Treatments	Summer season						Autumn season					
N	First season			Secand season			First season			Second season		
source	45 days.	60 days	75 days	45 days	60 days	75 days	45 days	60 days	75 days	45 days	60 days	78 days
100\% NH4-N	3.432	2.869	3.124	3.253	2.576	3.038	4.220	3.457	3.016	2.580	1.997	1.812
100\% NO3-N	3.931	3.714	3.559	3.687	3.319	3.958	4.900	3.803	3.632	3.183	2.669	2.574
76\% NH4-N + 25% NO3-N	3.714	3.123	3.244	3.559	2.732	3.626	4.611	3.520	3.138	2.751	2.527	2.182
$50 \% \mathrm{NH4}-\mathrm{N}+50 \%$ NO3-N	4.096	3.843	3.769	3.784	3.299	4.491	4.919	3.723	3.332	3.261	2.702	2.588
25\% $\mathrm{NH} 4-\mathrm{N}+75 \% \mathrm{NO} 3-\mathrm{N}$	4.033	3.990	3.845	3.622	3.472	4.143	4.948	3.767	3.451	3.602	2.847	2.616
L.S.O at 0.05	0.256	0.224	0.222	0.178	0.140	0.228	0.195	0.125	0.134	0.180	0.102	0.125

(c) :- Effect of interaction between irrigation and nitrogen treatments

TABLE 3. Effect of different treatments on total- $\mathrm{N}(\%)$ and $\mathrm{NO}_{3}-\mathrm{N}(\%)$ in pods of snap bean plants.
(a):- Effect of irrigation treatments.

Treatments	Summer season				Auturn season			
	First season		Second season		First season		Second season	
\% of fleld	Total-N	$\mathrm{NO}_{3} \mathrm{~N}$	Tolat N	$\mathrm{NO}_{3}-\mathrm{N}$	Total N	$\mathrm{NO}_{3}-\mathrm{N}$	Total-N	$\mathrm{NO}_{3}-\mathrm{N}$
capactiy	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)
60\%	3.641	0.285	2.457	0.658	3.409	0.058	3.187	0.050
80\%	3.349	0.235	2.802	0.521	3.053	0.050	2.891	0.040
100\%	3.049	0.192	2.383	0.469	2.630	0.032	2.797	0.031
L.S.D at 0.05	0.167	0.030	0.188	0.046	0.147	0.001	0.140	0.002

Treatments	Summer season				Autumn season			
	First season		Second season		First season		Second season	
N	Total-N	NO, N	Total-N	$\mathrm{NO}_{3}-\mathrm{N}$	Total-N	$\mathrm{NO}_{3}-\mathrm{N}$	Total N	$\mathrm{NO}_{3}+\mathrm{N}$
source	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)
100\% NH4-N	2.836	0.119	2.343	0.239	2.753	0.034	2.467	0.005
100\% $\mathrm{NO} 2-\mathrm{N}$	3.420	0.341	2.578	0.751	3.179	0.070	3.131	0.072
75\% NH4-N + 26% NO3-N	3.101	0.154	2.449	0.408	2.844	0.035	2.828	0.006
50\% NH4-N + 50\% NO3-N	3.631	0.263	2.714	0.640	3.155	0.045	3.118	0.053
25\% NH4-N + 76\% NO3-N	3.744	0.311	2.652	0.707	3.229	0.049	3.247	0,066
L.S.D at 0.05	0.152	0.040	0.213	0.057	0.222	0.005	0.210	0.006

$\begin{aligned} & \mathrm{m} \\ & \text { 祭 } \end{aligned}$	Treatments		Summer season				Autumn season			
			First season		Second season		First season		Second season	
	\% of flield	N	Tolat-N	$\mathrm{NO}_{3}-\mathrm{N}$	Total N	$\mathrm{NO}_{3}-\mathrm{N}$	Total-N	$\mathrm{NO}_{3}-\mathrm{N}$	Total-N	$\mathrm{NO}_{3}-\mathrm{N}$
	capacty	source	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)	(\%)
5		100\% NH4-N	3.053	0.134	2.203	0.332	3.372	0.049	2.527	0.008
5		100\% NO3-N	3.467	0.432	2.557	0.942	3.745	0.078	3.633	0.086
9	60\%	76\% NH4-N + $\mathbf{2 5 \%}$ NO3-N	3.477	0.149	2.890	0.437	3.199	0.043	3.240	0.008
\cdots		60\% NH4-N + 50\% NO3-N	3.933	0.304	2.090	0.683	3.167	0.062	3.207	0.072
N		25\% $\mathrm{NH} 4-\mathrm{N}+75 \%$ NO3-N	4.273	0.408	2.543	0.894	3.561	0.057	3.327	0.076
		100\% NH4-N	2.753	0.141	2.530	0.227	2.462	0.031	2.457	0.004
z		100\% NO3-N	3.693	0.311	3.033	0.691	3.133	0.085	3.107	0.069
	80\%	75\% NH4-N + 25\% NO3-N	2.963	0.162	2.050	0.409	2.800	0.036	2633	0.005
N		60\% NH4-N + 50\% NO3-N	3.510	0.280	3.803	0.667	3.415	0.042	3.040	0.054
		25\% NH4-N $+76 \%$ NO3-N	3.827	0.282	2.593	0.611	3.456	0.056	3.217	0.069
8		100\% Nif4-N	2.700	0.081	2.297	0.159	2.427	0.024	2.417	0.003
N		100\% NO3-N	3.100	0.280	2.143	0.620	2.637	0.047	2.653	0.060
\cdots	100\%	75\% NH4-N + 25\% NO3-N	2.863	0.152	2.407	0.377	2.532	0.026	2.610	0.004
		50\% NHA-N + $50 \% \mathrm{NO} 3-\mathrm{N}$	3.450	0.206	2.250	0.570	2.883	0.031	3.107	0.034
		25\% NH4-N + 75\% NO3-N	3.133	0.242	2.820	0.616	2.669	0.034	3.197	0.052
	L. S .0 at 0.05		0.262	0.069	0.368	0.098	0.384	0.009	0.363	0.011

TABLE 4. Effect of different treatments on total protein (\%) and nitrate content (\%) in pods of snap bean piants.
(a):- Effect of irrigation treatments

Treatments Summer season ummer season -_, Autumn season

Treatments	Summer season				Autumn season			
	First season		Second season		First season		Second season	
$\%$ of field capacity	Total protein (\%)	Niirate content (\%)	Total protain (\%)	Nitrate content (\%)	Tolal protein (\%)	Nitrale content (\%)	Total prolein (\%)	Nitrate content (\%)
60\%	23.300	. 284	15.723	2.912	21.815	0.255	20.395	0.221
80\%	21.436	1.041	17.933	2.307	19.540	0.222	18.500	0.178
100\%	19.516	0.852	15.253	2.075	16.829	0.143	17.899	0.136
L.S.D at 0.06	1.069	0.132	1.203	0.206	0.938	0.005	0.898	0.010

(b):-Effect of nitrogen treatments.

Treatments	Summer season				Autumin season			
	Firsi season		Second season		First season		Second season	
$\begin{gathered} \mathrm{N} \\ \text { source } \end{gathered}$	Total protein (\%)	Nitrate conlent (\%)	Toted protein (\%)	Nitrate content (\%)	Tolat protein: (\%)	Nitrale content (\%)	Total protern (\%)	Nittale content (\%)
100\% NM4-N	18.148	0.525	14,997	1.060	17.621	0.153	15.787	0.023
100\% NO3-N	21.888	1.510	16.498	3.326	20.297	0.310	20039	0.318
75\% NH4-N + 25% NO3-N	19.647	0.683	15.673	1.806	18.199	0.156	18.098	0.026
$50 \% \mathrm{NH} 4-\mathrm{N}+50 \% \mathrm{NO3-N}$	23.239	1.167	17.372	2.835	20.193	0.199	19.954	0.236
25\% NH4-N+75\% NO3-N	23.964	1.376	16.974	3.131	20.653	0.216	20.779	0.291
L.S.D at 0.05	0.969	0.179	1.361	0.251	1.418	0.024	1.342	0.029

(c):- Effect of interaction between irrigation and nitrogen treatments.

Treatments		Summer season				Autumn season			
$\%$ of fileld capacty	$\stackrel{N}{\mathrm{~N}} \text { source }$	First season		Second season		First season		Second season	
		Tolat protein (\%)	Nitrate content (\%)	Total protein (\%)	Niirate contert (\%)	Total protein (\%)	Nitrale conterl (\%)	Total prolein (\%)	Nitrale content (\%)
60\%	100\% NH4-N	19.541	0.582	14.101	1.472	21.579	0.216	16.171	0.034
	100\% NO3-N	22.187	1.915	16.363	4.170	23.968	0.345	23.253	0.380
	75\% NH4-N + 25\% NO3-N	22.251	0.659	18.496	1.937	20.474	0.192	20736	0.036
	60\% NH4-N + 50\% NO3-N	25.773	1.347	13.376	3.025	20.267	0.274	20.523	0.318
	25\% NH4-N + 75\% NO3-N	27.349	1.806	16.277	3.958	22.788	0.251	21.291	0.338
80\%	100\% ${ }^{\text {NH4-N }}$	17.621	0.623	16.192	1.005	15.755	0.138	15.723	0.018
	100\% NO3-N	23.637	1.375	19.413	3.062	20.049	0.375	19.883	0.306
	75\% NH4-N + 25\% NO3-N	18.965	0.716	13.120	1.811	17.920	0.160	16.853	0.024
	60\% NH4-N + 50\% NO3-N	22.464	1.242	24.341	2.954	21.858	0.188	19.456	0.239
	25\% NH4-N+ 76% NO3-N	24.491	1.248	16.597	2.704	22.116	0.248	20.587	0.304
100\%	100% NH4-N	- 17.280	0.360	14.699	0.704	15.539	0.104	15.467	0.015
	100\% NO3-N	19.840	1.239	13.717	2746	16.875	0.209	16.981	0.267
	75\% NHA-N + 25\% NO3-N	18325	0.674	15.403	1671	16.203	0.116	16.704	0.017
	50\% NHA-N + 50\% NO3-N	22.080	0.917	14.400	2526	18.453	0135	19883	0.150
	25\% $\mathrm{NH} 4-\mathrm{N}+75 \%$ NO3 -N	20.053	1.074	18.048	2730	17.084	0.149	20.459	0.231
L.S.Dat 0.05		1679	0.309	2358	0.434	2.455	0.042	2324	0.050

Results in Table 4C indicated that the effect of interaction between irrigation and nitrogen treatments was clear with low irrigation levels (60% and 80% of field capacity) and $100 \% \mathrm{NO}_{3}-\mathrm{N}$ followed by $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$. The lowest total protein (\%) and nitrate content (\%) in pods were recorded when high irrigation level was combined $100 \% \mathrm{NH}_{4}-\mathrm{N}$.

Generally, the results showed that the increase in chemical contents in leaves and pods of bean plants grown at summer season was higher compared to those grown at autumn season.

Discussion

Results in this study reported that total-N (\%) in leaves increased with 25% $\mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$ followed by $50 \% \mathrm{NH}_{4}-\mathrm{N}+50 \% \mathrm{NO}_{3}-\mathrm{N}$ compared to other treatments, these results agree with Nathan et al. (1989). On the contrary, Macleod \& Ormrod (1985) found that the nitrate-treated plants had lower total-N concentration than ammonium-treated plants. Also, the results showed that nitrate nitrogen (\%) in leaves and pods was higher with $100 \% \mathrm{NO}_{3}-\mathrm{N}$ followed by $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$. This was agreement with Ikeda \& Osawa (1983), they reported that leaf $\mathrm{NO}_{3}-\mathrm{N}$ increased with increasing NO_{3} concentration in the nutrient solution.

The results indicated that total nitrogen (\%) and nitrate content (\%) in pods was higher for plants supplied with $\mathrm{NO}_{3}-\mathrm{N}$ compared with $\mathrm{NH}_{4}-\mathrm{N}$. Also, the results showed that the increase in total-N (\%) and nitrate content (\%) in pods of plants grown at summer season was higher compared to those grown at autumn season and that agrees with Raikova et al. (1986). Also, the differences between temperature degrees in two seasons (temperature degrees were higher with summer than autumn season) lead to encouraging the absorption of $\mathrm{NO}_{3}-\mathrm{N}$ compared to $\mathrm{NH}_{4}-\mathrm{N}$. So pods quality was higher with plants grown at autumn season compared to those grown at summer season. These results are in contradiction with that obtained by Macleod \& Ormrod (1985) they found that temperature had little effect on plant responses to N source in controlled environments at three temperatures.

Generally, this relationship was also clear between low irrigation levels (60% and 80% of field capacity) and $100 \% \mathrm{NO}_{3}-\mathrm{N}$ and $25 \% \mathrm{NH}_{4}-\mathrm{N}+75 \% \mathrm{NO}_{3}-\mathrm{N}$ on chemical contents in leaves and pods of snap bean plants. For example, total nitrogen was higher with low water level as mentioned by Costa et al. (1988), Hegde \& Srinivas (1990) and Durge et al. (1998). They found that N promoted a marked plant adaptation to water stress by reducing the effect of water stress and increased water use efficiency (WUE). On the other hand, results indicated that nitrate nitrogen content in leaves increased with low water level. This result agrees with Castrillo et al. (1990) who found that that nitrate reductase activity in leaves decreased in non-watered plants from 40% of the activity in watered plants (control), so decrease in nitrate reductase activity lead to increase in nitrate content in leaves.

References

Castrillo, M., Fernandez, P., Molina, B. and Kazandjian, A.(1990) Nitrogen metabolism in (Phaseolus vulgaris L.) under water deficit. Turrialba, 40 (4), 515 (c.f. Hort. Abst. 1992, 62: 5779).

Chappman, H. D. and Pratt., F. (1961) "Methods of Analysis for Soil, Plants and Water". Riverside, University of California, Division of Agricultural Science.

Costa, R. C. L. , Lopes, N. F., Oliva , M. A. and Barros, N. F. (1988) Effect of water and nitrogen on photosynthesis: respiration and stomatal resistance in (Phaseolus vulgaris). Pesquisa Agropecuaria Brasileira 23 (12), 1371.

Cottenie, A. (1980) Soil and plant testing as a basis of fertilizer recommendations. Soils Bulletin 38, 2. FAO, Rome.

Durge, V. W., Khan, I. A., Dahatonde, B. N., Vyas, J. S. and Jiotode, D. J. (1998) Water use studies in rajmash as influenced by irrigation regimes and nitrogen levels. Annals of Plant Physiology 12 (2), 170.

Hegde, D. M. and Srinivas, K. (1990) Plant water relations and nutrient uptake in French bean. Irrigation Science 11 (1), 51.

Holty, J. G. and Potworowski, H. S. (1972) Brucine analysis for high nitrate concentrations. Environmental Science \& Technology 6, 835.

Ikeda, H. and Osawa, T. (1983) Effect of ratios of $\mathrm{NO}_{3}: \mathrm{NH}_{4}$ and concentrations of each N -source in nutrient solution on growth and leaf N concentrations of vegetable crops and solution pH . Journal of the Japanese Society for Horticultural Science 52 (2), 159.

Karas, A. N. (1997) Effect of sowing dates and water stress on productivity of bean (Phaseolus vulgaris L.) plants. M.Sc. Thesis. Faculty of Agriculture, Ain Shams Univ., 150 p.

MacLeod, K. C. and Ormrod., D.P. (1985) Responses of white bean to ammonium or nitrate nutrition at three temperatures. Canadian Journal of Plant Science 65 (1), 201.

Nathan, H. P., MacDonald, G. E. and Gardner, A.V. (1989) Snap bean responses to sources and rates of nitrogen and potassium fertilizers. Hort Science 24 (4), 619.

Raikova, L., Shaban, N. and Rankov, V. (1986) Effect of growing conditions on the nitrate content of green beans grown in polyethylene greenhouses and in the field. Fiziologiya na Rasteniyata 12 (1), 49 (c.f. Hort. Abst. 1986, 56: 7809).

Sarro, M. J., Sanchez, J. M. and Penalosa, J. M. (1998) Influence of ammonium uptake on bean nutrition. Journal of Plant Nutrition 21 (9), 1913.

Snedicor, G. W. and Cochran,W. G. (1980) "Statistical Methods", $6^{\text {th }}$ ed. Lowa State Univ. Press, Lowa, USA.

Vale, F. R., Guazelli, E. M. F., Furtini-Neto, A. E. and Fernandes, L. A. (1998) Cultivation of Phaseolus vulgaris under variable ammonium and nitrate ratios in nutrient solution. Revista Brasileira de Ciencia do Solo 22 (1), 35.

Veiga, C. L. and Ruschel, A. P. (1987) Effect of nitrogen sources on the ionic absorption, nodulation and symbiotic nitrogen fixation in bean (Phaseolus
vulgaris L.). Revista do Centro de Ciencias Rurais 17 (4), 319 (c.f. Field Crop Abst. 1988, 41 : 9006).

Zou-ChunQin, Zhang-FuSuo, Mao-DaRu, Zou, C. Q., Zhang, F. S. and Mao, D. R. (1996) Effects of iron, nitrogen forms and shading on uptake and distribution of other nutrient elements in bean plants. I. N, P, K, Ca, Mg. Journal of China Agricultural University 1 (5), 27.

تـــانير مصــدر النيـتروجـين على التحـيــــلات الكيماويـة لنباتات الغاصوليا الخفـــــراء الناميـا تمت مستويات رى مـختلفة

موان

$$
\begin{aligned}
& \text { تسم بحـوث البساتين - المركـــز القومــي للبــــوث , } \\
& \text { البساتـين - كلية الترداعة - جامعة عين شـس - القاهرة - ممر . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { في مزر عة التجار ب التابعة لمعمل الأر اضني التقاحلة بقسم البساتين } \\
& \text { - كلية الزراعة - جامعة عين شـمس - شبرا الخيمة - محافـظة } \\
& \text { العليوبية. اللدف من هذه التجربة در اسا تأثير المستويات المختلفة } \\
& \text { لترى وكذلك دراسة تأثّثر مصادر التسميد النيتروجيني }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الأمونيوم } \left.{ }^{2} \mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \text { على المكونات الكيـاوية لكل من أوراق } \\
& \text { وقرون نباتات الناموليا. } \\
& \text { أظهرت النتانه وجود زيادات مـعنوية في المحتوى الكيماوي }
\end{aligned}
$$

```
(\% vo +
(....
```



```
الحقلية) مـ معامـلات التسميـ النيتروجيني (1..
الكالسيوم ) تليها المعامـلة (\% Yo + \% \% \% \%
```



```
الكيماوي لكلا من الأور اق والقرون لنباتات ألفاصوليا الناميـة في
العروة المينية بـدرجة أعلى عن ميثيـلاتها النـاميـة غي العروة
        الخريغيـة.
```

