ESTIMATION OF OPTIMUM PLOT SIZE AND SHAPE FOR LENTIL YIELD TRIALS

HAMDI, A. ${ }^{1}$, E.M.H. SHOKR ${ }^{2}$, S.A. SEDHOM ${ }^{2}$
AND SALWA A.A. HASSANEIN ${ }^{1}$
1 Food Legume Program, Field Crops, Res. Instit., ARC, Giza, Egypt.
2 Fac. of Agriculture, Moshtohor, Zagazig Univ., Egypt.

(Manuscript received 1 July 2002)

Abstract

A uniformity test was utilized in two field trials each included 720 units (one basic unit $=0.3 \mathrm{~m}^{2}$). The trials were conducted at Sids experimental research station in 1998/99 anc 1999/200 seasons using the lentil variety Giza 51. The objective of this study was to determine the optimum plot size and shape. In analysis using Smith's method, the soil heterogeneity index was 0.7622 and 0.8424 in the first and the second seasons, respectively. The optimum plot size estimated by Smith's method was ranged from $0.9 \mathrm{~m}^{2}$ to $1.5 \mathrm{~m}^{2}$. Results of analyses using the modified maximum curvature technique indicated a plot size range was 2.1 $2.4 \mathrm{~m}^{2}$. While, the results of analyses using the comparable variance (V) and relative information estimate (RI) referred a plot size of $1.5 \mathrm{~m}^{2}$. Plot shape has no significant effect on plot-to-plot variability. Since these methods are based on different criteria, it is expected that the estimates of plot size may not agree with each other. Thus we recommend that the optimum plot size in lentil (net harvested plot area) should be $0.09 \mathrm{~m}^{2}$ with increasing number of replications.

INTRODUCTION

One of the problems facing the researchers working on lentil when conducting their field experiments is the optimum plot size and number of plots required for obr taining high precision. Several factors should be taken in consideration, such as the crop under study, the cost involved, soil variability and difference to be detected. Previous experience has shown that it is almost impossible to get an experimental site that is totally homogenous (Ali, 1983; Modjeska and Rawlings, 1983). Therefore, studying soil heterogeneity is important to determine its evel before conducting field experiments, because soil variability affects the optimum plot sizes (Abd El-Halim and Hanna, 1980; Mohamed, 1993). In addition, in field research technique, number and size of replications, care and handling of individual plot samples as well as size and shape of plots are factors that influence the magnitude of experimental errors (Meier and Less-
man, 1971). The common procedure used by researchers to measure soil heterogeneity is the uniformity trials, which was developed by Smith (1938). This technique has been used also to determine optimum plot size and shape by several authors (Khalil et al., 1973; Abd El-Halim et al., 1989; Tageldin, 1989; El-Rayes et al., 1993; Nasr, 1997).

Since little information is available on minimizing experimental error in lentil, the present uniformity trial was conducted to measure soil heterogeneity, and to determine the optimum plot size and shape in two lentil varieties.

MATERIALS AND METHODS

Two lentil uniformity trials were conducted at Sids research station, Beni-Suef governorate in 1998/99 and 1999/2000 winter seasons using the variety Giza 51. Sowing was done in November in both seasons, with 6 strips/trial and 120 rows/strip (total basic units $=720$ plots/trial). The area of basic unit was $0.9 \mathrm{~m}^{2}$, consisting of one row, 0.3 m wide and 3 m long. At harvest the central one $\mathrm{m} / \mathrm{row}$ was collected and the remaining $2 \mathrm{~m} /$ row was discardec to avoid border effect, thus the final basic unit area was $0.3 \mathrm{~m}^{2}$. Plants from each basic unit were bagged, threshed by hand, and cleaned seeds weighed.

Seed yield (g/plot) was separately analyzed for each trial. Variance per basic units, average seed yield (g), and the coefficient of variability was computed for 45plot size and shape (Table 1). The degrees of freedom were used as weights for their respective combination variance. The following two methods were used to determine the optimum plot size:

1. The weighted index (b) of soil heterogeneity index (Federer, 1955) was calculated. Weighted regression analysis was used to calculate the regression coefficient. Ignoring cost factor, the optimum plot size (x opt.) was determined using the following equation: X opt. $=\mathrm{b} /(1-\mathrm{b})$.
2. Linear regression of $\log C V$ on $\log X$ was determined. Then the point of maximum curvature $\left(\mathrm{X}_{0}\right)$ for the exponential curve, $\mathrm{CV}=\mathrm{A} X^{B}$ was determined according to Meier and Lessman (1971) as follows:

$$
X_{0}=\left[A^{2} B^{2}(2 B+1) /(B+2)\right]^{1 /(2 B-2)}
$$

This equation was converted to a logarithmic form, then A and B were derived from the linear equation (Galal and Abou El-Fittouh, 1971). The plot size immediately beyond this point was considered optimum.

To study the effect of plot shape, two-tail ' F ' test was used by dividing the largest variance values in each combination by the smallest variance within the same size, to obtain the calculated ' F ' values at the corresponding degree of freedom for each combination.

RESULTS AND DISCUSSION

The variance per basic units $\left(\mathrm{V}_{\mathrm{x}}\right)$ and among plots $\left(\mathrm{V}_{(\mathrm{x})}\right)$ and their corresponding coefficient of variability ($\mathrm{CV} \%$) for 45 combinations of plot sizes and shapes are presented in Tables (1 and 2) for 1998/99 and 1999/2000, respectively. The data in the first season (Table 1) show that (CV\%) values ranged from 48.258% for a plot size of one basic unit ($0.3 \mathrm{~m}^{2}$) to 8.785% for 180 basic unit ($54 \mathrm{~m}^{2}$). Similar trend was observed in the second season, where (CV\%) values decreased with increasing of plot size. The data show also that increasing plot size increased the variance among plots, while it decreased the variance per basic unit. However, the reduction of $\left(\mathrm{V}_{\mathrm{x}}\right)$ values is not proportion with the increase in plot size, and as the plot becomes larger, the reduction rate decreases. This relationship is similar to that reported previously (Meier and Lessman, 1971; Abd El-Halim et al., 1989; Nasr, 1997).

The equation describes the relationship between $\mathrm{CV} \%$ and plot size has the following general form: $C V=A X^{B}$. The values of A and B were estimated and the equations were defined as:

$$
\begin{aligned}
& C V=42.599 \times 0.3405(\text { in 1998/99 }) \\
& C V=55.346 \times 0.4531(\text { in 1999/200 })
\end{aligned}
$$

Where X is the plot size.

Soil heterogeneity index:

The soil heterogeneity index (b) was estimated in each season according to Smith (1938). The (b) values were 0.7622 and 0.8424 in the first and the second seasons, respectively. Smith mentioned that (b) value should range from 0 , indicating completely soil uniformity to 1 , indicating random soil variability or independent plot variability across. The high estimates of (b) in the present study reflecting low level of soil uniformity at this experimental site. Therefore, large variability among plots would be expected as shown in Tables (1 and 2). The obtained estimates of (b) were close to each other, referred similar level of heterogeneity in the experimental sites in both seasons, however, different estimates of (b) between seasons was obtained by El-Gamal et al. (1990) in cotton.

Estimation of the optimum plot size:

1. Smith's method:

The values of (b) were used to calculate the optimum piot size, which found to be 3.21 and 5.34 basic units in the two seasons, respectively. Thus the optimum plot size is $0.9 \mathrm{~m}^{2}$ in the first season and $1.5 \mathrm{~m}^{2}$ in the second season.

2. Maximum curvature method:

The data of the average variance per basic unit and the estimated (CV\%) values were used in this method. The values of (CV\%) were used as indicator to optimum plot size, and it graphed on the (Y) axis in relation to various plot sizes on the (X) axis (Figure, 1). The optimum plot size was considered to the point on the curve, where the rate of changes for (Y) estimates per increment of (X) is greatest, so it called the point of maximum curvature $\left(X_{0}\right)$. In Figure (1) the values of (X0) were 7 and 8 basic units in both seasons, respectively. Hence the optimum plot size is considered 7 plots ($2.1 \mathrm{~m}^{2}$) in the first season and 8 plots $\left(2.4 \mathrm{~m}^{2}\right)$ in the second season.

Determination of the optimum plot shape:

The variance ratio (F) for the 33 combinations of plot shapes of the different 14 plot sizes were calculated to determine the effect of plot shape (Table 3). The results indicated that the variances of various plot shapes did not differ significantly in all cas-
es in both seasons and hence it has no effect. Insignificant effect of plot shape was also reported by several researchers (Galal and Abou El-Fittoh, 1971; El-Gamal et al., 1990).

Regarding the two methods used to calculate the optimum plot size, it could be concluded that since these methods are basec on different criteria, it is expected that the estimates of plot size may not agree with each other. However, they should provide a range of optimum values that permit flexibility and convenience to the researchers in choosing the size which enable them to detect differences of specified magnitudes between treatment means provided that the number of treatments and the experimental design are known. In addition, estimates of optimum plot size could be affected by several factors such as calculated method, species/variety, location, agricultural practices, size of the basic unit used and the statistical procedures applied. Different estimates of plot size due to the various methods application were also reported by several researchers. For example, El-Kalla et al. (1981) found that $5.4 \mathrm{~m}^{2}$ was the optimum plot size in onion when Smith's method applied, while when maximum curvature method was used, the optimum plot size found to be $7.2 \mathrm{~m}^{2}$.

In this regard, optimum plot size, in general, should be reached on the basis of both practicability and statistical efficiency. Practically, experimental plot should be sufficiently large to include representative sample of the crop population and allows the elimination of border effects. Plot size should be also sufficient to minimize the effects of slight discrepancies in soil, stand and handling of the experimental materials. The obtained data indicated that the optimum plot size in lentil ranged from $0.9 \mathrm{~m}^{2}$ to $2.4 \mathrm{~m}^{2}$ with an average of $1.75 \mathrm{~m}^{2}$. With the high value of soil heterogeneity, it is recommended to increase the number of replications over the plot size. Therefore, using a plot size of $0.9 \mathrm{~m}^{2}$ and increasing the number of replications would be the best approach to increase precision of the experiment.

Table 1. Variance and coefficient of variability of different plot sizes and shapes for 45 combinations from 720 basic units of lentil (variety Giza 51) in 1998/99 season.

Serial no.	Plot size and shape No. of basic units			Total no. of plots	Variance		Coefficient of variability CV\%	
				Per basic	Among			
	Size	rows	strip		unit V_{r}	\%		
1	1	1	1		720	15.885	15.885	48.258
2	2	1	2	360	8.040	32.161	34.332	
3	2	2	1	360	9.032	36.127	36.388	
4	3	1	3	240	5.763	51.863	29.066	
5	3	3	1	240	6.593	59.338	31.090	
6	4	2	2	180	4.058	64.930	24.391	
7	4	1	4	180	5.331	85.301	27.957	
8	5	5	1	144	4.848	121.196	26.659	
9	6	2	3	120	2.845	102.415	20.422	
10	6	3	2	120	3.164	113.916	21.538	
11	6	6	1	120	4.014	144.487	24.257	
12	8	4	2	90	2.453	156.987	18.963	
13	8	8	1	90	3.789	242.471	23.567	
14	9	3	3	80	2.143	173.618	17.727	
15	10	5	2	72	2.267	226.712	18.231	
16	10	10	1	72	3.230	323.031	21.762	
17	12	4	3	60	1.647	237.228	15.541	
18	12	6	2	60	1.812	260.867	16.297	
19	12	12	1	60	3.194	459.947	21.639	
20	15	5	3	48	1.717	386.400	15.867	
21	15	15	1	48	2.147	483.146	17.743	
22	16	8	2	45	1.867	477.821	16.542	
23	18	6	3	40	1.148	371.941	12.973	
24	20	10	2	36	1.374	549.414	14.190	
25	20	20	1	36	2.160	863.904	17.794	
26	24	8	3	30	1.220	702.526	13.372	
27	24	12	2	30	1.454	837.457	14.600	
28	24	24	1	30	2.011	1158.478	17.171	
29	30	10	3	24	0.874	786.603	11.320	
30	30	15	2	24	0.756	680.468	10.528	
31	30	30	1	24	1.685	1516.641	15.718	
32	36	12	3	20	0.972	1259.632	11.937	
33	40	20	2	18	1.033	1652.868	12.306	
34	40	40	1	18	1.633	2613.206	15.474	
35	45	15	3	16	0.682	1381.067	9.999	
36	48	24	2	15	0.821	1891.107	10.970	
37	60	20	3	12	0.695	255.955	10.092	
38	60	30	2	12	0.626	2253.659	9.580	
39	60	60	1	12	1.517	5460.182	14.912	
40	72	24	3	10	0.625	3240.500	9.573	
41	80	40	2	9	0.562	3593.750	9.073	
42	90	30	3	8	0.483	3914.714	8.417	
43	120	40	3	6	0.476	6847.100	8.349	
44	120	60	2	6	0.558	8031.400	9.042	
45	180	60	3	4	0.526	17055.33	8.785	

Table 2. Variance and coefficient of variability of different plot sizes and shapes for 45 combinations from 720 basic units of lentil (variety Giza 51) in 1999-2000 season.

Serial no.	Plot size and shape No. of basic units			Total no. of plots	Variance		Coefficient of variability CV\%	
				Per basic	Among			
	Size	rows	strip		unit V_{r}	alots $V(x)$		
1	1	1	1		720	9.313	9.313	52.003
2	2	1	2	360	4.546	18.185	36.335	
3	2	2	1	360	5.370	21.479	39.488	
4	3	1	3	240	3.210	28.887	30.530	
5	3	3	1	240	3.856	34.703	33.463	
6	4	2	2	180	2.515	40.235	27.023	
7	4	4	1	180	3.249	51.990	30.718	
8	5	5	1	144	2.568	64.192	27.306	
9	6	2	3	120	1.750	62.998	22.543	
10	6	3	2	120	1.582	60.537	22.098	
11	6	6	1	120	2.472	88.982	26.791	
12	8	4	2	90	1.397	89.436	20.145	
13	8	8	1	90	2.078	132.968	24.563	
14	9	3	3	80	1.249	101.131	19.041	
15	10	5	2	72	1.044	104.437	17.415	
16	10	10	1	72	1.787	178.723	22.782	
17	12	4	3	60	1.048	150.940	17.447	
18	12	6	2	60	0.872	125.516	15.910	
19	12	12	1	60	1.571	226.241	12.630	
20	15	5	3	48	0.938	211.003	16.502	
21	15	15	1	48	1.281	288.184	19.289	
22	16	8	2	45	0.794	203.133	15.180	
23	18	6	3	40	0.587	190.088	13.053	
24	20	10	2	36	0.706	282.468	14.320	
25	20	20	1	36	1.263	505.271	19.153	
26	24	8	3	30	0.539	310.213	12.506	
27	24	12	2	30	0. <74	273.218	11.737	
28	24	24	1	30	1.096	631.476	17.842	
29	30	10	3	24	0.586	527.639	13.048	
30	30	15	2	24	0.566	329.617	10.313	
31	30	30	1	24	1.010	908.793	17.124	
32	36	12	3	20	0.289	374.523	9.161	
33	40	20	2	18	0.337	538.912	9.890	
34	40	40	1	18	0.917	1466.643	16.315	
35	45	15	3	16	0.258	522.125	8.653	
36	48	24	2	15	0.277	638.197	8.969	
37	60	20	3	12	0.263	946.216	8.737	
38	60	30	2	12	0.213	765.307	7.857	
39	60	60	1	12	0.683	2457.830	14.081	
40	72	24	3	10	0.151	780.056	6.610	
41	80	40	2	9	0.169	1083.594	7.012	
42	90	30	3	8	0.124	1002.250	5.994	
43	120	40	3	6	0.138	1979.900	6.319	
44	120	60	2	6	0.088	1272.500	5.066	
45	180	60	3	4	0.069	2230.500	4.471	

Table 3. Variance per basic units ($V x$) for various plot shapes and estimated ' F ' values for the lentil variety Giza 51 in 1998/99 and 1999/2000 seasons.

Basic unit	No. of rows	No. of columns	df	1998/99		1999/2000	
				V_{x}	F value	V_{x}	F value
2	1	2	360	8.040	1.12	4.546	1.18
2	2	1	360	9.032		5.370	
3	1	3	240	5.763	1.14	3.210	1.20
3	3	1	240	6.593		3.856	
4	2	2	180	4.058	1.31	2.515	1.29
4	4	1	183	5.331		3.249	
6	2	3	120	2.845	1.41	1.750	1.41
6	3	2	120	3.164	1.27	1.682	1.47
6	6	1	120	4.014		2.472	
8	4	2	90	2.453	1.54	1.397	1.49
8	8	1	90	3.789		2.078	
10	5	2	72	2.267	1.42	1.044	1.71
10	10	1	72	3.230		1.787	
12	4	3	60	1.647	1.94	1.048	1.50
12	6	2	60	1.812	1.76	0.872	1.80
12	12	1	60	3.194		1.571	
15	5	3	48	1.717	1.25	0.938	1.37
15	15	1	48	2.147		1.281	
20	10	2	36	1.374	1.57	0.706	1.79
20	20	1	36	2.160		1.263	
24	8	3	30	1.220	1.65	0.539	2.03
24	12	2	30	1.454	1.38	0.474	2.31
24	24	1	30	2.011		1.096	
30	10	3	24	0.874	1.93	0.586	1.72
30	15	2	24	0.756	2.23	0.366	2.76
30	30	1	24	1.685		1.010	
40	20	2	18	1.033	1.58	0.337	2.72
40	40	1	18	1.633		0.917	
60	20	3	12	0.695	2.18	0.263	2.60
60	30	2	12	0.626	2.42	0.213	3.21
60	60	1	12	1.517		0.683	
120	40	3	5	0.476	1.17	0.138	1.57
120	60	2	5	0.558		0.088	

Fig. 1. Relation between plot size and coefficient of variation for Giza 51 in 1998/99 and 1999/2000 seasons.

REFERENCES

1. Abd El-Halim, A.A, and L.I. Hanna. 1980. Use of experimental data to estimate soil variability, optimum plot size, and number of replications for wheat. Annals Agric. Sci., Fac. Agric., Ain Shams Univ., 25:141-158.
2. Abd El-Halim, A.A., F.M. El-Rayes, T.A. Mohamedand A.M.A. Saeed, 1989. Estimation of optimum plot size and shape for faba bean yield trials. Annals Agric. Sci., Moshtohor, 27: 825-839.
3. Ali, R. S.T. 1983. Relative precision of some statistical method utilized for evaluation of seed yield in homogeneity trial of sesame (sesamum indicum L.). M.Sc. thesis, Fac. Agric., Cairo Univ., Giza, Egypt.
4. El-Gamal, T,M., GH.A.R.A. El-Karim, F.M. Ghaly, and M.H. El-Banna. 1990. Estimates of optimum plot size, shape and number of replications for Giza 77 cotton cultivar. Agric. Res. Rev. 68 (6):15-38.
5. El-Kalla, S.E.; A.E. Abd El-Hafiz, and S.A. Barakat. 1981. Optimum plot size, shape and number of replications in onion trials. J. Agric. Res. Tanta Univ. 3 :38-48.
6. El-Rayes, F.M, T.M. El-Gamal, T.A. Mohamed, and L.I. Hanna. 1993. Optimum plot size and shape and number of replications for wheat yield trials in Middle Egypt. Agric. Res. Rev. 71:1-16.
7. Federer, W.T. 1955. Experimental design. MacMillan Co., NY, USA, pp. 71-80.
8. Galal, H.E. and H.A. Abou El-Fittouh. 1971. Estimation of optimum plot size and shape for Egyptian cotton yield trials. Alex. J. Agric. Res. 19:233-238.
9. KhaliI, A.R., A.M. Kasdy, H.A. Abou El-Fittouh, T.M. El-Gamal, and F.M. El-Rayes. 1973. Optimum plot sizes and shape in field trials. II. Paddy-rice and faba bean. Agric. Res. Rev. 51:115-122.
10. Meier, V.D. and J.O. Lessman. 1971. Estimation of optimum field plot shape and size for testing yield in crambe abyssinica Hochst. Crop Sci. 11:648-650.
11. Modjeska, J.S. and J.O. Rawlings. 1983. Special correlation analysis of uniformity data,. Biometrics, 39:373-384.
12. Mohamed, T.Y.B. 1993. Efficiency of plot size and design for field crop trials. M. Sc. thesis, Fac. Agric. Suez Canal Univ., Ismailia, Egypt.
13. Nasr, S.M. 1997. Estimation pf optimum plot size, shape and number of replications for wheat yield trials under different fertilization conditions. Egypt. J. Agric. Res., 75:1175-1189.
14. Smith, H.F. 1938. An empirical law describing heterogeneity in yields of agriculture crops. J.Agric. Sci. 28:1-23.
15. Tageldin, M.H.A. 1989. Effect of plot size, block shape on the performance of rye-grass-alfalfa mixtures and orchard grass. Ph. D. thesis, Univ. of Wiscosin-Madison, WIS, USA.

تقدير أنسب مساحة وشكل للقطعة التجريبية فى تجار ب محصول العدس
أحمد حمدى إسماعبل حمدى،، السيد محمد حــن شكرّ،، سيدهم أسعد سيدهمّ، سلوى عبد المزيز عبد الرحيم حسانينِ

 منـا r. .

 を

