YIELD AND ITS ATTRIBUTES OF FABA BEAN (VICIA FABA,L) AS INFLUENCED BY PRECEDING CROP, NUMBER OF IRRIGATIONS AND P-LEVELS

Ibrahim, A.A.; O.A. Zeiton; R.M. Aly and A.M.M. Abd-Allah Agron. Dept. Fac. of Agric. Zagazig University, Egypt

Received 1 / 1 / 2003 Accepted 14 / 1 / 2003

ABSTRACT: Four field experiments were carried out in an adminstration field at Horbait Village, Aboukabiir district, Sharkia Governorate, Egypt during the two winter seasons of 2000/2001 and 2001/2002 to find out the response of faba bean (improved Giza 3 cv.) to number of irrigations (1, 2, 3 and 4) and P-fertilizer levels (0, 15.5 and 31 Kg P_2O_5 /fad) when grown after rice or maize.

The obtained results cleared that faba bean plants grown after maize surpassed those grown after rice in no. of bronches/plant, bo. of pods/plant no. of seeds/plant, seed yield/plant, seed yield/fad and harvest index.

Faba bean plants supplied with three irrigations were the tallest, produced the highest no. of pods/plant, as well as, the highest seed and straw yields/fad.

After maize, faba bean seed yield / fad showed a response to application of P-fertilizer. While, there was no response to Pfertilizer after rice.

The highest faba bean seed yield/fad could be secured when plants fertilized with 15.5kg P_2O_5 / fad. irrigated four times or when plants fertilized with 31 Kg P_2O_5 / fad. received three irrigations.

INTRODUCTION

It is stated that non-legumes are prefereable preceding crops for legumes than leguminous ones (Dyke and Prew, 1983). This was attributed partially to the attak of pests and diseases (Krist'an and Cerny, 1972). Fortunately, in the summer season, most of areas in Egyptian rotation are occupied by non-legumes, like maize rice and cotton. In a comparsion study, (Shafshak *et al.* 1984) showed no differences in yield and yield components of faba bean when it was grown after cotton or maize. Nowadays, with the increase in acreage of rice on expense of cotton, it is of interest to compare between rice and either of the other two crops, as a preceding crops for faba bean in Egyptian rotation.

Though, results of previous studies - generally - indicate that supplying faba bean with three irrigations, is sufficient to maximize its yield in Egypt (El-Zeiny et al. 1990; El-Far, 1994 and Teama, 1994), the high content of residual moisture preserved in the soil after paddy rice, may number of irrigations govern needed by faba bean which follow rice.

Also, it is observed that the response of faba bean to Pfertilizer level varied from condition to another (Abo-Salama and Dawood, 1994; Hammam, 1995; Hassanein, 1995; Kortam, 1995 and Zeidan and Abd El-Lateef 2001). Since, submergence of paddy rice fields increase the availability of soil P, it is of interest to study the response of faba bean to P-fertilizer when grown after rice.

Therefore, the present study deals with the effects of preceding crop, number of irrigations and Plevels on faba bean productivity.

MATERIALS AND METHODS

field experiments were Four carried out in an administration field Horbait at Village. district. Aboukabiir Sharkia Governorate, Egypt, during the two successive winter seasons of 2000/2001 and 2001 / 2002 to find out the response of faba bean (Vicia faba L) improved Giza 3 cv. to number of irrigations and phosphorus fertilizer levels when grown after either rice or maize i.e. two experiments were performed each season, one of them was after maize and the other one was after The tried rice. number of irrigations were :

1- Irrigation once, at planting.

- 2- Irrigation twice, at planting and at 30 days after planting (DAP).
- 3- Irrigation three times, at planting, 30 and 60 DAP.
- 4- Irrigation four times, at planting, 30, 60 and 120 DAP.

The tested levels of phosphorus were 0.0, 15.5 and 31 kg P_2O_5 / fad.

Each experiment was laid out in split-plot design with four replicates. Where, the four treatments of number of irrigations

Season	Crop	Depth (cm)	Sand %	Silt %	Clay %	Texture
		0.0-30	26.96	16.23	56.81	Clay
1 st	Maize	30-60	30.86	15.77	53.37	Clay
1	Rice	0.0-30	27.32	23.51	49.17	Clay
	Rice	30-60	27.55	14.52	57.93	Clay
		0.0-30	27.77	22.31	49.92	Clay
2 nd	Maize	30-60	31.077	21.32	46.91	Clay
2	Rice	0.0-30	30.62	29.43	39.95	Clay loam
	Rice	30-60	34-75	18.18	47.07	Clay

Table 1: Mechanical and	chemical analy	sis of the ex	perimental soil.

r

	* ****	Available Soluble cations and anions mg/100gm												
Season	Crop	Depth	N	P	K mg/	Ca++	Mg ⁺⁺	Na ⁺	K ⁺	Cl	HCO,	SO4 ⁻	EC	PH
		¢m	ppm	ppm	100g								ds/m	
	Maize	0.0-30	32.15	7.41	108	25	12	221.60	98.65	71.00	152.5	133.75	1.56	5.98
1 st	VIAILA	30-60	28.43	5.32	86	35	8	8.80	67.82	23.20	75.50	20.92	1.73	6.23
1 1	Dies	0.0-30	30.52	8.48	108	20	15	86.50	89.47	41.00	17.75	42,22	1.22	6.10
	Rice	30-60	25.18	4.83	73	40	30	9.20	54.68	41.21	78.25	14.42	1.31	6.32
	Maize	0.0-30	35.65	7.51	111	20	9	491.90	93. 84	44.38	137.25	433.11	1.37	6.33
2 nd	Maize	30-60	30.32	4.41	89	30	6	10.80	· 73.14	11.00	62.50	46.44	1.63	6.14
2	Rice	0.0-30	33.54	7.97	118	25	16	356.80	105.29	35.50	213.50	254.09	1.26	5.73
		30-60	30.82	4.72	80	50	12	37.80	66.95	43.25	13.50	20.00	1.21	6.09

.

	Tem	peratur	e (c°)	Rela	tive hun (%)	idity				Soil	l tempera	ture (c°)				Rain
	Max	Min	Mean	Max	Min	Mean		5 cm			10 Cm			20 Cm		NA 611
							Max	Min	Mean	Max	Min	Mcan	Max	Min	Mean	
									2000/2001							
Nov.	25.5	13.9	19.7	81.3	39.0	60.2	23.6	18.9	21.3	20.0	17.2	18.5	20.6	192	19.9	3.0
Dec.	21.2	10.0	15.6	83.0	44.3	63.7	18.3	14.4	16.4	14.9	12.7	13. 8	15.8	14.8	15.3	6.0
Jan.	20.9	8,8	14.9	86.0	42.5	62.3	18.5	13.0	15.8	16.0	12.1	14.1	16.8	15.6	16.2	7.0
Feb.	21.4	8.9	15.6	85.7	35.7	60.7	20.3	13.2	16.7	17.4	12.4	14.9	17.2 ·	15.5	16.3	15.0
March	25.9	11.9	18.9	84.3	36.7	60.5	24.9	17.4	21.2	22.3	16.3	19.3	21.4	19.2	20.3	0.0
April	29.2	14.2	21.7	82.7	27.0	54.9	28.2	21.5	24.8	25.2	20.3	22.7	25.3	23.2	24.2	0.0
									2001/2002							
Nov.	25.9	15.2	20.5	80.4	38.2	59,3	25.2	16.7	20.9	22.3	16.8	19.6	22.8	20.8	21.8	0.0
Dec.	22.2	11.4	16.8	78.9	37.1	57.9	20.9	3.2	17.1	17.8	12.8	15.3	18.1	16.3	17.2	5.0
Jan.	20.1	9.0	14.6	82.5	43.5	63.1	17.8	10.6	14.2	14.7	10.0	12.4	14.8	13.3	14.1	7.0
Feb.	22.5	11.8	14.6	80.4	41.3	60.8	22.5	13.4	17.9	18.9	13.1	15.9	17.8	15.9	16.9	14.0
March	26.8	14.4	20.6	83.2	35.0	59.1	22.6	16.5	19.6	20.2	15.4	17.8	19.9	18.3	19.1	0.0
April	27.7	15.3	21.5	77.3	28.1	52.7	27.6	20.3	23.9	22.4	17.9	20.2	23.4	22.0	22.7	0.0

Table 2: Climatological data during the two season.

Ibrahim, et . al.

38

were randomly allocated in the main plots, while, the three levels phosphorus fertilizer were of randomly distributed, in the subplots. The sub-plot area was 16m², which included 8 ridges of 4 m length. Mechanical and chemical for soils of the analysis experimental fields are presented in table 1. Meteorological data prevailing during the two seasons are shown in table 2. Sowing was done on November 3rd and 2nd in the two seasons, respectively. Levels of phosphorus fertilizer tested herein were applied before planting in form of calcium superphosphate (15.5 P₂O₅). Also, general dose of 15 kg N/fad. was added at sowing in form of ammonium sulphate (20.6% N). On one side of ridge, faba bean seeds were planted in hills spaced at 15 cm apart. Thinning was made at 25 DAP to leave two plants/ hill. Hand hoeing was done every month before time of irrigation to control weeds. The other cultural practices were applied as recommended in faba bean fields. 15th and Harvest was on April 17th at the two seasons, respectively.

At harvest, 15 guarded plants were taken from the 3^{rd} inner two ridges of each sub-plot to determine plant height, number of

branches / plant, number of pods/plant, pods weight /plant, number of seeds/plant and seed weight/plant. Meantime, all plants in the central two ridges of each sub-plot, with an area of 4 m^2 , were used to determine yield. Then, 100-seed weight and harvest index was recorded.

Data of each experiment were analyzed according to Snedecor and Cochran (1967). Then, a combined analysis was made for the data of the two experiments in each season, as well as, for the data of both seasons. Duncan multiple range test (Duncan, 1955) was used to compare among means. In interaction tables, capital and small litters were used to compare rows and columns means, respectively.

RESULTS AND DISCUSSION

1- Plant height and number of branches/plant:

As seen in table 3, though, plant height and number of branches/ plant of faba bean were not affected by preceding crop in the 1st season, plants grown after rice were taller but, having less number of branches/plant than those grown after maize in the 2nd season. Results of the combined analysis confirmed those of the 2nd season

1 [#]	Plant heigl 2 nd	Comb.			Number of branches/plant			
A	_	Comp.	1 ^{££}	2 nd	Ċomb			
130.98	120.23Ь	125.61	2.604	2.955a	2.7 80 a			
125.37					2.506t			
N.S	**		N.S	*	**			
116.30c	123.81	120.05c	2.875	2.816	2.845			
					2.661			
					2.453			
					2.611			
**		**			N.S			
			1.00	1112	1			
127.81	126.14	126 97	2 695	2,715	2.705			
					2.605			
					2.618			
					N.S			
14.5	14.0	14.5	14.0	14.0	14.5			
NS	NS	NS	NS	NS	N.S			
					N.S			
	*				N.S			
	125.37 N.S 116.30c 125.31b 140.47a 130.62b	125.37 135.87a N.S ** 116.30c 123.81 125.31b 125.48 140.47a 133.05 130.62b 129.86 ** N.S 127.81 126.14 127.50 129.64 129.22 128.37 N.S N.S N.S N.S N.S N.S N.S N.S	125.37 135.87a 130.62 N.S ** N.S 116.30c 123.81 120.05c 125.31b 125.48 125.39bc 140.47a 133.05 136.76a 130.62b 129.86 130.24ab ** N.S ** 127.81 126.14 126.97 127.50 129.64 128.57 129.22 128.37 128.80 N.S N.S N.S N.S N.S N.S N.S N.S N.S	125.37 135.87a 130.62 2.745 N.S ** N.S N.S 116.30c 123.81 120.05c 2.875 125.31b 125.48 125.39bc 2.688 140.47a 133.05 136.76a 2.521 130.62b 129.86 130.24ab 2.615 ** N.S ** N.S 127.81 126.14 126.97 2.695 127.50 129.64 128.57 2.609 129.22 128.37 128.80 2.719 N.S N.S N.S N.S N.S N.S N.S N.S	125.37 135.87a 130.62 2.745 2.267b N.S ** N.S N.S * 116.30c 123.81 120.05c 2.875 2.816 125.31b 125.48 125.39bc 2.688 2.635 140.47a 133.05 136.76a 2.521 2.385 130.62b 129.86 130.24ab 2.615 2.608 ** N.S ** N.S N.S 127.81 126.14 126.97 2.695 2.715 127.50 129.64 128.57 2.609 2.601 129.22 128.37 128.80 2.719 2.518 N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S N.S			

 Table 3. Plant height at harvest and number of branches / plant of faba bean as influenced by preceding crop, number of irrigations and P-fertilizer levels.

N.S. No significant

* Significant.

** Highly significant

Ibrahim, et . al.

40

only in respect with the effect of preceding crop on number of branches/plant.

As evident from results of the 1st season and the combined analysis, faba bean plant height responded to increasing number of irrigations up to three times. However, number of branches/ plant was not affected by number of irrigations. This was true in both seasons and their combined analysis. In respect with the effect of number of irrigations on faba bean plant height, similar results were also recorded by Green *et al.* (1986), Ali and Abd-El-Mottaleb (1997) and El-Far (1999).

Neither plant height nor number of branches / plant of faba bean were affected by the levels of Pfertilizer tested here. This was the same in both seasons and their pooled data.

2- Number of pods and seeds/plant:

Like number of branches/plant and in contrary with plant height (see table, 3), results in the table 4 show the superiority of faba bean plants grown after maize over those grown after rice in number of pods and seeds/plant in the 2nd season. This was confirmed by the pooled data. However, the difference was not significant in the 1^{st} season. These results sustained those obtained by Shafshak *et al.*, (1984).

In both seasons, data clear that number of pods nor neither number of seeds/plant were affected by the tried number of Nevertheless. irrigations. the pooled indicate to the data superiority of plants receiving four irrigations than those receiving one irrigation only in number of pods / plant. This means that the increased number of pods due to increasing number of irrigations were without vain in increasing number of seeds i.e. they were empty. Similar results were also recorded by Metwally (1973), El - Moghraby (1980), Shalaby et al. (1983), Salih (1985), El-Zeiny et al. (1990) and Teama (1994).

Also, it is evident from results of both seasons and their pooled data that number of pods and seeds / plant were not affected by the levels of P - fertilizer tried here. These findings are in concurdance with those reported by Moursi *et al.*, (1970), Ahmed (1975) and Salih and Abdalla (1986).

3- Hundred seed weight and seed yield/plant:

As shown in table 5, it can be seen that faba bean plants grown

Main	No	of pods/pla	nt	No. of	seeds / pla	nt (gm)
Effects	1 st	2 nd	Comb	1 <u>st</u>	2 nd	Comb
1- Preceding crop (c)						
A. Maize	11.276	1 0.872a	11.074a	30.954	31.941	31.448a
B. Rice	11.547	7.5 8 7b	9.567b	29.8 73	21.510	25. 692 b
F.test	N.S	*	**	N.S	*	**
2- Irrigation (I)						
Once: at planting	10.906	8.456	9.681b	30.335	24.289	27.312
Twice: at planting and 30 DAP	10.917	9.274	10.095ab	28.309	26.774	27.541
Trice: at planting, 30 and 60DAP	11. 948	8.247	10.097ab	31.052	24. 8 57	27. 9 55
Four times: at planting, 30, 60 and	11.845	10.940	11.408a	31.958	30.983	31.470
120 DAP						
F. test	N.S	N.S	*	N.S	N.S	N.S
3- Phosphorus fertilizer levels						
$(KgP_2O_5/fad) (P)$						
0.0	11.695	8.976	10.336	32.075	26.215	29.145
15.5	11.359	9.329	10.344	30.461	26.017	28.239
31.0	11.180	9.382	10.281	28.705	27.945	28.325
F. test	N.S	N.S	N.S	N.S	N.S	N.S
4- Interactions						
CxI	N.S	N.S	N.S	N.S	N.S	N.S
CxP	N.S	N.S	N.S	N.S	N.S	N.S
I x P	N.S	N.S	N.S	N.S	N.S	N.S
I.S. No significant	* Signific			lighly signif		

 Table 4. Number of pods / plant and number of seeds/plant of faba bean as influenced by preceding crop, number of irrigations and P- fertilizer levels.

Zagazig .
J.Agric
Res.,
Vol .30
No.(1)
2003

 Table 5. Hundred seed weight (gm) and seed yield / plant of faba bean as influenced preceding crop, number of irrigations and P-fertilizer levels.

Main		eed weight	(gm)	Se	ed yield / p	lant
effects	. 1 ²¹	2 nd	Comb.	1 ²¹	2 nd	Comb
1- Preceding crop (c)						
A. Maize	77.308a	75.706b	76.507	23.428a	22.190	22.809a
B. Rice	68.649b	82.223a	75.436	20.190b	16.762	18.476b
F.test	**	*	N.S	*	N.S	**
2- Irrigation (I)						
Once: at planting	73.538	77. 979	75.758	20.971	1 8 .134	19.552
Twice: at planting and 30 DAP	72.111	80.429	76.270	20.894	19.7 8 9	20.341
Trice: at planting, 30 and 60DAP	72.563	79.758	76.161	21.998	19.547	20.772
Four times: at planting, 30, 60 and 120 DAP	73.703	77.692	75.698	23.375	20.436	21.905
F. test	N.S	N.S	N.S	N.S	N.S	N.S
3- Phosphorus fertilizer levels (KgP ₂ O ₅ /fad) (P)						
0.0	74.688	80.528	77.608	22.434	19.252	20.843
15.5	72.071	77.844	74.957	21.574	18.966	20.270
31.0	72.178	78.522	75.350	21.420	20.212	20.816
F. test	N.S	N.S	N.S	N.S	N.S	N.S
4- Interactions						
CxI	N.S	*	N.S	N.S	N.S	N.S
CxP	*	N.S	N.S	N.S	N.S	N.S
IxP	*	N.S	N.S	N.S	N.S	N.S

N.S. No significant

* Significant.

** Highly significant

after maize produced heavier seeds than those grown after rice in the 1st season. But, the reverse was the 2nd in 👘 the season. case Consequently, the pooled data showed no difference between plants grown after rice or maize in seed weight. Here, it is of noticeable that the superiority of plants grown after maize over those grown after rice in number of seeds/plant in the 2nd season (table, 4) was on expense of seed weight. Thereby, seed yield/plant was not affected by the preceding crop in the 2nd season. But, in the 1st season, as well as, the pooled data, plants followed maize surpassed those followed rice in seed vield/plant. These results reflect the role of seed weight in determining faba bean individual plant yielding capacity, as in the 1st season.

Meantime. neither 100-seed weight nor seed yield/plant were affected by either of number of irrigations or P-fertilizer levels. This was true in both seasons and their pooled data. These results are in agreement with those recorded by Moursi et al. (1970), Mohammed (1972), Ahmed (1975), Salih (1979), Krogmen et al. (1980), Abdallah et al. (1981) Zeidan et al. (1986),

Nasrallah (1987) and Masood et al. (2000).

4- Seed, straw yields/fad and harvest index (HI):

It is evident from results in table 6 that seed, straw yields/fad and HI were not affected by the preceding crop in both seasons. This was also the same in the pooled data for straw yield/fad. While, the pooled data indicate to the superiority of plants grown after maize over those grown after rice in seed yield/fad and consequently HI. This could be attributed to the higher number of seeds / plant after maize than that after rice (table, 4).

Though, seed yield/fad. showed response to number no of irrigations in the two seasons, the pooled data of both seasons exhibit the superiority of plants received three or four irrigations over those received one irrigation in seed yield /fad. Meanwhile, results of the 1st season and confirmed by the pooled data ensure the response of straw yield to increasing number of irrigations up to three times. This was in similarity with the response of plant height to number irrigations. of (table. 3). Nevertheless, HI was not affected by number of irrigations. This was the case in both seasons and their

Ŭ	Zagazig J.Agric. Res., Vol .30 No.(1)
<u> </u>	

Main	Seed yield (Ardab/fad)			Strav	v yield (to	on/fad)	Harv	est inde	K (HI)
Effects	1 st	2 nd	Comb.	1 st	2 nd	Comb.	1 st	2 nd	Comb
1- Preceding crop (c)									
A. Maize	12.928	9.547	11.237a	2.611	1.722	2.166	0.436	0.457	0.447a
B. Rice	11.910	8.098	10.004Ь	2.867	1. 786	2.327	0.400	0.410	0.405b
F.test	N.S	N.S	*	N.S.	N.S	N.S	N.S	N.S	**
2- Irrigation (I)									
Once: at planting	11.644	7.543	9.593b	2.309b	1.586	1.947c	0.442	0.423	0.432
Twice: at planting and 30	12.185	8.465	10.325a	2.655b	1.732	2.193bc	0.418	0.430	0.424
DAP	•		b				•		
Trice: at planting, 30 and 60DAP	13.495	9.228	11.352a	3.235a	1.804	2.520a	0.399	0.436	0.418
Four times: at planting, 30, 60 and 120 DAP	12.352	10.053	11.203 a	2.755b	1.891	2.323ab	0.412	0.447	0.429
F. test	N.S	N.S	•	**	N.S	**	N.S	N.S	N.S
3- Phosphorus fertilizer levels (KgP ₂ O ₅ /fad) (P)									
0.0	12.665	8.352	10.508	2.698	1.751	2.225	0.425	0.424	0.424
15.5	12.466	8.993	10.730	2.786	1.745	2.265	0.413	0.438	0.426
31.0	12.126	9.122	10.624	2.732	1.764	2.248	0.415	0.439	0.427
F, test	N.S	N.S	N.S	N.S	N.S	N.S	N.S	N.S	N.S
4- Interactions									
CxI	N.S	N.S	N.S	N.S	N.S	N.S	N.S	N.S	N.S
CxP	N.S	N.S	*	N.S	N.S	N.S	N.S	N.S	N.S
IxP	N.S	N.S	*	N.S	N.S	N.S	N.S	N.S	N.S

Table 6. Seed yield (ardab/fad.), straw yield (ton/fad.) and harvest index (HI) of faba bean as influencedpreceding crop, number of irrigations and P-fertilizer levels.

N.S. No significant

* Significant.

** Highly significant

ŝ

pooled data. These results are in good line with those of El-Zeiny *et al.* (1990), El-Far (1994), Teama (1994), Kortam (1995) and El-Far (1999).

Like, all yield attributes studied here, seed, straw yields/fad and HI also were not affected by Pfertilizer levels tested. These results are in agreement with those recorded by Moursi *et al.* (1970), Mohammed (1972) and Salih (1979).

5- Interactions:

Phosphorus fertilizer levels interacted significantly with preceding crop and number of irrigations on faba been seed yield/fad, as shown in tables 6a and 6b, respectively.

At any level of P-fertilizer, faba bean plants grown after maize outvielded those grown after rice. On the other hand, faba bean plants followed maize responded significantly to the application of 15.5 kg P₂O₅/fad. But, faba bean followed rice did not respond to the added P-fertilizer. The response of faba bean seed yield to P-fertilizer after maize was attributed not only to the low soil P-content after this crop than after rice (see table, 1) but, also to the higher seed yielding capacity of plants followed maize than those followed rice, as observed when faba bean received no P-fertilizer. Such low yielding capacity after rice may be due to the adverse effect of submergence on soil areation and hence the availability of Zn and Cu.

Table 6a: Interaction effect of preceding
crop and P - fertilizer levels
on seed yield (ardab/fad) of
faba bean (combined).

	P-fertilizer levels						
Preceding Crop	Pe	P ₁	P ₂				
Maize	B 10.948a A	A 11.404a	A 11.361a				
Rice	10.0696	10.055b	9.888b				

On one direction, faba bean crop did not respond to P-fertilizer when irrigated once or twice. number When of irrigations increased to three, response was positive and significant to 31.0 kg P2O5/fad. But, when irrigation extended to 120 DAP (four irrigations), the response was observed to only 15.5 Kg P₂O₅/fad. On the other direction, without application of P-fertilizer, seed yield/fad of faba bean responded to each additional irrigation up to three times. This was also, the same when plants fertilized with 31 kg P₂O₅/fad. Where, seed yield/fad for plants fertilized with 31 kg P_2O_5 /fad. was reduced when provided with the fourth irrigation. However, the response was up to the fourth irrigation when plants

received 15.5 kg P₂O₅/fad. Here, it that supplying plants seems received 31 kg P₂O₅/fad with four irrigations dissolved more P to the extent that caused a somewhat restriction in absorption of Zn and / or Cu, thereby, seed vield/fad was decreased as compared with supplying three irrigations. These results-in turn-indicate that the rain fall allover the season was not enough to dissolve the amount of P-element needed by faba bean received 15.5 kg P₂O₅/fad. This was also the same for plants received no P or 31 kg P₂O₅/fad but up to Feb. month (see table, 2).

Table 6b: Interaction of number of
irrigations and P-fertilizer
levels on seed yield
(ardab/fed).of faba bean
(combined).

	P-6	ertilizer le	vele
Irrigation number	P ₀	P ₁	P ₂
Once: at planting	A 9.513c	A 9.831d	A 9.355d
Twice: at sowing and 30 DAP	А 10 .367 Ъ	A 10.474c	A 10.1 26c
Trice: at sowing, 30 and 60DAP	B 11.268a	B 11.095b	A 11.722a
Four times: at sowing, 30, 60 and 120 DAP	B 10.876a	A 11.517a	AB 11.214b

REFERENCES

Abdallah, M.M.; H.M. Abd El-Rahim; M.A. El-Morshidy, and A.A. Hassaballa (1981). Physiological studies on the effect of irrigation frequency and phosphatic fertilizer on growth and yield of field bean. Assiut J. of Agric. Sci. 12:141-151.

- Abou-Salama, A.M. and R.A. Dawood (1994). Yield response of faba bean (Vicia faba L.) to planting density and phosphorus fertilization. Assiut J. of Agric. Sci. 25 (2): 81-92.
- Ahmed, A.R.M. (1975). Some chemical changes in *Vicia faba* plant during maturity stages under different levels of Pfertilizer and irrigation. M. Sc. Thesis, Fac. Agric. Ain Shams. Univ.
- Ali, E.A., and H.M. Abd EL-Mottaleb (1997). Yield and its components of faba bean as affected by irrigation intervals, nitrogen fertilization and plant density. Egypt J. Appl. Sci. 12 (4): 148-161.
- Duncan, D.B. (1955). Multiple range and multible F. test. Biomet-rice 11:1-24.
- Dyke, G.V. and R.D. Prew (1983). Beans in crop rotations pages 263-269 in The Faba Bean (Vicia faba L.) A Basis for Improvement. (Hebblethwaite, P.D.) Uni. Of Nottingham School of Agriculture.

- El-Far, I.A. (1994): Response of faba bean (Vicia faba L.). to irrigation Regime and depth of sowing. Assiut J. of Agric. Sci. 25 (5): 119-128.
- (1999). Response of some faba bean cultivars (Vicia faba L.) to skip one irrigation at different stages in a sandy calcareous soil. Assiut J. of Agric. Sci. 30 (5): 49-63, 13 ref.
- El-Moghraby, S.S.E.M. (1980). Effect of water regime, nitrogen and phosphatic fertilizers on growth and yield of broad bean (Vicia faba L.). M.Sc. Thesis Fac. of Agric. Sci. Moshtohor Zagazig Univ.
- El-Zeiny, H.A.; A.K Abd El-Halim and A.A. El-Noemani (1990).
 Effect of foliar spraying of urea and superphosphate on growth and yield of faba bean (Vicia faba L.) plant grown under different levels of water supply. Annals of Agric. Sci. Moshtohor 28 (1): 53-65.
- Green, C.F.; P.D. Hebblethwaite and Helen E. Ricketts (1986). The practice of irrigating faba beans. FABIS Newsletter 15:26-31.
- Hammam, G.Y. (1995). Effect of plant spacing and phosphorus fertilization levels on faba bean

(Vicia faba L.). J. Agric. Sci. Mansoura Univ. 20:100-115.

- Hassanein, M.S. (1995). Response of faba bean to phosphorus fertilizer. Annals of Agric. Sci. Moshtohor 33 (3) 987-997; 21 ref.
- Kortam, M.A. (1995). Yield and yield components of broad bean (Vicia faba L.) as affected by irrigation frequency, phosphorus and potassium fertilization. Egypt. J. Appl. Sci. 10 (9): 266-280.
- Krist'an, F. and V. Cerny (1972). The effect of some cultural practices on the yield and yield components of horse bean on brown soil. *Rostlinna Vyroba* 18, (2) 187-196.
- Krogmen, K.K.; R.C. McKenzis and E.H. Hobbs, (1980). Response of faba bean yield, protein production and water use to irrigation. Canadian J. of Plant Sci. 60:91-96.
- Massood A.; R. Dahan; J.P. Mishra: N.P. Saxena: M. Ali and R. Knight (2000).Towards the more efficient use of water and nutrients in food legume cropping. Linking research and marketing opportunities for pulses in the 21st Century : Proceeding of the International Third Food

Legume Research Conference, Adelaide, Australia, 22-26 September 1997, 355-368, 2pp of ref.

- Metwally, A.H. (1973). Study on the effect of irrigation and fertilization on yield, and technological properties in field bean (Vicia faba L.). M.Sc. Thesis, Fac. of Agric. Al-Azhar Univ.
- Mohammed, L.K. (1972). Physiological response of the field bean plants to phosphorus fertilizers and population density. Ph.D. Thesis, Fac. Agric. Ain-Shams Univ.
- Moursi, M.A.; A.A. Abd-El-Gawad; D.H. El-Bagoury and A.H. Salem (1970). Effect of sowing date and different fertilizer on the chemical contents and yield of horse bean plant. Ain Shams Univ. Fac. Agric. Res. Bul, No 1 566:1-21.
- Nasrallah, A.K. (1987). The effect of plant density and phosphorus fertilizer on the yield of faba bean and its components. Con. Sci. and Dev. Res. 18:47-58.
- Salih, F.A. (1979). Food legume research and development in the Sudan. In Food Legume Improvement and Development, pp. 58-64.

..... (1985). Varietal performance of faba bean under two different watering intervals. FABIS Newsletter 13:16-17.

- and Abdalla E.A. (1986). Effect of phosphorus application and time of harvest on seed yield and quality of faba bean. FABIS Newsletter 15: 32-34.
- Shafshak, S.E.; A.S. El-Debaby; M.S. Salem; A. Roshdy and M.R. Gommaa (1984). Effect of proceeding summer crops on the succeeding winter legumes crops: clover, field bean and lentil. Annals of Agric. Sc., Moshtohor 21:187-200.
- Shalaby, M.H.; I.A. Ibrahim and M.A. Ashoub (1983). Effect of some agricultural treatments on plant characters and yield of field bean. Res. Bull 652 (1) 1-15.
- Snedecor, G.W. and W.G. Cochran (1967). Statistical methods 6th ed. The Iowa State Univ. Press, Ames, Iowa, U.S.A.
- Teama, E.A. (1994). Effect of skip irrigation and plant density on yield and quality of faba bean. Assiut J. of Agric. Sci. 25 (5): 19-27.
- Zeidan, E.M.; E.M. El-Naggar; M.E. Saleh and M.I. Amer

(1986): Studies on some faba bean (Vicia faba L.). cultivars. 2. Effect of sowing date, irrigation, cultivars and plant density on productivity. Zagazig J. Agric. Res. 13 (3): 337-363. Zeidan, M.S. and E.M. Abd El-Lateef (2001). Response of determinate and indeterminate faba bean (Vicia faba L.). to nitrogen and phosphorus levels. Egypt. J. Appl. Sci. 16 (1): 112-127.

تأثير المحصول السابق وعدد الريات ومستويات التسميد الفوسفاتي على

المحصول ومكوناته في الفول البلدى

عطيه عبد المنعم إبراهيم – عمر الفاروق عبد المعطى زيتون رجب محمد على – أحمد محمد محمد عبدالله جامعة الزقازيق – كلية الزراعة -قسم المحاصيل

أقيمت أربع تجارب حقلية خلال الموسمين الشتوبين ٢٠٠١/٢٠٠١، ٢٠٠٢/٢٠٠١ بحقل إرشادى فى قرية هربيط – مركز أبو كبير – محافظة الشرقية مصر. للوقوف علمى مدى إستجابة محصول الفول البلدى (صنف جيزة ٣ محسن) لعدد الريات ومستويات التسميد الفوسفاتى عند زراعته عقب الذرة الشامية أو الأرز.

أوضحت النتائج المتحصل عليها تفوق نباتات الفول البلدى المنزرعة عقب الذرة عن تلك المنزرعة عقب الأرز فى عدد الأفرع/النبات، عدد القرون/النبات وعدد البذور / النبات وفسى محصول البذور/النبات ومحصول بذور الفدان وفى دليل الحصاد أيضا.

بينت النتائج أن النباتات التي أمدت بثلاث ريات كانت هي الأطول وأنها أنتجـــت أعلـــي عدد من القرون / النبات. وأيضا أنتجت تلك النباتات أعلى محصول بذور وقش/ الفدان.

أظهر محصول البذور / الفدان إستجابة للتسميد الفوسفاتي عند زراعة نباتات الفول البلدى عقب الذرة الشامية بينما لم يكن هناك إستجابة للتسميد الفوسفاتي عقب الأرز.