STUDY ON SOME HAZARDOUS ELEMENT RESIDUES IN FRESH WATER CRAYFISH (PROCAMBARUS CLARKII) IN RELATION TO PUBLIC HEALTH

HALEEM H.H.: W.M. SALAH EL-DIEN AND I.M.I. ELSHORBAGY

Animal Health Research Institute,Agricultural Research Centre, Ministry of Agriculture, Dokki- Giza- Egypt

(Manuscript received 29 July 2003)

Abstract

A total of 24 surface water samples and 24 muscle samples of fresh water crayfish Procambarus clarkii were collected from two villages in Zagazig district, Sharkia governorate for detection and determination of $\mathrm{Cd}, \mathrm{Pb}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Hg}$ and Ni by using Atomic Absorption Spectrophotometer. The obtained results revealed that the mean values of cadmium, lead, copper, zinc and mercury in water samples were $0.134,1.377,0.029,0.118$ and 0.262 ppm , respectively, while, the average residues of the same metals in crayfish muscle samples were $2.852,11.602,9.905,6.434$ and 2.519 ppm , respectively. On the other aspect, nickel could not be detected in all examined water and crayfish muscle samples.

All the examined water samples had cadmium, lead and mercury in levels exceeded the permissible limits recommended by WHO (1984). On the other hand, copper and zinc levels were below the permissible limits in all examined water samples. Meanwhile, all examined crayfish muscle samples had cadmium and lead levels above the permissible limits, while, 23 (95.8\%) of these samples contained mercury levels higher than the permissible limits recommended by FAO/WHO (1992) and E.O.S.Q.C. (1993). Copper and zinc residues were below the permissible limits in all examined muscle samples.

From afore mentioned results, it can be concluded that the examined water and crayfish muscles were obviously contaminated by cadmium, lead and mercury. So, from the public health point of view, consumption of crayfish muscles constitutes a public health hazard. Otherwise, copper and zinc residues were found in relatively low levels which could not conduct any hazardous effect on public health.

INTRODUCTION

Fresh water crayfish Procambarus clarkii appeared at the last few years in rural areas of Egypt. This fish was one of the lower cost protein sources. So ,it was used as a food and eaten during a rather long season starting from May to October. During this season, rural peoples consume large quantities of this kind of fish .

Environmental contamination by metals such as cadmium, lead ,copper, zinc , mercury and nickel were generally reflected by an increase in tissue residues of fish . This is also true for fresh water crayfish as reported by Bagatto and Alikhan (1987). Moreover in many surveys ,crayfish have been used as an indicator of metal pollution in the aquatic environment (Jorhem et al. ,1994).

In spite of many studies in Egypt recorded on considerable levels of different element residues in water streams (Abel-Nasser et al. , 1996 and Daoud et al. ,1999), the reports on metal residues from field collection crayfish in Egypt were rare . Therefore, this study is planned to determine element residues in both edible tissues of crayfish samples and fresh water which contained this fish .On the other hand, this investigation threw light upon the quality of crayfish muscles for human consumption concerning element residues .

MATERIALS AND METHODS

Twenty-four water and 24 crayfish Prcombarus clarkii samples were collected from fresh water streams in two villages (El- shobak and El-karakra) near Zagazig city, during summer 2002 for detection and determination of element residues .

I Analysis of elements in water samples

1-Collection and preparation of samples

The technique of water sampling and preparation was conducted as recommended by A.P.H.A. (1985). Water samples were collected from fresh water streams by using one liter glass bottle for each sample . Water samples were filtered
through $0.45 \mu \mathrm{~m}$ Watman membrane filter and acidified by addition of 3 ml of aqueous solution of nitric acid (1:1) per liter of water. All samples were stored at $4^{\circ} \mathrm{C}$ until analysis .

2-Quantitative determination of metals

Quantitative determination of cadmium, lead ,copper ,zinc and nickel was conducted by using UNICAM 969 Atomic Absorption Spectrophotometer, while, mercury was determined by using Perkin -Elmer mod. 2830, USA, Spectrophotometer. The concentrations of elements in the examined water samples were taken directly from digital scale reading of Atomic Absorption Spectrophotometer .

II) Analysis of elements in muscles of crayfish samples

1-collection and preparation of samples

Crayfish samples which were collected from fresh water streams were killed, placed in polyethylene bags and kept frozen till analysis was carried out. Crayfish tissue samples were prepared according to the method described by Al-Ghais (1995). One gram of muscle tissues was transferred to a clean screw capped bottle and digested with 10 ml solution of nitric/perchioric acid (4:1). Initial digestion was made for 4 hours at room temperature, followed by heating at $40-45{ }^{\circ} \mathrm{C}$ for one hour in water bath ,then, temperature was raised to $75^{\circ} \mathrm{C}$ until the end of digestion. After cooling at room temperature, the cold digest was diluted to 20 ml with deionized water and filtered through $0.45 \mu \mathrm{~m}$ Watman filter paper. The clean filtrate of each sample was kept in refrigerator to avoid evaporation .

2-Preparation of blank solution

Blank solution was prepared to check the possible trace of metals that may be present in acids and deionized water used in the preparation, digestion and dilution of tissue samples. Ten ml solution of nitric/perchloric acid (4:1) were put in screw capped bottle and exposed to the same digestion, dilution and filtration procedures used for tissue samples.

Table 2. Frequency distribution of elements in all examined water and crayfish muscle samples collected from fresh water streams.

Elements	Water ($n=24$)					Crayfish muscles ($n=24$)				
	Permissible limits			\qquad permissible limits		Permissible limits	Within permissible		Over permissible limits	
		No.	\%	No	\%		No	\%	No	\%
Cadmium	$0.005 \mathrm{ppm}{ }^{(1)}$	0.0	0.0	24	100	$0.05 \mathrm{ppm}^{(2)}$	0.0	0.0	24	100
						$0.1 \mathrm{mg} / \mathrm{kg}^{(3)}$	0.0	0.0	24	100
						$1.0 \mathrm{\mu g} / \mathrm{g}^{(4)}$	2.	8.33	22	91.6 6
Lead	$0.050 \mathrm{ppm}^{(3)}$	0.0	0.0	24	100	$0.5 \mathrm{ppm}^{(2)}$	0.0	0.0	24	100
						$0.1 \mathrm{mg} / \mathrm{kg}^{(3)}$	0.0	0.0	24	100
						$5.0 \mathrm{ug} / \mathrm{g}^{(4)}$	0.0	0.0	24	100
Copper	$1.00 \mathrm{ppm}{ }^{(1)}$	24	100	0.0	0.0	$20 \mathrm{ppm}^{(4)(5)}$	24	100	0.	0.0
Zinc	$5.00 \mathrm{ppm}{ }^{(1)}$	24	100	0.0	0.0	$50 \mathrm{ppm}{ }^{(5)}$	24	100	0.	0.0
Mercury	$0.001 \mathrm{ppm}^{(1)}$	0.0	0.0	24	100	$0.5 \mathrm{ppm}^{(2)(3)}$	1	4.16	23	$\begin{gathered} 95.8 \\ 3 \end{gathered}$
						$1.0 \mu \mathrm{~g} / \mathrm{g}^{(4)}$	2	8.33	22	91.6 6

(1) WHO (1984)
(4) Boletin Oficial del Estado, Spain (1991), In: Daoud et al., (1999).
(2) FAO/WHO (1992)
(3) E.O.S.Q.C. (1993)
(5) Food Stuff: Cosmetics and Disinfectants (1972)

Table 3. Correlation coefficient of detected element residues in water stream samples with the same element residues in crayfish muscle samples.

Elements in water Elements in tissues	Cadmium	Lead	Copper	Zinc	Mercury
Cadmium	$0.9532^{* *}$				
Lead		$0.9127^{* *}$			
Copper			$0.8745^{* *}$		
Zinc				$0.9508^{* *}$	
Mercury					$0.8061^{* *}$

* Highly significant at level ($P \leq 0.01$)

DISCUSSION

Regarding different element residues in water samples collected from fresh water streams, Table 1 revealed that the mean values of cadmium, lead, copper, zinc and mercury were $0.134 \pm 0.0073,1.377 \pm 0.0651,0.029 \pm 0.0104,0.118 \pm 0.0078$ and $0.262 \pm_{0.0542} \mathrm{ppm}$, respectively, while, nickel could not be detected in all examined water samples. These results nearly coincided with those obtained by Daoud et al. (1999). Meanwhile , Abd el Nasser et al. (1996). recorded similar levels of lead and copper in Nile river in Assuit governorate, but, they found lower concentrations of cadmium and mercury than those reported in the present study. Also, lower metal values in fresh water streams were recorded by Kurasaki et al. (2000).

On the other hand, Table 2 showed that all examined water samples had cadmium, lead and mercury concentrations above the permissible limits recommended by WHO (1984), otherwise, copper and zinc levels were below the permissible limits in all examined water samples

From the above mentioned data, it is clear that the fresh water streams contained crayfish contaminated by cadmium, lead and mercury. The hazardous elements reached the water streams through agricultural soil rich in heavy metals as a result of use various fungicides, herbicides, phosphate fertilizers, organic manure and the presence of decaying plant and animal residues. On the other aspect, the use of waste water irrigation, sewage sludge, phosphate fertilizers and grain disinfectant has further increased the quantity of different metals specially cadmium and mercury in agricultural soil. Lead accumulation has been attributed to the use of farm machinery runoff in agricultural areas (Ward et al., 1978). From the above mentioned results, it was concluded that fresh water streams containing crayfish showed higher concentration of cadmium, lead, mercury and this may cause bioaccumulation of these elements in crayfish muscles.

Results recorded in Table 1 showed that the average concentrations of cadmium, lead, copper, zinc and mercury in crayfish muscle samples were $2.852 \pm$ $0.2146,11.602 \pm 0.3745,9.905 \pm 0.6451,6.434 \pm 0.2856$ and $2.519 \pm 0.2688 \mathrm{ppm}$ respectively, as recorded in water stream samples, nickel residues could not be detected in all examined crayfish muscle samples. In the present study, cadmium and lead residues detected in crayfish muscles were obviously higher than those found by Rincon-Leon et al. (1988) in Spain, Finerty et al. (1990), in U.S.A, and Jorhem et al., (1994) in Sweden. Moreover, Bagatto and Alikhan (1987) in Canada recorded cadmium residues in crayfish muscles lower than those in the current study. In Egypt, cadmium and lead residues in fresh water fish muscles obtained by Daoud et al. (1999) were nearly similar to those reported in the present investigation. On the other hand, the present copper levels in crayfish muscles were parallel to those recorded by Bagatto and Alikhan (1987), Jorhem et al. (1994) and Daoud et al. (1999) who found that copper in Egyptian fresh water fish was 0.117-8.2 ppm. Meanwhile, Jorhem et al. (1994) and Daoud et al. (1999) recorded zinc levels higher than the figures in muscle of Sweden crayfish and Egyptian fresh water fish, respectively. Concerning mercury residues, Daoud et al. (1999) and Storelli and Marcotrigino (2001) detected mercury residues in muscles of fresh water fish with lower levels than those obtained in the present study.

Tabie 2 indicates that all crayfish muscle samples had cadmium and lead above the permissible limits recommended by FAO/WHO (1992), Egyptian Organization for Standardization and Quality Control E.O.S.Q.C. (1993). On the other aspect, all examined crayfish muscle samples had copper and zinc below the permissible limits showed in Table 2. Only one (4.16\%) out of 24 crayfish muscle samples had mercury below the permissible limits recommended by FAO/WHO (1992) and E.O.S.Q.C. (1993).

Table 3 showed highly significant positive correlation ($\mathrm{P} \leq 0.05$) between different element residues in water samples and the same element residues in crayfish muscle samples. This result agreed with that found by Naqvi and Howell (1993) who reported that crayfish can be used for monitoring of heavy metal contamination in
aquatic ecosystem, due to their ability to accumulate and retain them rapidly in their tissues for a long period of time. Rapid accumulation of cadmium in crayfish could also be due to the presence of cadmium binding proteins in the mid-gut of Procambarus clarkií (Lyon, 1984).

From aforementioned results, the obviously contamination of crayfish muscles by cadmium, lead and mercury was highly expected because these elements exceeded the permissible limits in ail examined water samples. It is evident from these results that cadmium, lead and mercury were the most predominant toxic elements constituting a hazardous effect on human through consumption of crayfish muscles. The chronic cadmium toxicity included kidney damage with proteinurea, impaired regulation of calcium and phosphates, manifesting bone demineralization, osteomalacia and pathological fractures (Friberg and Elinder, 1985). On the other hand ,lead inhibits biosynthesis of heme and thereby, affects the membrane permeability of kidney, liver and brain cells which reduces their function or completely breakdown of these tissues (Forstner and Wittmann, 1983). Regarding mercury as chronic toxicity, it is accumulative poison because of the high affinity of tissue to it (Daoud, 1999), Mercury poisoning is responsible for neurological damage, loss of vision, paralysis and death, it also passed through placenta, causing chromosomal disorder and teratogenicty (Sorensen, 1991). In spite of copper and zinc detected in safety levels in crayfish muscles and nickel could not be detected, these elements can exhibit serious hazardous effects on human health if accumulated in levels exceeding the permissible limits.

From this work, it can be concluded that crayfish muscles suffered from contamination with cadmium, lead and mercury due to pollution of water streams. On the other aspect, continual increase in the number of industrial and agricultural processes produces these pollutants and participates in increasing the incidence of some chronic diseases. To throw some light on scientific solution of the problem, in order to minimize the effect of these pollutants, the following recommendations should be applied:

1- Recycling of industrial effluents as well as hygienic disposal and treatment of sewage wastes are recommended.

2- Application of phosphate fertilizers and sewage sludge should be kept under control.
3- A regular and representative monitoring of different elements in fresh water crayfish is recommended. Moreover, this fish can be used as an indicator of aquatic pollution.

4- Under the present levels of metal pollution, spread consumption of fresh water crayfish muscles is not recommended.

REFERENCES

1. Abd El-Nasser M., A.A. Shaaban, M. Seham Ali and Manal M. Sayed. 1996. Lead, Copper, Mercury and Cadmium levels in river Nile waters at some Assuit regions, Egypt. Assiut Vet. Med. J., 34(68): 85-94
2. Al-Ghais S.M. 1995. Heavy metal concentrations in the tissues of Sparns Seba from the United Arab Emirat. Bull. Environ. Contam, Toxicol. 55:581
3. A.P.H.A. 1985. Standard method for examination of water and wast water. $16^{\text {th }}$ Edition Washington, D.C. 20005.
4. Bagatto G. and M.A. Alikhan. 1987. Copper, Cadmium and nickel accumulation in crayfish population near Copper-nickel smelters at Sudbury, Ontario, Canada. Bull. Environ. Contam. Toxicol. 38:540-545.
5. Daoud J.R., A.M. Amin and M. Abd El-Khalek. 1999. Residual analysis of some heavy metals in water and oreochromis niloticus fish from polluted areas. Vet. Med. J. Giza, 47(3): 351-365.
6. Egyptian Organization for Standardization and Quality Control E.O.S.Q.C. 1993. Maximum residue limits for heavy metals in food "Ministry of Industry. No. 2360/1993 PP.5. Cairo-Egypt.
7. FAO/WHO. 1992.Codex alimentarius commission, standard program codex committee on food additives and contaminates $24^{\text {th }}$ Session, Hague, 23-28 March, 1992.
8. Finerty M.W., J.D. Madden, S.E. Feagley and R.M. Grodner. 1990. Effect of environs and seasonality on metal residues in tissues of wild and pond-raised crayfish in southern Louisiana. Arch. Environ. Contam. Toxicol. 19-94-100.
9. Food Stuff: Cosmetics and Disinfectants. 1972. Act. No. 54 1972. Regulation No. R. 2064. Marin food Government Gazett. Government Printer, Pretoria.
10. Friberg L. and C.G. Elinder. 1985. Cadmium and compounds. In: Encyclopodia of occupational health and safety. $3^{\text {rd }}$ ed. (Second impression). Geneva, Switzerland, Internet. Labor.Org. PP. 356.
11. Jorhem L. J., Engman B. Sundstrom and M.A. Thim. 1994. Trace elements in crayfish: Regional Differences and changes induced by cooking. Arch. Environ. Contam. Toxicol. 26,137-142.
12. Kurasaki M., D.I. Hartoto, T. Satio, M. Suzuki-Kurasaki and T. Iwakoma. 2000. Metals in water in central kalimintan, Indonesia. Bull. Environ. Contam. Toxicol. 65-591-593.
13. Lyon R. 1984 . Metal-binding patterns in the hepatopancreas of the crayfish during short-term cadmium stress. Comp. Biochem. Biophys 78C:415-418: In Naqvi and Howell 1993.
14. Naqvi S.M. and R.D. Howell 1993. Cadmium and lead uptake by red swamp crayfish(procambarus clarkii) of Louisiana: Bull. Environ. Contam. Toxicol. 51:296302.
15. Rincon-leon F., G. Zuera-Casano and R. Pozo-Lorna. 1988. Lead and cadmium concentration in red-crayfish (Procambarus clarkii) in the Guadalquivir river marshes (Spain). Arch. Environ. Contam. Toxicol. 17:251-256.
16. Sorensen E.M.B. 1991. "Metal poisoning in fish". Chapter 1, P:1-11, chapter 8, P. 290. Oxford and I.B.H. Publishing Co. Bomby.
17. Storelli M.M. and Marcotrigiano. 2001. Heavy metal monitoring in fish, bivalve molluscs, water and sediment from Varano Lagoon, Italy. Bull. Environ. Contam. Toxicol. 66:365-370.
18. Ward NI, R.R. Brook and E. Roberts. 1978. Lead levels in sheep organs relation from pollution from automotive exhusts. Environ. Pollut. 17:7-12.
19. WHO 1984. Guideline for drinking water quality: Geneva No. 111.

دراسة عن متبقيات بعض العناصر الضارة فى إستاكوزا المياه العغبة وعلاقتها بالصحة العامة

هانى حلمى حليم ، والنل محمد صلاح الاين ، إيراهيم محم إسماعيل الشوربجى
معهة بحوث صحة الحيوان - مركز البحوث الزراعية - وزارة اللزراعة - الدقى - بيزة - مصر

 العيـــات وقيانـــها بجهاز الاهتصاص اللذرى وقد أسفرت اللاراسة عن اللنتائج التالية، وجد أن متوسط

 ६ ₹ والأنسجة التى تم ڤياسها فى هذه اللدراسة.

 الكــرى (إبـــتاكوزا المياه العذبة) فقد الحتوت كلها على كادميوم ورصاص وزئبق بتركيزات أعلى
 الصــناعة المصــرية عام سو9 ام فيما عدا عينة واحدة كان بها زئبق أقل من الكميات المسموح بها، أها الانحاس واللزنك فقد وجدا بكميات أقلّ من المسموح بها فى جميع عينات العضلاتي. مــن النــــائج اللسابقة نستخلص أن سمك الكرى (إبتاكوزا اللمياه العذذبة) وكذلك المياه اللتى
 تــنطوى علــى مخاطــر صحية تد تضر بالمستهلك وعلى هذا فإننا لا نصحح باستعمالل سمك الكرى (إستاكوزا المياه العذبة) كطعام.

