CONTROL OF POSTHARVEST LIME FRUIT ROTS BY SOME COMPONENTS OF ESSENTIAL OILS

Aly". A.Z.; M. I. Abou-Zaid*, A. A. Morsy ${ }^{* *}$ and Y.O.Fotouh** *Agric. Bot. and Plant Path. Dept., Fac. Agric., Zagazig Univ. ${ }^{* *}$ Plant Pathology Dept., National Research Center.

Received 29/4/2003

Accepted $7 / 5 / 2003$
ABSTRACT: The essential oils of lime fruits peel was extracted after $\mathbf{3 , 5}$ and 7 months from fruit set by Gas chromatography: mass spectrum. Lime essential oils contained high concentrations of oxygenated compounds such as α-citral, β-citral, neryl acetate, nerol and α-terpeniol. While, limonene was the main component. Lime fruit peel essential oils inhibited linear growth and spore germination of Penicillum digitatum, P. italicum and Geotrichum candidum the causal organisms of green, blue moulds and sour rot, respectively at 0.25%. Methyl anthranilate, citral, neryl acetate, nerol and terpeniol as essential oils component were the highest effective. Also, imazalil was more effective than thiabendazole in this respect. The most effective components (methyl anthranilate, neryl acetate and nerol) as well as :mazalit and thiabendazele were applied on time fruits under laboratory conditions and methyl anthranilate proved to be the most effective treatment in controlling lime fruit rots.

Kcy words: Essential oils, Imazalil, Lime, Postharvest, Thiabendazole

INTRODUCTION

Lime fruits are liable to postharvest fruit rots (green and blue moulds as well as sour rot) caused by Penicillium digitatum, P.italicum and Geotrichum candidum, respectively (Mehrotra et al.. 1998; Smilanick et al., 1999; Lopez - Garcia et al. 2000; Arras
and Usai, 2001 and Aly el cll. 2003). Lime fruit rots caused great crop losses. These losses could be reduced to a certain extend by controling the pathogens of time fruit rots using different fungicides in vivo (Mahmoud and Hanafy 1991, Lateef et al., 1994. Agar and Kaska 1995; D'Aquino et al.,

1998; Ben-Yehoshuax et al., 2000 and Schirra et al:, 2000). Green and blue moulds as well as sour rot are controlled by treating the citrus fruits with Imazalil and Thiabendazol fungicides (Javed et al., 1995; D'Aquino et al., 1998; Ben-Yehoshua et al., 2000 and Schirra et al., 2000). However, chemical control increased number of fungicidal resistant strains of pathogens (Eckert, 1990). Also, using fungicides cause harmful effect on environment and human health (Anonymus, 1987). Harmful effect of the fungicides led to find out new materials with no toxic residues in nature's food chains, safe for application and more cheep in cost. Citrus essential oils have biological active effect as antifungal substances against many postharvest citrus fruit rot pathogens (Rodov et al., 1995 and Caccioni et al., 1998). Many plant pathologists detected the chemical composition of lime peel essential oils using Gas Chromatograph (Abdul-Sattar et al., 1992 and Minh et al., 2002). They found that, hydrocarbons were the main components of lime essential oil followed by aldehydes. Many phytopathologests using lime oil components in controlling lime decay in vitro and in vivo (Singh et
al., 1993; Caccioni and Guizzardi. 1994; Rodov et al.. 1995; Suprata et al., 1997; Caccuioni et gl.. 1998 and Vargas et al., 1999).

The objective of this investigation was aimed to extract lime fruit peel essential oils and identify its chemical components. The effect of fungicides (Imazalil and Thiabendazol) and lime essential oils and its constituents on the mycelial growth and spore germination of postharvest lime fruit rot fungi were also undertaken. The control of lime postharvest fruit rot diseases by essential oil components and fungicides under laboratory conditions was also studied.
MATERIALS AND METHODS 1- Citrus fruit rot fungi:

Penicillum digitatum Sacc., P.itlicum Whem, Geotrichum candidum Link and Aspergillus niger Van Tieghem were previoushy isolated from naturally infected lime fruits by Aly et al. (2003).

2- Extraction of lime fruit peel essential oils:

Three samples (10 kg for each) of lime fruits at 3 different ripening stages, i.e. 3,5 and 7 months after fruit set (Premature. Mature and Ripening stages. respectively) were used. Essential
oils of the fresh lime fruits peel were extracted by steam distillation as mentioned by Clevenger (1928). The essential oils were collected in a cold trap, then separated to its components and finlly dried over anhydrous sodium sulphate. The oils were filtrated, then kept quickly in a dark bottle $3 \mathrm{ab} 7^{\circ} \mathrm{C}$ according to Guenther (1961).
3- Identification and determination of the chemical constituents of lime fruits peel essential pils:

Separation of the resulting lime fruits peel essential oils were accomplished on a Varian Gas Chromatogrophy (Walnut Creek California USA) equipped with Finnigan mat SSQ 7000 (Thermo Inst:, USA) mass spectrometer and a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ DB 5 capillary column thickness J \& W scientific USA: The column temperature was programmed from $50^{\circ} \mathrm{C}$ (constant for 3 min), at a rate of $7^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ with 10 min isothermal hold. The injector temperature was $220^{\circ} \mathrm{C}$ and the transition line temperature was $250^{\circ} \mathrm{C}$ the carrier gas was helium and the column head pressure was $10-15$ pisi. Compounds identifications were based on the following: The detector injector temperature were
$200 \& 250^{\circ} \mathrm{C}$, respectively. The size of injection was. 2μ and the rate of gas was $15 \mathrm{ml} / \mathrm{min}$.

The area of each peak representing the component of essential oils was measured by calculating the area of the triangle formed by drawing two triangles through the infection points of the peak. The base line, being the base of the triangle; formed, was calculated by multiplying peak high by the width at half peak height. The separated components were identified by matching them with the NIST mas-spectral library data, published data and according to Adams (1995) The percentage of essential coil composition was calculated by applying the following equation:
$\%$ of essential oil $=\frac{\text { area of each peak }}{\text { all area of peaks }} \times 100$

4-Laboratory studies:

The effect of different fungicides, lime fruit peel essential oils, and citrus essential oils components on the linear growth and percentage of spore germination of the tested pathogenic fungi were studied. Fungistatic and fungicidal effect of citrus essential oils component on pathogenic fungi was also studied.

a) Effect of different tested fungicides on the linear growth of the tested fungi:

Two different fungicides (Imazalil 70\% liquid and Thiabendazole (TBZ) $98 . \%$ WP) were used at different concentrations, i.e. $0.0,0.10,0.25$, $0.50,1.0,2.5,5,10,25,50,100$, 250 and 500 ppm . The different concentrations of the tested fungicides were added separately to PDA medium under aseptic conditions before solidification and shacked vigorously to ensure even distribution of the fungicides, then poured in the dishes $(9 \mathrm{~cm}$ in diameter) and inoculated in the center with an equal discs (6 mm in diameter) of the different tested pathogenic fungi, i.e. P.digitatum, P.italicum, G.candidum and A.niger taken from 7 days old culture. Dishes were incubated at $25^{\circ} \mathrm{C}$. Fungicides free medium was used as a control. Three Petri dishes were used for each particular treatment. Two perpendicular growth diameters of the tested fungi were measured each two days until the growth in control treatment completely covered the dish, then growth average was calculated and recorded.
b) Effect of different lime fruit peel essential oils on the linear growth of the tested fungi:

Lime fruit peel essential oils, after three fruit ripening stages, were used at different. concentrations, i.e. $0.0,0.05,0.10$. $0.25,0.50$ and 1.00% (V / V) to study their effect on the linear growth of the tested fungi. The different concentrations of the tested lime fruit peel essential oils and 0.3% Tween 80 were added separately to PDA medium under aceptic conditions before solidification and sheked vigorously to insure even distribution of the oils. Oils free medium with 0.3% Tween 80 was used as a control. Inoculation, incubation and growth average calculation were carried out as previously mentioned.
c) Effect of different citrus essential oils components on the linear growth of the tested fungi:

Three hydrocarbon citrus essential oils components and nine oxygenated components presented in Table (1) were used to study their effect on the linear growth of the tested fungi. These components were obtained from Delta Aromatic International Company. 439 Al- Ahram street- GizaEgypt. These components were
used at "different concentrations, i.e. $0.0,0.025,0.05,0.10,0.25$ and $0.5 \%(\mathrm{~V} / \mathrm{V})$ to study their effect on the linear growth of the tested fừngi. The different concentrations of the tested citrus essential oil components and 0.3% Tween 80 were added separately to PDA medium under aseptic conditions beforc solidification and checked vigorously to insure even distribution of the tested components. Essential oils components free medium with 0.3% Tween 80 was used as a control. Inoculation and estimation of the linear growth of the tested pathogenic fungi were caried out as mentioned before.

5- Spore germination:

Different fungicides, lime fruit peel essential oils and citrus essential oil components were used to study their effect on the percentage of the tested fungi spore germination.
a) Effect of different fungicides:

Imazalil and thiabendazole (TBZ) at different concentrations, i.e. $0.000,0.005,0.010,0.025$, $0.050,0.100,25,50,100,250$ and 500 ppm were used to study their effect on the percentage of tested fungi spore germination.
b) Effect of different lime fruit peel essential oils:

Different aforementioned lime fruit peel essential oils concentrations, i.e. $0.00,0.10,0.25,0.50$ and 1.00% were used to study their effect on the percentage of tested fungi spore germination.
c). Effect of citrus essential oils components:

Different concentrations of citrus essential oils components mentioned in Table (1) $(0.000,0.025,0.050$, $0.100,0.250$ and 0.500%) were used to study their effect on percentage of the tested fungi spore germination. Percentage of spore germination was assessed using modified slide agar film method described by Pero and Owens (1971). Different concentrations of the aforementioned substances (fungicides, lime peel essential oils and citrus essential oil components) were added to 50 ml PDA medium. PDA medium without any additional treatments was used as control. Tween $80(0.3 \%)$ was added as a detergent in case of lime and citrus essential oils components. Agar film was poured on sterilized slide in Petri dish. Drops of the spore suspention ($100 \mu \mathrm{l}$) of the different fungi (Prepared as mentioned by Aly et al., 2003) were droped on the treated and untreated agar film. The slides were incubated at $20^{\circ} \mathrm{C}$ for 20 hours. Slides were inspected under light microscope and the percentage of spore germination was calculated.

6- Control of lime postharvest diseases by citrus essential oils components and fungicides under laboratory conditions:

The most effective citrus essential oil components inhibit the linear growth and spore germination of the tested fungi were used. Fresh lime fruits apparently free from physical damage or diseases were used. Fruits were surface disinfested using 5\% Clorox for 3 minutes and gently scratched with sterilized needle. Wounded fruits (2) mm depth) were dipped in water wax containing the three effective 1% of any of the tested fungicides (TBZ) and Imazalil.

Waxed fruits were air dried for 2 h . Lime fruits were inoculated citrus essential oil components (Methyl anthranilate, Neryl acetate and Nerol at $0.0,2$ and 4%) and/ or with 200 ml of spore suspension $\left(10^{5} \mathrm{cfu}\right)$ of P.digitatium, P.italicum and G.candidum. Three replicates were used for each particular treatment (each contained 5 fruits). The percentage of disease incidence was recorded after 5,10 and 15 days. The percentage of the rotted part of fruits was calculated after 15 days and the percentage of the reduction
was calculated from the following formula:
The percentage of reduction $=$ $\%$ of control rotted part $\%$ of treatment rotted part X 100
$\%$ of control rotted part
The obtained data were statistically analyzed according to split split plot design (Snedecor and Cochran, 1980). The differences between means were tested by LSD values at 5%.

RESULT AND DISCUSSION

1-Essential oils of lime fruit peel:
Data in Table (2) show the chemical components of lime essential oils extracted from lime fruit peel at 3,5 and 7 months from fruit setting, respectively. Twelve compounds were identified in lime peel oils as monoterpene hydrocarbons by GC/MS. Limonene appear to be the main compound which recorded 74.989 . 79.567 and 80.797% for fruits of 3,5 and 7 months after fruit setting. followed by Myrcene (5.879. 6.358 and 6.441% after the same periods) and α-Pinene at 3 and 7 months as well as β-phelandrene at 5 months. It is also clear that, Camphene showed the lowest content at 3 and 7 months and P Cymene at 5 months from fruit setting.

Table(1): Components of different hydrocarbon and oxygenated components of citrus fruit peel essential oils

Chemical. Composition	N0.	Components
Hydrocarbons	1	D- Limonene
Components	2	α - Pinene
	3	Caryophellene
Oxygenated	1	Methyl anthranilate
Components	2	Citral
	3	Neryl acetate
	4	Terpeniol
	5	Nerol
	6	Citronellol
	7	Citronellal
	8	Linalool
	9	Lenalyl acetate

Thirteen light oxygenated compounds were identified from lime fruit peel oils. β - Citral compound showed the highest content followed by α-Terpeniol at 3.5 and 7 months, while β-Terpeniol (trans) showed the lowest content at the same periods fruit setting. Ten sesquterpene hydrocarbon compounds were identified from lime fruit peel oils. Bergamotene (α Cis) showed the highest percentage at 3 and 5 months (2.732% and 1.989 respectively) and β-Farnesene (Z) at 7 months (2.473%), followed by β-Farnesene (Z) at 3 and 5 months and Bergamotene (α-Cis) after 7 months. While Gurjunen at 3 months and Δ-Elemene at 5 months showed the lowest percentage.

Five heavy oxygenated compounds were identified from lime fruit peel oils. Neryl propanate showed the highest percentage at 3and 5 months (1.934 and 1.460%, respectively) followed by 0 hydroxy bi-phenyl at 3,7 and 5moth (1.281, 1.192 and 1.111%, respectively), while Ledol showed the lowest percentage at 5 months and caryophellen oxid and Spathulenol at 3 and 7 months. These results were in harmony with those obtained by Luigi el al.. (1997).

2- Effect of different fungicides:
Results presented in Table (3) indicate that, Imazalil fungicid was more effective on linear growth of the different fungi except P.digitatum (thibendazole was more
effective on it than imazalit). Imazalil caused complete inhibition of P.digitatum growth at 5 ppm , P.italcum at 0.25 ppm , G.candidum at 250 ppm and A. niger at 10 ppm . Thiabendazole caused complete inhibition of P.digitatum at 1.0 ppm , P.italicum at 0.5 ppm, G. candidum at 500 ppm and A.niger at 10 ppm . Using different fungicides for controlling postharvest diseases of citrus fruits was reported by Mahmoud and Hanafy (1991) and Droby et al (1999).

The variations obtained in the effect of the different fungicides on the tested fungi could be attributed to one or more of the following factors:

1) Degree of permeability of cell wall and / or plasmalemma of the fungus for the uptake and passage of
pathogenic fungi. The affectivity of lime essential oil decreased with increasing the fruit age. It is also clear that, P. digitatum, was not affected by fruit ages while, low effect on the other tested fungi was noticed. The antifungal efficacy of lime oils was studied by many investigators (Caccioni et al., 1995, Rodov et al, 1995; Neirotti et al., 1996 and Caccioni et al., 1998).
the fungicides into fungal cell (Ward and Ragsdale, 1977 and Giffine. 1981).
2) Mode of action of the fungal cell to specific fungicides (Watkins et al., 1977).
3) Chemical composition of the fungicides (Carnegi et al., 1990)

The volatile oil from the exocarp of fresh citrus fruit exhibited strong toxicity towards several fungal pathogens being more active than several commercial fungicides (Singh et al., 1993 and Caccioni and Guizzardi, 1994).
3- Effect of essential oils of lime fruit peel:

Results in Table (4) state that, lime essential oil was the highest effective on the linear growth reduction of the tested

The best results were obtained when orange and lemon oils. P.digitatum was found to be more sensitive to the inhibitory action of the oils than P.italicum. The efficacy of toxic lime essential oils decreased with the increasing fruit age. The resistance of young fruit to postharvest decay might be related to citral level in lemon flavedo.

Table (2): Chemical components of lime fruit peel essential oil

Components	R.T. (min)	Concentration \% Fruit age /mon. from fruit setting		
		3	5	7
A- Monoterpene hydrocarbons:				
1- Thujene	7.43	0.011	0.021	0.014
2- Tricyclene	7.58	0.093	0.092	0.137
3- α-Pinene	9.35	0.311	0.087	0.406
4- α-Fenchene	9.53	0.093	0.021	0.005
5- Camphene	9.57	0.001	0.080	0.006
6- Sabinene	10.12	0.010	0.051	0.013
7- β-Pinene	10.16	0.014	0.116	0.015
8- Myrcene	11.13	5.879	6.358	6.441
9- γ-Carene	11.25	0.021	0.026	0.024
10- P-Cymene	11.33	0.011	0.015	0.129
11-Limonene	13.31	74.989	79.567	80.797
12- β - Phelandrene	13.57	0.040	0.158	0.298
Total		81.473	86.592	88.285
B- Light Oxygenated compounds				
1- Linalool	14.06	0.287	0.332	0.191
2- β-Terpeniol (Trans)	14.26	0.016	0.092	0.057
3- β-Terpeniol (Cis)	15.49	0.827	0.306	0.629
4- α-Terpeniol	16.23	1.075	0.772	0.651
5- Decanone	16.25	0.004	0.151	0.339
6- Nerol	16.46	0.475	0.382	0.288
7- Citronellol	17.01	0.644	0.449	-
8- Neral	17.25	0.811	0.707	0.225
9. β-Citral	17.30	1.821	1.434	0.931
10-Geraniol	17.43	0.864	0.310	0.327
11- α - Citral	18.00	0.222	0.122	0.080
12- Neryl acetate	18.18	0.549	0.409	0.166
13- Geranyl acetate	18.56	-	-	0.135
Total		7.595	5.466	4.019

Table (2): cont.

C- Hydrocarbons Sesquterpene				
1- Elemene	18.12	0.420	0.004	0.256
2- Elemene	19.14	0.647	0.043	0.345
3- Bergamotene (α-Cis)	20.10	2.732	1.989	1.572
4- Caryophellene (E)	20.33	0.681	0.483	0.263
5- Aromadendrene	20.38	0.009	0.013	0.005
6- β - Gurjunene	20.56	0.003	0.191	0.145
7- β - Farnesene (Z)	21.31	1.891	1.335	2.473
8- - Gurjunene	21.45	0.003	0.167	0.015
9- γ - Muurolene	21.52	0.025	0.087	0.058
10- Selenene	23.07	0.245	0.388	0.116
Total		6.656	4.696	5.248
D- Heavy Oxygenated compounds		\ddots		
1- Neryl Propanate	21.39	1.934	1.460	0.938
2- O-Hydroxy bi-phenyl	22.30	1.281	1.111	1.192
3- Spathulenol	23.31	0.429	0.297	0.037
4- Caryophellene oxid	23.50	0.301	0.253	0.144
5- Ledol	24.13	0.331	0.125	0.137
Total		4.276	3.246	2.448

*Retention time /min

Table (3): Effect of different concentrations of the tested fungicides on the linear growth (mm) of the tested fungi(12 days after incubation at $25^{\circ} \mathrm{C}$).

Fungicides	Conc. (ppm)		䂞		-
Imazalil	0.00	90.0	90.0	90.0	90.0
	0.10	61.3	22.0	90.0	90.0
	0.25	54.7	0.0	90.0	80.7
	0.50	47.3	0.0	90.0	68.0
	1.00	39.0	0.0	90.0	55.7
	2.50	34.3	0.0	90.0	41.3
	5.00	0.0	0.0	90.0	28.0
	10.00	0.0	0.0	87.7	0.0
	25.00	0.0	0.0	66.7	0.0
	50.00	0.0	0.0	46.3	0.0
	100.00	0.0	0.0	28.0	0.0
	250.00	0.0	0.0	0.0	0.0
	500.00	0.0	0.0	0.0	0.0
Average		25.1	8.6	66.1	34.9
Thiabendazole (TBZ)	0.0	90.0	90.0	90.0	90.0
	0.10	85.7	47.3	90.0	90.0
	0.25	74.3	35.7	90.0	90.0
	0.50	63.7	0.0	90.0	90.0
	1.00	0.0	0.0	90.0	79.7
	2.50	0.0	0.0	90.0	67.3
	5.00	0.0	0.0	90.0	55.0
	10.00	0.0	0.0	86.7	0.0
	25.00	0.0	0.0	73.0	0.0
	50.00	0.0	0.0	60.3	0.0
	100.00	0.0	0.0	55.7	0.0
	250.00	0.0	0.0	42.3	0.0
	500.00	0.0	0.0	0.0	0.0
Average		24.1	13.3	72.9	43.2
L.S.D at 5 \% level for			Conc. (C): 0.3		
Fungicides Fungi	(A):	0.1		(AC):	
	(B):	0.1		(BC):	
	(AB):	0.2		(ABC):	

Table (4): Effect of different concentrations of lime fruit peel essential oils on linear growth (mm) of tested fungi(12 days after incubation at 25 C).

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{$$
\begin{gathered}
\text { Essential } \\
\ldots \quad \text { oil }
\end{gathered}
$$} \& \multirow[b]{2}{*}{Fruit age/ month} \& \multirow[b]{2}{*}{Conc. (\%)} \& \multicolumn{4}{|c|}{Different fungi}

\hline \& \& \& \& $$
\begin{aligned}
& \text { E } \\
& \text { EU } \\
& \text { N } \\
& 0
\end{aligned}
$$ \& \& \%

\hline \multirow[t]{21}{*}{Lime oil
\vdots
\vdots
\vdots
\vdots

\vdots
\ddots} \& \multirow[t]{6}{*}{3} \& 0.00 \& 90.0 \& 90.0 \& 90.0 \& 90.0

\hline \& \& 0.05 \& 32.0 \& 27.3 \& 65.7 \& 20.3

\hline \& \& 0.10 \& 0.0 \& 0.0 \& 44.0 \& 0.0

\hline \& \& 0.25 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& \& 0.50 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& \& 1.00 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& Average \& - \& 20.3. \& 19.6 \& 33.3 \& 19.4

\hline \& \multirow[t]{6}{*}{5} \& 0.0 \& 90.0 \& 90.0 \& 90.0 \& 90.0

\hline \& \& 0.05 \& 90.0 \& 54.7 \& 90.0 \& 73.3

\hline \& \& 0.10 \& 81.3 \& 32.0 \& 87.0 \& 63.3

\hline \& \& 0.25 \& 0.0 \& 0.0 \& 63.3 \& 44.3

\hline \& \& 0.50 \& 0.0 \& 0.0 \& 33.7 \& 35.7

\hline \& \& 1.00 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& Average \& - \& 43.6 \& 29.5 \& 60.7 \& 51.1

\hline \& \multirow[t]{6}{*}{7 .} \& 0.0 \& 90.0 \& 90.0 \& 90.0 \& 90.0

\hline \& \& 0.05 \& 90.0 \& 88.7 \& 90.0 \& 80.0

\hline \& \& 0.10 \& 85.3 \& 76.0 \& 90.0 \& 67.7

\hline \& \& 0.25 \& 0.0 \& 0.0 \& 83.3 \& 53.3

\hline \& \& 0.50 \& 0.0 \& 0.0 \& 53.0 \& 40.0

\hline \& \& 1.00 \& 0.0 \& 0.0 \& 0.0 \& 0.0

\hline \& Average \& - \& 44.2 \& 42.5 \& 67.7 \& 55.2

\hline $\because \gamma \cdots$ \& Grand av. \& - \& 36.0 \& 30.5 \& 53.9 \& 41.6

\hline
\end{tabular}

L.S.D at 5% level for:	Fungi	(A)	0.2
	Age	(B)	0.3
	Conc.	(A B)	0.2 0.4
		(AC)	0.4
		$\stackrel{(\mathrm{BC})}{\left(\mathrm{ABC}^{\text {B }}\right.}$	0.7 0.7

The flavedo of green lemon contained 1.5-2 times higher levels of citral comparing with the yellow fruits (Rodov et al.. 1995). Citrus essential oils have several components which are differed in their antifungal activities (C'accioni et al., 1995 and Neirotti et al., 1996).

4-Effect of different citrus essential oil components:

Results in Table (5) show that, citrus essential oils components differed in their inhibitory effect on the linear growth of lime fruit rot pathogenic fungi. The oxygenated components (Methyl anthranilate, Citral, Neryl acetate, Terpeniol and Nerol) were more toxic than the hydrocarbons component, i.e. Limonene, α Pinene and Caryophellene. The antifungl activity of different citrus essential oil components was reported by Tripathi et al. (1984), Caccioni et al., (1995) and Caccioni et al (1998).

Difference among components of each other against postharvest fungi might be due to their structures, solubility, and capability of penetrate cell wall and to interfere with the enzymatic reaction (Knobloch et al., 1989 and Suprapta et al., 1997).

5-Effect of different fungicides

 on spore germination:Results shown in Table (6) show that, imazalil and thiabendazole affected spore germination of tested fungi with different degrees. Spore germination was severely affected with low concentration of imazalil. while higher concentration of thiabendazole were needed for the same effect of imazalil. P.italicum and A.niger were the most sensitive fungi to imazalil as their spore germination was completely inhibited at 0.01 ppm . On the other hand, spores of P.digitatum completely inhibited at 0.025 ppm . On the other hand, spores of G.candidum were the most resistant ones which their germination was completely inhibited at 100 ppm .

Thiabendazole was less toxic to spore of the tested fungi than imazalil except in case of P.digitatum spores.

The explanation of such results might be due to the differences in the fungicide mode of action, their selective harmful effect on the pathogens metabolism or killing the pathogen (Okuno, et al., 1989). 6-Effect of lime essential oil:

Data presented in Table (7) show that, lime essential oil was the most effective one the percentage of spore germination of all the tested fungi. The effectivity of lime essential oil was decreased by increasing fruit age. Lime essential oils obtained from fruits of three months age caused complete inhibition to P.digitatum, P. italicum and A.niger at 0.25%, while G.candidum was completely inhibited at 0.5% Lime essential oils extracted from fruits of 5 and 7 months age completely inhibited the germination spores of P.digitatum, P:italicum and G.candidum at $0: 5 \%$, while A.niger was completely inhibited at 0.25%.
7-Effect of different components of citrus essential oils on spore germination:

Results in Table (8) indicate that, hydrocarbon compounds had no effect on spore germination.

As for oxygenated compounds, the most effective treatments were Citral and Methyl anthranilate. They caused complete inhibition of spore germination of the tested fungi at 0.05% followed by Terpeniol, Nerol , Neryl acetate and citronellol at 0.25% conc. In this respect the other components were less effective.

Methyl anthranilate, Neryl
acetate and Nerol (the most compatible components) as well as different fungicides, (Imazalil and TBZ) were applied on lime fruits to control green and blue mould, as well as sour rot diseases under artificial inoculation.
8-Effect of citrus essential oil components and fungicides on lime postharvest diseases:

Results presented in Table (9) reveal that, all the tested treatments reduced the percentage of postharvest disease incidence of lime fruits.

Complete protection of both moulds was obtained with methyl anthranilate 4% for 15 days storage. The highest protection of green and blue moulds was obtained with methyl anthranilate at 2%, and Imazalil as well as TBZ at 1%. The same trend was obtained in case of rotted part. These results are in harmony with those obtained by Rodov et al., (1995); Neirotti et al.. (1996): Suprapta et al., (1997); Caccioni et al., (1998); Duccio et al., (1998) and Vargas et al., (1999).

The protective effect of methyl anthranilate might be due to its structures, solubility and capacity to penetrate cell wall and to interfere with the enzymatic reaction (Suprapta et al., 1997).

Table (5): Effect of lime essential oil components at different concentrations on the linear growth (mm) of the tested fungi (12 days after incubation at $25^{\circ} \mathrm{C}$).

Chemical structure	Treatment	Conc.	E E B 80 8		$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { S } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { B } \\ & \text { B } \end{aligned}$
$\begin{aligned} & \text { Oxygenated } \\ & \text { Compunds } \end{aligned}$	$\begin{gathered} \text { Methyl } \\ \text { anthranilate } \end{gathered}$	0.00 0.025 0.50 0.100 -0.250 0.500	$\begin{gathered} 90.0 \\ 27.7 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{gathered}$	$\begin{aligned} & 90.0 \\ & 34.7 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	90.0 60.7 0.0 0.0 0.0 0.0	$\begin{aligned} & 90.0 \\ & 59.0 \\ & 00 \\ & 00 \\ & 0.0 \\ & 0.0 \end{aligned}$
	Average		19.6	20.8	25.1	24.8
	Citral	$\begin{aligned} & 0.00 \\ & 0.025 \\ & 0.050 \\ & 0.100 \\ & 0.250 \\ & 0.500 \end{aligned}$	$\begin{gathered} 90.0 \\ 90.0 \\ 90.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{gathered}$	$\begin{gathered} 90.0 \\ 90.0 \\ 90.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{gathered}$	$\begin{array}{r}90.0 \\ 31.7 \\ 17.7 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline\end{array}$	$\begin{gathered} 90.0 \\ 84.3 \\ 68.3 \\ 0.0 \\ 0.0 \\ 0.0 \end{gathered}$
	Average		45.0	45.0	23.2	40.4
	Neryl acetate	0.00 0.025 0.50 0.100 0.250 0.500	$\begin{aligned} & 90.0 \\ & 90.0 \\ & 71.3 \\ & 35.7 \\ & 0.0 \\ & 0.0 \end{aligned}$	90.0 99.0 68.3 46.0 0.0 0.0	90.0 79.7 55.3 0.0 0.0 0.0	$\begin{aligned} & 90.0 \\ & 90.0 \\ & 87.3 \\ & 0.0 \\ & 0.0 \\ & 0.0 \\ & \hline \end{aligned}$
	Average		47.8	49.1	37.5	44.6
	Terpeniol	0.00 0.025 0.050 0.100 0.250 0.500	90.0 90.0 77.3 57.7 0.0 0.0	90.0 85.0 63.7 41.3 0.0 0.0	90.0 78.7 24.0 24.0 0.0 0.0	$\begin{gathered} 90.0 \\ 73.3 \\ 57.7 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \end{gathered}$
	Average		52.5	46.7	32.1	36.8
	Nerol	0.000	90.0	90.0	90.0	900
		0.025	90.0	90.0	80.7	12.
		0.050	80.3	61.3	57.7	170
		0.100	65.7	43.0	0.0	0.1
		0.250	0.0	0.0	0.0 0.0	100
			0.0	0.0	0.0	0.0
	Average		54.3	47.4	38.1	24.9
	Citronellol	0.000	90.0	90.0	90.0	90.0
		0.025	90.0	90.0	63.3	65.7
		0.050	81.7	90.0	37.7	433
		0.100	633	77.7	12.3	21.3
		0.250	41.3	29.0	0.0	0.0
		0.500	0.0	0.0	0.0	0.0
	Average		61.1	62.8	33.9	36.7

Table (5): Cont.

LSD at 5% level for:	Fungi.	(A)	0.1
	Components	(B)	0.2
		(AB)	0.4
	Conc.	(C)	0.1
		(AC)	0.2
		(BC)	0.4
		(ABC)	09

Table (6): Effect of different fungicides on spore germination percentage of the tested pathogenic fungi (after 24h at $25^{\circ} \mathrm{C}$).

Fongicides	Conc. (ppm)		$\begin{aligned} & \text { E } \\ & \text { B } \end{aligned}$		$\begin{aligned} & \text { M } \\ & \text { 合 } \\ & \dot{\sim} \end{aligned}$
Imazalil	0.000	100	100	100	100
	0.005	16	22	100	6
	0.010	11	0	100	0
	0.025	0	0	100	0
	0.050	0	0	100	0
	0.100	0	0 :	100	0
	25.000	0	0	100	0
	50.00	0	0	76	0
	100.00	0	0	0	0
	250.000	0	0	0	0
	500.000	0	0	0	0
	Average	11.5	11.1	70.5	9.6
Thiabendazole (TBZ)	0.000	100	100	100	100
	0.005	12	52	100	76
	0.010	0	34	100	49
	0.025	0	17	100	21
	0.050	0	0	100	0
	0.100	0	0	100	0
	25.000	0	0	94	0
	50.00	0	0	77	0
	100.00	0	0	56	0
	250.000	0	0	24	0
	500.000	0	0	0	0
	Average	10.2	18.5	77.4	22.4

L.S.D at 5\% level for :	Fungicides.	(A)	\vdots	0.2
	Fungi.	(B)	\vdots	0.3
		(AB B)	\vdots	0.5
	Conc.	(C)	\vdots	0.6
		(A C)	\vdots	0.8
		(B C)	\vdots	1.1
		(A B C)	\vdots	1.6

Table (7): Effect of lime fruit peel essential oils on the spore germination percentage of the tested fungi (after $\mathbf{2 4 h}$ at $25^{\circ} \mathrm{C}$).

Treatment	Fruit age (mon.)	Conc. (\%)		E 恙 B Q		-
Lime oil	3	$\begin{aligned} & \hline 0.00 \\ & 0.10 \\ & 0.15 \\ & 0.50 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 100 \\ 57 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	100 50 0 0 0	100 94 11 0 0	$\begin{gathered} \hline 100 \\ 39 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$
	Average	-	31.4	30.0	41.0	23.2
	5	0.00	100	100	100	100
		0.10	60	54	100	94
	,	0.25	34	29	78	0
		0.50	0	0	0	0
		1.00	0	0	0	0
	Àverage		38.8	36.6	55.6	38.8
	7	0.00	100	100	100	100
		0.10	71	66	100	100
		0.25	38	35	100	0
		0.50	0	0	0	0
		1.00	0	0	0	0
	Average		41.8	40.2	60.0	40.0
	General av.		37.3	35.6	52.5	34.0

L.S.D at 5 \% level for:	Fungi	(A)	$: 1.1$	
	Age.	(B)	$:$	0.9
		(A B)	\vdots	1.8
	Conc.	(C)	\vdots	1.2
		(A C)	$:$	2.3
		(B C)	$:$	2.0
		(A B C)	$:$	4.1

Table（8）：Effect of different concentrations of citrus essential oils components on the percentage of spore germination of the tested fungi（after 24 h at $25^{\circ} \mathrm{C}$ ）．

Chemicals	Treatment	Conc． \％	E 急 B 8	砲	等	发
Oxygenated Compounds	Methylanthranilate	0.000	． 100	100	100	100
		0.025	65	61	51	41^{\prime}
		0.050	0	0	0	0
		0.100	0	0	0	0
		0.250	0	0	0	0
		0.500	0	0	0	0
	$\xrightarrow[\text { Average }]{\text { Citral }}$		27.5	26.8	25.2	23.5
		0.000	． 100	100	100	100
		0.025	35	31	58	22
		0.050	0	0	0	0
		0.100	0	0	0	0
		0.250	0	0	0	0
		0.500	0	0	0	0
	Average		22.5	23.8	26.3	20.3
	Neryl acetate	0.000	100	100	100	100
		0.025	100	100	100	72
		0.050	100	95	91	44
		0.100	82	60	0	0
		0.250	0	0	0	0
		0.500	0	0	0	0
	Average		63.7	59.2	48.5	36.0
	Terpeniol	0.000	100	100	100	100
		0.025	95	100	100	73
		0.050	71	95	97	20
		0.100	0	0	19	0
		0.250	0	0	0	0
		0.500	0	0	0	0
	Average		44.3	49.2	52.7	32.3

Table (8): Cont.

	Nerol	$\begin{aligned} & 0.000 \\ & 0.025 \\ & 0.050 \\ & 0.100 \\ & 0.250 \\ & 0.500 \end{aligned}$	$\begin{gathered} 100 \\ 100 \\ 94 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ 94 \\ 61 \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ 99 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \hline 100 \\ 96 \\ 74 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$
	Average		49.0	59.2	49.8	45.0
	Citronellol	0.000	100	100	100	100
		0.025	81	72	77	54
		0.050	49	34	42	22
		0.100	21	10	12	0
		0.250	0	0	0	0
		0.500	0	0	0	0
	Average		41.8	36.0	38.0	38.5
	Citronellal	0.000	100	100	100	100
		0.025	100	100	100	46
		0.050	92	93	91	12
		0.100	73	50	74	0
		0.250	20	0	52	0
		0.500	0	0	0	0
	Average		64.2	57.2	69.5	26.3
	Linalool	0.000	100	100	100	100
		0.025	76	100	100	100
		0.050	59	96	100	95
		0.100	49	82	89	78
		0.250	39	32	65	0
		0.500	0	27	14	0
	Average		53.8	72.8	78	62.2
	Lenalyl	0.000	100	100	100	100
	acetate	0.025	100	100	100	100
		0.050	99	100	100	100
		0.100	95	100	100	98
		0.250	92	100	100	96
		0.500	87	100	100	89
	Average		95.5	100.0	100.0	97.2
Hydrocarbo components	Limonene	0.000	100	100	100	100
		0.025	100	100	100	100
		0.050	100	100	100	100
		0.100	100	100	100	100
		0.250	100	100	100	100
		0.500	100	100	100	100
	Average		100.0	100.0	100.0	100.0

Table (8): Cont.

L.S.D at 5 \% level for:	Fungi	(A)		0.2
	Components	(B)	\vdots	0.4
		(A B)	\vdots	0.8
	Conc.	(C)	\vdots	0.3
		(AC)	\vdots	0.6
		(B C)	\vdots	1.0
		(A B C)	\vdots	1.9

Table (9): Effect of different citrus essential oil components on the percentage of green and blue moulds as well as sour rot incidence and the percentage of rotted part of lime fruits after 15 days storage at room temperature.

Teatments	$\begin{aligned} & \text { B. } \\ & \stackrel{\circ}{8} \end{aligned}$	Percentage of disease incidence (after days)									Percentage of rotted part of fruit					
		Green mould			Bloe mould			Sour rot			Green mould		Btue monid		Sour rot	
		5	10	15	5	10	$15 \times$	5	10	15	量	$\cdots \frac{.0}{\frac{0}{2}}$		$x+\frac{.0}{\frac{0}{2}}$	$\therefore \frac{5}{2}$	- 0
Methyl anthranilate	$\stackrel{3}{4}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} 13.3 \\ 0.0 \end{gathered}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 0.0 \end{aligned}$	$\begin{gathered} 94.4 \\ 100.0 \end{gathered}$	$\begin{aligned} & 8.6 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 90.6 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 0.0 \end{aligned}$	$\begin{gathered} 94.5 \\ 100.0 \end{gathered}$
Neryl acetate	$\overline{2}$	$\begin{aligned} & 20.0 \\ & 13.3 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 33.3 \\ & 26.7 \end{aligned}$	$\begin{aligned} & 60.0 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 60.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 26.7 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 26.7 \end{aligned}$	$\begin{aligned} & 709 \\ & 53.4- \end{aligned}$	$\begin{aligned} & 29.1 \\ & 46.6 \end{aligned}$	$\begin{aligned} & 67.8 \\ & 48.1 \end{aligned}$	$\begin{aligned} & 25.7 \\ & 47.3 \end{aligned}$	$\begin{aligned} & \hline 32.4 \\ & 19.6 \end{aligned}$	$\begin{aligned} & 64.9 \\ & 78.8 \end{aligned}$
Nerol	$\begin{array}{r} 2 \\ 4 \\ \hline \end{array}$	$\begin{aligned} & 40.0 \\ & 33.3 \\ & \hline \end{aligned}$	$\begin{array}{r} 60.0 \\ 46.7 \\ \hline \end{array}$	$\begin{array}{r} 100.0 \\ 86.7 \\ \hline \end{array}$	$\begin{aligned} & 40.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & \hline 66.7 \\ & 53.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 80.0 \\ & 73.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.7 \\ & 20.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 53.3 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 600 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 88.6 \\ & 81.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.4 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 70.1 \\ & 57.4 \end{aligned}$	$\begin{aligned} & 23.2 \\ & 37.1 \end{aligned}$	$\begin{aligned} & 51.9 \\ & 37.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 43.8 \\ & 59.1 \end{aligned}$
	1	0.0 6.7	6.7 13.3	$\begin{aligned} & 20.0 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	0.0 6.7	$\begin{aligned} & 13.3 \\ & 20.0 \end{aligned}$	0.0 13.3	13.3 33.3	20.0 40.0	15.4 32.7	84.6 76.3	10.0 14.5	89.0 84.1	12.2 31.7	86.8 65.7
Water wax Control	-	$\begin{aligned} & 46.7 \\ & 46.7 \end{aligned}$	$\begin{aligned} & \hline 73.3 \\ & 86.7 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 66.7 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 33.3 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 46.7 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 91.3 \\ & 95.7 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 92.4 \\ & 96.1 \end{aligned}$	3.9 0.0

L.S.D at 5 \% level for :	Disense incidence		Green Mould	Blue Mould	Sour Rot
	Interval	(A)	5.8	5.2	5.7
	Components	(B)	7.5	6.8	7.0
		(AB)	13.0	11.7	12.1
	Conc.		47	N.S.	N.S.
		(A C)	N.S.	N.S.	N.S.
		(BC)	N.S.	N.S.	9.9
		(ABC)	18.4	N.S.	N.S.
L.S.D at 5 \% level for :			Green Mould	Blue Mould	Sour Rot
	Components	(A)	7.5	7.2	5.0
..	Conc.	(B)	N.S 10.6	4.5 10.2	N.S. 7.0

REFERENCES

Abdul-Sattar, S. M.; A. Khan; A.Sattar and S. Mahmoud (1992). Citrus oil. Part 11 Gas chromatographic analysis of the essential oil of Citrus limetta var. Mitha. Pakistan Journal of Scientific and Industrial Research, 35: (11): 449-450. C.F. compu. Search.

Adams, R.P. (1995). Identification of essential oil components by GC/MS. Allared: Carol Steam, Illinois, USA. D.C.
Agar, T. and N. Kaska (1995). Effect of different harvest dates and postharvest treatments on the storage quality of mandarins. Proceedings of an International Symposium, Agadir, Morocco, 16-21 January, 1994 Agadir Compus 75-82.
Aly, A.Z.; M.I. Abou-Zaud; A.A. Morsy and Y.O. Fotouh, (2003). Citrus postharvest fruit rot diseases. zagazig journal of Agricultural Research. In Press.
Anonymous, (1987). Pesticide in foods. The Delaney Paradosx. National Academy Press. Washington.
Arras, G. and M. Usai (2001) Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: Chemical analysis of Thymus capitatotus oil and its effect in sub-atmospheric
pressure
conditions. Journal of Food Protection, 64 (7): 1025-1029.
Ben-Yehoshua, S.; J. Pereiz; V. Rodov; B. Nafussi; O. Yekutieli; A. Wiseblum and R. Regev (2000). Postharvest application of hot water treatment in citrus fruits: the road from the laboratory to the packing-house. Acta Horticulture No. 518: 1928.

Caccioni D. R. L. and M. Guizzardi (1994). Inhibion of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components. Journal of Essential oil Research, 6: (2):173-179.
Caccioni D. R. L.; S.G. Deans and G. Ruberto (1995) Inhibitory effect of citrus fruit essential oil components on Penicillium italicum and P. digitatum. Petria, 5:(2):177-181. c.f. compu. search.
Caccioni D.R.L.; M. Guizzardi; D.M. Biondi; A. Renda and G. Ruenrto (1998). Relationship between volatile components on citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology, 43:(1-2),73-79.
Carnegi, S.F.; A. Ruthven; D.A., Lindsay and T.D. Hall (1990). Effects of fungicides applied to
seed potato tubers at harvest or after grading on fungal storage diseases and plant development. Apple. Biology, 116: 61-72.
Clevenger, G.F. (1928). Apparatus for the determination of volatile oil. J. A. Pharm. Assoc, 17: 346349.

D'Aquino, S.; A. Piga; M. Agabbio and T.G. Mccollum(1998). Film wrapping delays ageing of "Minneola" tangelos under shelf-life conditions. Postharvest Biology and Technology, 14(1):107-116.
Droby, S.; R. Porat; L. Cohen; B.Weiss; B. Shapiro; S. Philosoph-Hadas and S. Meir (1999). Suppressing green mold decay in grapefruit with postharvest jasmonate application. Journal of the American Society for Horticultural. Science, 124 (2):184-188.

Duccio, R. L. C.; G.Monica; M.B., Daniela; R. Agatino and R. Fiuseppe (1998). Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicillium digitatum and Penicillium italicum. International Journal of Food Microbiology, 43:73-79.
Eckert, J.W. (1990). Impact of fungicide resistance on citrus fruit decay control. Pages 286-

302 in: Managing Resistance to Agrochemicals. M.B. Green. H.M. LeBaron, and W.K. Moberg, eds. Am. Chem. Soc. Symp. Ser. 421.
Giffine, D. H. (1981). Fungal physiology. John Wiley and Sons, New York, Chichester Brinsbane, Toronto and Singapore, 383 pp .
Guenther, E. (1961). The essential oil vol 1, III, IV. $4^{\text {th }}$ Ed. Van. Nastrabd Company. Inc. Prin Ceton, New Jersey. Toronto New York, London.
Javed, M.A.; M.A. Nasir and M.N. Bajwa (1995). In vitro effect of certain chemicals on colony growth of different postharvest fruit rotting fungi of citrus. Pakistan Journal of Phytopathology, 7.(2):215-216.
Knobloch, K.; A. Pauli; B. Iberl; N. Weis and H. Weigand (1989). Antibacterial and antifungal properties of essential oil compounds. J. Essent. Oil Res., 1:119-128.
Lateef, M.F.A.A; M.B. Mahmoud and H.A. Fahmy (1994). Effect of time of application on the effectiveness of fungicides for control of blue and green moulds of oranges. Egyptian Journal of Phytopathology, 22.(1):59-73.
Lopez -Garcia, B.; L. GonzalezCandelas; E. Perez-Paya and J.F.. Marcos (2000). Identification
and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Molecular

Plant-Microbe Interactions, 13.(8): 837-846.
Luigi, M.; B. Annamaria; P. Pietro and D. Giovanni (1997). Italion citrus petitgrian oils. part II composition of mandarin petitgerian oil. Journal of lissential Oil Research, 9. (3): 255-266.
Mahmoud, M.B. and S.M. Hanafy (1991). Acquired resistance of Penicillium digitatum and Penicllium italicum to some Postharvest fungicides on navel oranges. Annals of Agricultural Science (Cairo), 36.(2): 681-691.
Mehrotra, N.K.; Neeta Sharma; Madhulika Nigam, and Ratna Ghosh (1998). Biological control of sour-rot of citrus fruits by yeast. Proceedings of the National Academy of Sciences India. Section B, .Biological Science, 68.(2):133-136.
Minh, N. T. T.; L.X. Thanh; A. Une; H. Ukeda and M.Sawamura (2002). Volatile constituents of Vietnamese pummelo, orange, tangarine and lime peel oils. Flavour and Fragrance Journal, 17: 169-174.
Neirotti E.; M. Moscatelli and S. Tiscornia(1996). Antimicrobial activity of the limonene.

Arquivos de Biologia de Technologia, 39 (2): 233-237.
Okuno, T.; I. Furusawa; K. Matsuura and J. Shishiyama (1989). Mode of action of ferimson (TF-164) a novel systemic fungicide for rice diseases effects on the general metabolism of Pyricularia oryzae. Annls of Phytopathological Society of Japan. 55(3): 281-289. (C.F. Rev. PI. Path. 1990, 69 (5): 2337).

Pero, R.W. and R.G. Owens (1971). A. microtechnique for evaluation of antifungal activity. Phytothology, 61:132.
Rodov, V.; S.Ben-Yehoshua; D.Q.Fang; J.J Kim and R. Ashkenazi (1995). Preformed antifungal compounds of lemon fruit: Citral and its relation to disease resistance. J. Agric Food Chem, 43: 1057-1061.
Schirra, M.; G. D'Hallewin; P. Cabras; A. Angioni: S. BenYehoshua and S. Luric (2000). Chilling injury and residuc uptake in cold-stored Star Ruby grapefruit following thiabendazole and Imazalil dip treatment at 20 and $50^{\circ} \mathrm{C}$. Postharvest. Biology and Technology, 16(1): 91-98.
Singh G.; R K; Upadhyay; C. S. Narayanan; KP. Padmkumari and G.P.Rao (1993). Chemical
and fungitoxic investigations on the essential oils of Citrus sinensis (L) Pers. Zeitschrift-fur Pflanzen krankheiten and Pflanzen-schutz, 100:1.69-74.
Snedecor, G.W. and W.G. Cochran (1980) Statistical methods. Oxford and J. PH. Publishing Com. $7^{\text {th }}$ edition.
Smilänick, J.L.; D.A. Margosan; F. Mlikota; J. Usall and I.F. Michael (1999). Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Disease, 83 (2): 139-145.
Suprapta, D.N.; K. Arai and H. Iwai (1997). Effect of volatile compounds on arthrospores germination and mycelial growth of Geotrichum candidum citrus race. Mycoscience, 38 (10): 3135.

Tripathi N.N.: A. Athana and S.N Dixit (1984). Toxicity of some terpenoids against. fungi infesting fruits and seeds of Capsium annuum I.. during storage. Phyopathologische Zeitschrift, 110 (4): 328-335.
Vargas, I.; I. Sanz; P. Moga and E. Prima-Ynfera(1999).
Antimicrobial and antioxidant compounds in the nonvolatile fraction of expressed orange essential oil. Journal of Food Protection, 62 (8): 929-932.
Ward, M. A. and N.N Ragsdale (1977). Fenarimol, a new systemic fungicide. Systemic Fungicide International Symposium, Inç., New York. Toronto and London.
Watkins, J.E.; L.J.Littefield and G.D. staler (1977). Effect of systemic fungicide 4-n-butyl1,2,4 triazole on the development of Puccinia recondita' f.sp. tritici in wheat. Phytopathology, 67: 985.

مغارمة أعغان تُمر الليمون الملح بع الجمع بالستذدام بعض مكونات الازيوت الطيرار
أحمد زكى على"، محمد إيراهمي أبوزيد"، أمد عبد اللعزيز مرسى" ،
بحيمي عمر فنتوح"

* * فم اللنبت الزراعم وأمراض النبات - كلية الزراعة - جامعة الزةازيتى

 وبمكن تلغيص النتانج التى تم الحصول عليها فى النقاط الآثيّة:

نيرول ، تربينول نسب متغاوته في تركيب الزيت.
 الفطريات المخبّرة وكنلك إبيات جراثيم.

 نربينول ، كانت مواد الأكثر كفاءة فى تّبيط النهو وإنبات الجراثئيم.

 اننئر انبليت كانت أنضل المعاملات في بياومة أعان ثمار الليورن.
 متَاومة أمراض ما بعد الجمع ني ثمار الليوون المالح على نطاق تجارى.

