EFFECT OF NPK FERTILIZATION TREATMENTS AND GA3 ON GROWTH, FLOWERING AND CHEMICAL COMPOSITION OF MARIGOLD (CALENDULA OFFICINALIS, L.)

By

Kandeel, Y.M.R.

Hort. Dept. Fac. Agric., Kafr El-Sheikh, Tanta Univ.

ABSTRACT

Field experiments were carried out at the Farm of Agric., Fac., Kafr El-Sheikh, Tanta Univ. during 2001/2002 and 2002/2003 seasons to study the effect of 7 NPK fertilization treatments and GA₃ at the levels of 0, 50 and 100 ppm on the vegetative growth, flowering and chemical composition of *Calendula officinalis*, L. plants. The obtained results can be summarized as follows:- The different NPK fertilization treatments enhanced growth and flowering characters and increased the total chlorophyll content in the leaves as well as N, P. and K percentages in the leaves in comparison with the control in both seasons. The treatment of N₃P₂K (300 kg ammonium sulphate + 200 kg calcium super phosphate + 50 kg potassium sulphate per fed.) led to the highest records of the most growth and flowering aspects, when compared to the other NPK fertilization treatments in both seasons.

 GA_3 generally improved vegetative growth and flowering of *Calendulla officinalis* L. The high level of 100 ppm had the most pronounced effect in the majority of treatments.

Generally, it is recommended to use 300 kg ammonium sulphate, 200 kg calcium super phosphate and 50 kg potassium sulphate/fed. to fertilize *Calendula officinalis* as the amount to be divided into two equal portions and added after 4 and 7 weeks from transplanting with using 2foliar applications of gibberellic acid (100ppm) at the same schedule of fertilization to obtain the highest records of growth, flowering vase-life and chemical composition of marigold.

INTRODUCTION

Calendula officinalis, L. plants are very important ornamental plants cultivated outdoors as a winter annual plants. It belongs to Family Asteraceae (Fam Composite) and is used for landscaping, as a source of colour in the gardens and as cut flowers. It is considered to be one of the valuable medicinal plants as contains oleanolic acid and other compounds, which stimulate the secretion of bile and have diaphoretic, diuretic and stimulating properties. Moreover, pigments of the flowers are used in coloring foods.

NPK fertilization is important for growth, flowering and chemical composition of plants. In this concern Menesi (1995a and b) on Ammi majus and Ammi visnaga stated that increasing N, P and K levels in NPK treatments produced significant increments in plant height, dry weight and seed weight/plant, N, P and K % in the leaves over control. El-Mahrouk and Kandeel (1997) on Calendula officienalis L. found that N. fertilization at the level of 4 g/plant increased plant height, fresh and dry weights of foliage and roots/plant, flowering period, vase life, inflorescence number/plant and diameter and fresh and dry weights of inflorescence. Mohamed (1997) found that Cuminum cyminum L. and Nigella sativa L. plants fertilized with NPK fertilization at the rates of 50, 100 and 150 kg/fed. had increases in plant height, number of umbles and fruit yield/plant, number of branches and their fresh and drv weights/plant.

Guerrero and Johnson (2000) on Origanum majorona pointed out that adding N, P and K increased plant height over control.

Refaat et al. (2001) showed that fertilizing Majorana hortensis with two rates of P (15 and 30 kg P_2O_5 /fed.) led to increase plant height, dry weight/plant and the uptake of N, P and K compared to the control.

Atakisi *et al.* (2001) on *Salvia officinalis* found that, applying N fertilization at high rate (160 kg N/ha) resulted in a large increase in fresh and dry weight of yields.

Badran et al. (2001) on *Tropaeolum majus* reported that increasing the rate of N fertilization up to 90 kg N/fed. caused a gradual increase in plant height, number of branches, leaves and flowers/plant, dry weight of leaves and flowers and nitrogen % in the leaves.

Kandeel et al. (2002) reported that, to produce the best Chrysanthemum parthenium plants having the tallest plant, the highest number of branches/plant, highest leaf area/plant, heaviest fresh and dry weight of the vegetative parts, longest roots, heaviest fresh and dry weight of roots, earliest flowering, highest number of inflorescences/ plant, largest inflorescence diameter, heaviest fresh and dry weight of inflorescences/ plant as well as highest total chlorophyll, N, P and K % in the leaves they should be fertilized with 4 g ammonium sulphate (20.5% N) /pot four time during the growing

season. Mohamed (2002) on *Pelargonium graveolens* L. and *Rosmarinus officinalis* L found that all NPK fertilization treatments increased plant height, number of branches/plant, fresh and dry weight of herb/plant and per fed. as well as N, P and K % in the leaves

Concerning gibberellic acid Hassan et al. (1991) reported that GA₃ increased plant height and number and dry weight of leaves and flowers of Calendula officinalis. Abou-Dahab et al. (1987) found that GA₃ increased plant height and leaves dry weight of Chrvsanthemum frutescens. Abdalla et (1989)al. on Chrysanthemum morifolium found that GA3 increased plant height, fresh and dry weights of vegetative parts, number of flowers and dry weight of flowers in addition to a reduction in number of branches/plant. Similar findings in addition to early flowering were revealed by Badran et al. (1989) on Luffa cylindrica.

Khalafalla et al. (1998) on Thevetia nereifolia Juss and Koelreuteria paniculata Laxm. found that GA_3 application specially at the high rate (250 ppm) enhanced plant height, fresh and dry weight of shoots and roots, root length and N, P and K % in the leaves.

Badran et al. (2001) on Tropaeolum majus demonstrated that GA_3 caused an early flowering with enhancing effects on different vegetative and flowering parameters except for branches number/plant which was decreased by increasing GA_3 concentration.

Abd El-Azim (2003) on Salvia officinalis found that supplying the plants with NPK at 150 kg amonium sulphate, 100 kg calcium super phosphate and 150 kg potassium sulphate/fed/year led to the greatest fresh and dry herb yield/fed/year.

Hamed (2004) on Salvia officinalis L. and Origanum syriacum L. var aegyptiacum found that full dose of NPK fertilization (600 kg ammonium sulphate + 200 kg calcium super phosphate + 100 kg potassium sulphate significantly increased plant height, number of branches/plant, fresh and dry weight of herb per plant and per feddan, as well as NPK and total carbohydrates percentages in the leaves.

MATERIALS AND METHODS

This work was conducted at the Experimental Farm of Faculty of Agric. Kafr El-Sheikh, Tanta Univ., during two successive seasons of 2001/2002 and 2002/2003 to study the effect of 7 NPK fertilization treatments and gibberellic acid concentrations on growth, flowering and chemical composition of Calendula officinalis, L. plants.

Seeds of Calandula officinalis were sown on Oct 5th in both seasons in clay pots of 40cm diameter filled with a clay loamy soil. On November 5th the seedlings were transplanted into the field in plots $(2m \times 2 m)$ which contained 4 rows at a distance of 40 cm between plants as each plot contained 20 plants.

The experiment was arranged in a split plot design as this made 21 treatments and every treatment was replicated three times (3 plots) and the main plot was assigned to 7 NPK fertilization treatment namely. $N_0P_0\hat{K}$ (control), N_1P_1K , N_2P_1K , N_3P_1K , N_1P_2K , N_2P_2K and N_3P_7K .

Where :

 N_1 , N_2 and $N_3 = 100$, 200 and 300 kg ammonium sulphate (20.5%) N)/ fed., respectively.

= 100 and 200 kg calcium super phosphate (15.5% P₁ and P₂ P_2O_5)/ fed., respectively. Κ

= 100 kg potassium sulphate (48.5% K_2O)/ fed.

The sub plot was intitled to the three gibberellic acid concentrations, i.e.: 0, 50 and 100 ppm. The amount of NPK fertilization assigned for each treatment was divided to equal doses and added 4 and 7 weeks after transplanting date. Gibberellic acid treatments were foliar sprayed at the same schedule of fertilization. while control treatment was foliar sprayed with a tap-water, All plants including control, received 100 kg potassium sulphate (48.5 k₂O) per faddan.

Irrigation and agricultural practices were done whenever plants needed.

Flowering date was calculated as number of days from sowing to the first flower open. Flowering period in the filed was recorded as number of days from first flower open to last flower wilt.

At full flowering (April 1st in the two seasons) the following data were recorded:

- Plant height (cm) and number of branches/plant. 1-
- Fresh and dry weights of vegetative parts (g) 2-
- Fresh and dry weights of roots (g). 3-
- Number of flowers (inflorescences) per plant and flower 4diameter (cm.).
- Fresh and dry weights of flowers/plant (g.). 5-

- 6- As for the vase life, the five flowers from each replicate for each treatment were chosen at the opening stage and cut of by a sharp knife, then the were placed in tap-water directly. The tapwater was changed every 24 hours.
- .7- Total chlorophyll in the leaves (ing/g fresh weight): "determined according to Moran (1982) for the fifth leaf from the branch top".
- 8- Chemical analysis of the leaves after had been dried in the electric oven at 70°C for 24hr. as 0.1 g of the dried sample was ground and used to determine N, P and K% as follows "total nitrogen % was determined by the modified microkjedahl method as described by Piper (1947), phosphorus % was estimated colorimetrically as recommended by Troug and Meyer (1939) and K was determined by using flame photometer (Brown and Lilliland (1946)).

The chemical and physical analyses for the used soil in both seasons are presented in Table (a & b).

Duncan's Multiple Range Test was used for the comparison between means of treatments (Snedecor and Cochran, 1980).

Scason	Sand %	Silt %	Clay %	Texture
2001/2002	20.27	31.24	48.49	Clay
2002/2003	22.41	33.14	44.45	Clay

Table (a): Physical analysis of the experimental soil

Table (b): Chemical properties of the experimental soil.

	1	Ē	Cations %				Anio		Ê			
Season	рН	Ec (mmhos/ at 25°C	Nn ⁻	Cn ⁺⁺	Mg ⁺⁺	K (meq/L)	so₄-	C0'	CL.	HCO ² .	Total N %	Total P (ppr
2001/2002	7.52	2.81	0.027	0.041	0.012	0.22	0.025	-	0.043	0.012	0.21	7.22
2002/2003	7.48	2.74	0.025	0.038	0.013	0.24	0.026	- <u>-</u>	0.040	0.011	0.23	8.14

RESULTS AND DISCUSSION

1. Vegetative growth characters :

The four studied vegetative growth characters of *Calendula* officinalis L. i.e. plant height, number of branches/plant and fresh and dry weights of vegetative parts were significantly increased in both seasons due to the use of different nitrogen and phosphorus fertilization rates in comparison with those of unfertilized plants

(Table, 1) as the increase in these traits was gradual and parallel to the increase in the nitrogen and phosphorus rate. The highest values of the four vegetative traits resulted from the treatment of N₃P₂K (300 kg ammonium sulphate + 200 calcium superphysical + 50 kg)potassium sulphate/fedddan) followed by N₃P₁K then N₂P₂K. The increase in the studied vegetative traits owing to the application of nitrogen fertilizer may be due to that nitrogen led to constitute amino acids which formed the protein that participates in cell enlargement and cell division, while phosphorus has an important role in producing energy for the physiological processes as synthesizing proteins by formation of the coenzyme adenine triphosphate. Also, the increase in fresh and dry weights of vegetative parts may be due to the simulative effect of N, P and K elements especially with increasing nitrogen levels as led to improvement of plant growth in general which reflected increments in fresh and dry weights of the vegetative parts. The obtained findings are in agreement with those mentioned by El-Mahrouk and Kandcel (1997) on Calendula officinalis, Badran et al. (2001) on Tropaeolium majus, Atakisi et al. (2001) on Salvia officinalis, Refaat et al. (2001) on Majarana hortensis and El-Bably (2003) on Antholyza aethiopica and Tritonia crocata.

Concerning GA₃ plant height and fresh and dry weights of vegetative parts were significantly increased due to the application of both 50 and 100ppm concentrations. Moreover, the high GA₃ concentration gave significantly higher values than those of the low GA₃ concentration. On, the contrary, number of branches/plant was gradually decreased with significant differences being obtained between each two successive treatments as clearly indicated in Table (1). These data agreed with those obtained by **Badran** et al. (1989) on Luffa cylindrica, Hassan et al. (1991) on Calendula officienalis and Badran et al. (2001) on Tropaeolum majus.

The interactions between NPK fertilization and GA_3 concentration were significant for plant height and fresh and dry weights of vegetative parts in both seasons as illustrated in Table (1). The best results for such three traits were obtained when the plants received 300 kg ammonium sulphate + 200 kg calcium superphosphate + 50 kg potassium sulphate/ fed. and sprayed with 100 ppm GA_3 while the highest number of branches/plant was obtained from the treatment of $N_3P_2K_1$ without using GA_3 . Similar results were obtained by **Badran** *et al.* (2001) on *Tropaeohum majus*.

GA3 (ppm)	First season 2001/2002				Second season 2002/2003						
NPK Fertilization	0	50	100	Mean	0	50	100	Nitan			
		Plant height (cm)									
NaPaK	49.73L	55.80i	56.9711	54.17f	55.33L	59.27k	62.471	59.02f			
N,P,K	53.17k	58.93gh	62.97f	58.36e	59.80k	64.00i	67.57fg	63.79e			
N ₂ P ₁ K	57.90hi	64.93e	57.07d	63.30c	64.13	70.97e	74.34c	69.82c			
N P K	59.93g	67.87cd	70.07a	65.97Ъ	68.17f	75.70b	77.93a	73.93a			
N,P,K	55.53i	63.63ef	66.93d	62.03d	63.47i	66.77gh	70.17e	66.79d			
N_2P_1K	59.77g	67.80cd	69.20abc	65.59b	65.83h	73.03ď	75.70b	71.52b			
N ₃ P ₂ K	63.27ef	68.60bc	69.67ab	67.18a	68.43f	76.075	76.43b	73.64a			
Mean	57.04c	63.94b	66.12a		65.59c	69.40b	72.09a				
				No. of br	anches/plant						
N ₀ P ₀ K	7.17ik	6.97k	6.33m	6.82f	7.57gh	6.87i	6.40j	6.94e			
N ₁ P ₁ K	7.83ef	7.37hi	6.77L	7.32e	8.23e	7.53gh	7.30h	7.69d			
N ₂ P ₁ K	8.30c	7.67fg	7.13jk	7.70d	8.70bcd	8.23e	7.73fg	8.22c			
N ₃ P ₁ K	8.67b	8.27c	7.50gh	8.14b	8.97b	8.60cd	8.27e	8.61b			
N ₁ P ₂ K	8.13cd	7.70fg	7.20ij	7.68d	8.70cd	8.40de	7.87f	8.32c			
N ₂ P ₂ K	8.67b	8.00de	7.30ij	7.99c	8.97b	8.53cde	8.23e	8.58b			
N ₃ P ₂ K	9.10a	<u>8.77c</u>	7.87ef	<u>8.14a</u>	<u>9.40s</u>	8.77bc	<u>8.74cde</u>	<u>8.89a</u>			
Mean	8.27a	7.755	7.16c		<u>8.65a</u>	8.13b	7.75c				
		•	Er	esh weight of	vegetative parts (g)					
N ₀ P ₀ K	196.33a	214.00n	223.00m	211.11f	205.33j	229.67hi	236.33hi	223.78e			
N ₁ P ₁ K	214.00n	239.00k	249.00i	234.00e	224.67ij	252.00fgh	264.67efg	274.11d			
N ₂ P ₁ K	243.33j	271.33c	278.33e	264.33c	262.67efg	283.67b-е	293.00a-d	279.78b			
N ₃ P ₁ K	267.67g	281.67cd	283,33c	275.89b	281.00cde	297.67abc	308.67ab	295.78a			
N ₁ P ₂ K	233.33L	245.00j	256.00h	244.78d	245.33ghi	263.00efg	273.00c-f	260.44c			
N ₂ P ₂ K	255.00h	280.00de	290.005	275.00b	268.67d-g	287.67Ь-е	308.67ab	288.33ab			
N ₃ P ₂ K	260.001	292.33b	295.67a	286.00a	282.67cde	311.67a	298.67abc	<u>297.67a</u>			
Mean	239.24c	_260.48b	267.91a		252.91b	275.05a	283.29a				
	·		D	ry weight of v	egetative parts (g)					
N ₀ P ₀ K	58.83L	61.33k	62.20k	60.79f	64.20L	67.03k	69.67ij	66.97f			
N ₁ P ₁ K	64.83j	68.33i	70.43h	67.87e	68.13jk	70.70hi	71.70h	70.18e			
N ₂ P ₁ K	73.77g	77.30f	79.53e	76.87c	76.00g	79.63ef	78.00f	77 .8 8c			
N ₃ P ₁ K	76.53f	82.17c	82.10c	80.27b	79.10f	82.47d	86.43b	82.67b			
N ₁ P ₂ K	71.63h	74.20g	80.10de	75.31d	71.87h	76.20g	78.07f	75.38d			
N ₂ P ₂ K	77.00f	79.23e	81.73cd	79.32b	80.83e	85.03bc	83.87cd	83.24b			
N ₃ P ₂ K	80.03de	86.075	88.87a	84.99a	83.87cd	90.53a	89.37a	87.92a ·			
Mean	71.81c	75.52b	77.85a		74.86c	78.80b	79.59a				

Table (1): Effect of NPK fertilization treatments and GA3 on some vegetative growth traits of Calendula officinalis L. during the two seasons.

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test.

2. Fresh and dry weights of roots :

Data in Table (2) showed that the different NPK fertilization treatments had pronounced effects on fresh and dry weights of roots/plant when compared with control in the two seasons. The significantly heaviest fresh weights resulted from the treatments of N_3P_2K and N_2P_2K with non significant differences between them in the two seasons followed by N_3P_1K then N_2P_1K , while the heaviest dry weight of roots/plant resulted from the treatments of N_3P_2K , N_2P_2K and N_3P_1K in the first season. In the second one the heaviest weights resulted from N_3P_2K followed by N_2P_2K then N_3P_1K treatments as these results are in accordance with those obtained by **El-Mahrouk and Kandeel (1997)** on *Calendula officinalis* and **Kandeel et al. (2002)** on *Chrysanthemum parthenium*.

Table (2): Effect of NPK fertilization treatments and GA₃ on fresh and dry weights of roots of *Calendula officinalis* L. during the two seasons.

O 1 ()											
CA3 (ppm)	ł	first seaso	n 2001/2002		Second season 2002/2003						
NPK Treatment	0	50	100	Mean	0	50	100	Mean			
	Fresh weight of roots (g)										
N ₀ P ₀ K	33.67I	39.00h	43.67fg	38.78f	37.33k	39.33j	47.33fg	41.33e			
N ₁ P ₁ K	39.00h	44.33ef	45.76de	43.00e	41.40I	46.33g	49.33de	45.56d			
N ₂ P ₁ K	44.33ef	47.33bc	48.00bc	46.56c	46.67g	51.57c	54.67b	51.00b			
N ₃ P ₁ K	45.33de	48.33b	48.67b	47.44b	44.67h	54.00b	56.33a	51.67b			
N ₁ P ₂ K	42.67g	45.67de	47.67bc	45.33d	42.33I	47.67fg	51.67c	47.22c			
N ₂ P ₂ K	46.67cd	48.67ab	50.00a	48.44a	48.67ef	53.33b	56.33a	52.78a			
N ₃ P ₂ K	48.00bc	48.00bc	48.67ab	48.22a	50.33cd	54.33b	54.67b	53.11a			
Mean	42.81c	45.91b	47.48a		44.43c	49.52b	52.91a				
			Dry	weight o	f roots (g)					
N ₀ P ₀ K	9.95i	11.33h	12.47fg	11.24d	11.13m	12.40L	13.23ij	12.26g			
N ₁ P ₁ K	11.35h	12.50efg	13.13c-f	12.33c	12.37L	13.47hi	14.27ef	13.37f			
N ₂ P ₁ K	12.57efg	12.90dei	13.57bcd	13.01b	13.67h	14.57d	14.93c	14.39c			
N ₃ P ₁ K	13.20c-f	13.67bcd	14.33ab	13.37a	12.83k	14.27ef	14.17fg	13.76e			
N ₁ P ₂ K	11.78gh	12.80def	13.47b-е	12.68bc	13.13j	13.97g	14.93c	14.01d			
N ₂ P ₂ K	13.17c-f	13.80a-d	14.70a	13.89a	14.47bc	15.73b	16.17a	15.46b			
N ₃ P ₂ K	13.16c-f	14.30ab	13.90abc	13.79a	14.90c	15.83b	16.23a	15.66a			
Mean	12.17c	13.04b	13.65a]	13.21c	14.32b	14.85a				

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test.

Data in Table (2) indicated also that GA_3 at 50 and 100 ppm increased fresh and dry weights of roots in both seasons over untreated plants and GA_3 at 100 ppm was much more effective. These results are in accordance with those obtained by Abdalla *et al.* (1989), Makary (1991) on *Chrysanthemum morifolium* and

Khalafalla et al. (1998) on Thevetia nereifolia Juss and Koelreuteria paniculata Laxm.

The interaction between NPK fertilization and GA₃ treatments was significant for fresh and dry weights of roots/plant. The significantly heaviest fresh and dry weight of roots resulted from treated plants with N₂P₂K and sprayed with 100 ppm GA₃ in the two seasons. Similar results were obtained by **Badran** *et al.* (2001) on *Tropaeolum majus* and El-Sayed (1991) and Hassan *et al.* (1991) on *Calendula officinalis.*

3. Flowering aspects:

Data in Table (3) showed that number of days from sowing to flowering was gradually increased in both seasons by increasing nitrogen or phosphorus rate, with significant differences between the treatments. The earliest flowering date resulted from control treatment followed by N_1P_1K and N_1P_2K then N_2P_1K and N_2P_2K . The effect of nitrogen fertilization on delaying flowering date was reported by Abd-Alazeem (1993) on *Tagetes minuta* and El-Sayed (1991) on marigold.

Data in Table (3) showed that all NPK fertilization treatments prolonged flowering period when compared with control. The highest values resulted from the treatments of N_2P_2K and N_3P_2K with non significant differences between themselves as the remainder NPK treatments gave less values in the two seasons.

Data in Table (3) indicated also that both GA₃ concentrations of 50 and 100 ppm caused significantly earlier flowering in both seasons than the untreated plants with the superiority of GA₃ at 100 ppm in this regard. The acceleration of flowering and prolonging of flowering period due to application of GA₃ at 50 and 100 ppm., may be due to the promotive effects on vegetative growth, through photosynthetic process, which in turn accounts for the carbohydrate accumulation, consequently flower bud initiation was faster than in untreated plants (Funnell *et al.*, 1992). These results confirm with the previous research of Badran *et al.* (1989) on Luffa cylindrica, Karaguzel and Doran (2000), Dataram *et al.* (2001) on Gladiolus and Badran *et al.* (2001) on Tropaeolum majus.

The interactions between NPK fertilization and GA₃ treatments were significant for flowering date and flowering period. The earliest flowering resulted from the treatment of N₀P₀K (control) and spraying plants with 100 ppm GA₃. The longest flowering period was obtained from the treatment of N₁P₂K for plants sprayed with 50 ppm

934 Kandeel, Y.M.R.

 GA_3 in the first season while in the second one this resulted from the treatment of N_3P_2K and spraying with 50 ppm GA_3 .

Table (3): Effect of NPK fertilization treatments and GA₃ on some flowering characteristics of *Calendula officinalis* L. during the two seasons.

GA,	First season 2001/2002				Second season 2002/2003					
(ppm)										
	0	50	100	Mean	0	50	100	Maan		
treatment	ł				ļ			MICAN		
	Flowering Jets ()									
N.P.K	106 670	riowering date (days)								
N.P.K	108.006	101.551	00 671.	101.331	98.33gh	92.67L	89.67m	93.56f		
N.P.K	110.001	107.336	100.0/K	100.076	104.00cd	98.00hij	94.33k	98.78d		
N.P.K	123.67	112 33.	102.0711	115 22-	108.676	100.00fg	97.00ij	101.89c		
N.P.K	108 006	104 326	100.07e1	104 77.	100.078	104.33c	99.67fgh	106.89a		
N.P.K	114 67a	109.330	100.07g	110 275	102.33de	96.67ij	90.67m	96.56e		
N.P.K	119.004	110.5518	110.0018	112 221	107.675	100.33n	96.33g	101.44c		
Mean	112.000	107 005	102.5500	113.330	107.22	102.67cde	101.00ef	105.78b		
	112.758	107.090	103.570	L	107.338	99.235	95. 52 c	L		
NDV	10.00.	60 221	<u>Fi</u>	owering p	eriod (da	<u>ys)</u>	<u> </u>			
	49.00m	58.551	60.67jk	56.00e	55.67k	60.00j	62.001	59.22e		
	100.001	08.331g	67.33gh	64.56d	63.001	70.33f	72.33de	68.56d		
	03.071	/2.33b	71.00000	69.00b	68.00g	73.67cde	73.00cde	71.56b		
N D TZ	01.0/J	/0.33de1	71.00Dcd	67.56c	65.33h	73.00cde	72.00e	70.11c		
	59.33KI	73.338	72.00abe	68.22bc	65.67h	72.33de	73.67cde	70.56c		
N ₂ P ₂ K	65.67elg	72.33ab	70.33cde	70.44a	70.00f	74.67bc	74.00bcd	72.89a		
N ₃ P ₂ K	66.33h	70.00def	69.00e-g	68.40bc	68.33g	75.00a	73.67cde	72.33ab		
Mean	60.95b	69.24a	68.76a	<u> </u>	65.34b	71.29a	75.52a			
	ļ			No. of flo	wers/plant	ł	_			
N ₀ P ₀ K	54.00m	77.67j	82.00i	71.22f	48.67m	68.67k	71.33j	62.876		
N _I P _I K	68.33L	82.33i	84.67h	98.44e	63.00L	78.67h	81.33fg	74.33e		
N_2P_1K	74.33k	88.00ef	91.67cd	84.57c	68.67k	81.00fgh	82.67ef	77.44d		
N ₃ P ₁ K	85.67gh	93.67bc	99.00a	92.79a	78.67h	87.33c	86.00cd	84.00b		
N ₁ P ₂ K	73.00k	87.33fg	90.00de	83.44d	68.33k	80.33fgh	82.67ef	77.114		
N ₂ P ₂ K	78.67j	91.33d	94.33b	88.115	76.001	85.33cd	84.33de	81.89c		
N ₃ P ₂ K	85.67gh	95.33b	98.00a	93.00a	80.00gh	90.00Ъ	97.67a	89.56a		
<u>Mean</u>	74.24c	87.95b	91.38a		69.05c	81.62b	83.00a	· · · · ·		
			<u> </u>	lower dia	meter (cn	1)				
N ₀ P ₀ K	6.20gh	7.07efg	8.17b-e	7.15c	6.37L	7.571	8.07i	7.336		
N ₁ P ₁ K	6.72fgh	7.87b-g	8.27a-f	6.62b	7.27k	8.13hi	8.430	7.95		
N ₂ P ₁ K	7.03d-g	8.37a-e	8.87a-c	8.09ab	7.53	8.671	9.10de	8.43		
N ₃ P ₁ K	7.33c-g	8.80a-e	10.13a	8.76a	8.37g	9.27d	9.679	9.10a		
N ₁ P ₂ K	7.07efg	8.33а-е	8.80a-e .	8.07ab	7.34k	8.36eh	8.73f	8.124		
N ₂ P ₂ K	7.27d-g	8.73a-e	9.23abc	8.41ab	8.08i	9.03e	9.40bc	8.846		
N ₃ P ₂ K	8.03b-g	9.03a-d	9.40ab	8.828	8.56g	9.23 cd	9.50ab	9.03=		
Mean	7.09b	8.31a	8.55a		7.62c	8.606	8.99a			

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test.

It appears from data in Table (3) that, all NPK fertilization treatments had pronounced effects on number of flowers per plant. The significantly highest number resulted from the treatments of N_3P_2K and N_3P_1K with non significant differences among themselves in the first season, while, in the second one this resulted from the treatment of N_3P_3K and the control gave the least value in the two scasons.

It was observed from data in Tables (3 and 4) that all NPK fertilization treatments increased flower diameter, fresh and dry weights of flowers/plant and vase-life of flower when compared to the control in both seasons as the increment was significant in most cases. The treatment of N_3P_2K gave the best values in this concern when compared to the other treatments. This may be due to that nitrogen and phosphorus enhanced cell division and cell enlargement. These nutrients may participate directly or indirectly in plant anabolism resulting in more plant metabolites necessary for plant growth and flowering. Also, prolonging vase-life was perhaps accompanied by the increase in fresh weight and accumulation of more dry matter and enhancing of water balance due to increasing water uptake and reducing water loss.

These results are in harmony with those of El-Sayed (1991) on marigold, Hassan et al. (1991) on Calendula officinalis, Badran et al (2001) on Tropaeolum majus, Kandeel et al. (2002) on Chrysanthemum parthenum and El-Bably (2003) on Antholyza aethiopica, Agapanthus africana and Tritonia crocata.

Concerning GA₃ data in Tables (3 and 4) indicated that both GA₃ at 50 and 100 ppm significantly increased flowering characters of *Calandula officinalis* (number of flowers/plant, flower diameter, fresh and dry weights of flowers/plant and vase-life) when compared to untreated plants in the two seasons. The largest number of flowers/plant and flower diameter resulted from the application of GA₃ at 100 ppm followed by GA₃ at 50 ppm then untreated plants in the two seasons.

The significantly heaviest fresh and dry weights resulted from the treatment of 100 GA_3 in the two seasons followed by GA₃ at 50 ppm., while the least values resulted from untreated plant (control).

The effect of GA_3 on flowering characters may be due to that GA_3 enhanced the vegetative growth as well as photosynthetic process. So more accumulation of carbohydrates, may force the shoots to flower besides the enhancing effect of GA_3 on cell division and enlargement.

936 Kandeel, Y.M.R.

Table (4): Effect of NPK fertilization treatments and GA3 on flowersfresh and dry weights and vase-life of Calendulaofficinalis L. during the two seasons.

GA3	Fi	rst season	2001/200	2	Second season 2002/2003			
(ppm)			1					
NPK			100	h.a		· 0		
freatme	0	50	100	Mean	U	50	100	Mean
nt								
	╎╴╴╶╸┙┙		Fre	sh weight	of flowers			······
N.P.K	230 33m	256.671	274.33k	253.78g	255.300	277.33n	284.00m	272.250
N.P.K	284.67i	310.67h	323.00g	306.111	293.00L	317.671	326.771	312.11f
N.P.K	319.672	347.67c	377.67bc	348.33d	332,30h	353.77e	384.33b	356.87d
N ₃ P ₁ K	343.67e	376.00c	391.00я	370.22b	348.671	382.00bc	395.33a	375.30b
N ₁ P ₂ K	303.00i	322.33g	343.67e	323.00e	311.00k	333.70h	354.77e	333.10e
N ₂ P ₂ K	328.331	371.334	381.67b	360.00c	342.00g	377.71d	394.77a	371.44c
N ₃ P ₂ K	376.67c	373.67cd	390.67a	380.00a	350.67cd	393.00a	393.77a	388.92a
Mean	312.33c	336.91b	345.57a -		323.00c	347.90b	361.80a	
			Dr	y weight	of flowers	(g)		
N ₀ P ₀ K	43.67g	44.67fg	54.33f	44.56d	48.33L	51.33k	53.33j	51.00g
N,PK	52.67e	54.33cd	55.67b	54.22c	56.77i	63.33fg	64.33f	61.42f
N ₂ P ₁ K	55.67c	57.336	56.33bc	56.44b	59.33h	66.67d	67.00d	64.33d
N ₃ P ₁ K	57.33b	60.00a	60.67a	59.33a	59.33h	67.33d	69.67c	65.44c
N ₁ P ₂ K	54.33d	56.33bc	57.67b	56.11b	59.00h	64.76cf	66.00de	63.20e
N ₂ P ₂ K	57.33b	60.33a	60.67a	59.44a	62.30g	70.00c	72.336	68.25b
N ₃ P ₂ K	61.33a	60.00a	61.00a	60.78a	63.77fg	71.776	74.00a	69.80a
Mean	54.62c	56.14b	56.76a	<u> </u>	58.40c	<u>56.00b</u>	66.678	
				Vase-li	fe (days)			
N ₀ P ₆ K	8.13L	8.87j	8.40k	8.48d	8.78L	9.27j	9.12k	9.051
N ₁ P ₁ K	9.30i	9.58fgh	9.49ghi	9.46c	9.90h	10.28m	9.77i	9.99e
N ₂ P ₁ K	9.75ef	10.21b	9.83de	9.93b	10.25g	10.92c	10.40ef	10.52c
N ₃ P ₄ K	9.55gh	9.97cd	10.00cd	9.84b	10.02h	686.01	10.41ef	10.37d
N ₁ P ₂ K	9.42hi	9.67cfg	9.53gh	9.54c	10.31fg	10.78cd	10.53e	10.54c
N ₂ P ₂ K	9.74f	9.96cd	9.80de	9.84b	10.70d	F1.14b	10.91c	10,92b
N ₃ P ₂ K	10.12bc	10.76a	10.15bc	10.34a	10.92c	11.32a	11.09b	II.Ha
Mean	9.44c	9.86a	9.60b		10.13c	10.63a	10.32b	

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test.

As for vase-life data in Table (4) proved that GA_3 treatments gave longer vase-life than control in both seasons. The significantly longest vase-life was obtained from the treatment of 50 ppm. while, control gave the shortest vase-life. The effect of GA_3 of increasing vase-life may be due to that it increases flowers content of carbohydrates, so reflected on the flower longevity.

These results are in agreement with those of Hassan et al. (1991) on Calaendula officinalis, Abdella et al. (1989) on Chrysanthemum morifolium, Badran et al. (2001) Tropaelum majus,

Karaguzel and Doran (2000) and Dataram et al. (2001) on Gladiolus and Attia (2004) on Zantedeshia aethiopica and Hedychium caronarium.

The interaction between NPK fertilization and GA₃ treatments was significant for flowering characters of *Calendula officinalis* in most cases during the two seasons. The highest number of tlowers, widest flower diameter and the heaviest fresh weight of flowers resulted from the treatments of N_3P_2K and N_2P_2K and sprayed with 100 ppm GA₃. However, the heaviest dry weight of flowers /plant resulted from N_3P_2K and N_3P_1K treatments for plants sprayed with 50 and 100 ppm GA₃ with non significant differences between them in the first season while in the second one was obtained when plants received N_3P_2K and prayed with 50 or 100 ppm GA₃. As for vaselife, the longest vase-life was obtained from the treatment of N_3P_2K and plants sprayed with 50 ppm GA₃.

4. Chemical composition :

Data of the effect of different levels of NPK and GA_3 treatments on the total chlorophyll, N, P and K% in the leaves of *Calendula officinalis* during both seasons are presented in Table (5) which reveal that the different NPK fertilization treatments significantly increased the total chlorophyll in the leaves over control in both seasons. The treatment of N₃P₂K recorded the highest record in the leaves when compared to the other treatments during the two seasons.

As for N, P and K% in the leaves, data in Table (5) indicate that all NPK fertilization treatments significantly increased N, P and K% in the leaves over control during both seasons. The highest values of N and K% in the leaves resulted from the treatment of N_3P_2K in the two seasons, while the highest value of P% in the leaves was obtained from N_3P_2K and N_2P_2K treatments with non significant differences between the two treatments during both seasons.

The increase in chlorophyll content due to the application of NPK fertilization treatments especially at the high level of nitrogen might be attributed to the known function of some elements like nitrogen which was found in such important molecules as prophyrin. The prophyrin structure was found in metabolically important compounds in the chlorophyll (Devlin 1979).

The increase in N% in the leaves as a results of using N, P and K fertilization may be due to the promotive effect of the nitrogen on

938 Kandeel, Y.M.R.

plant growth, hence more nutrients might be absorbed to build up the plant organs and metabolites.

Table (5): Effect of NPK fertilization treatments and GA3 on chemical co	omposition
of Calendula officinalis L. during the two seasons.	•

GA3	First season 2001/2002				Second scason 2002/2003							
(ppm)												
	0	50	100	Man				Í				
NPK		50	100	iviean	U	50	100	Mean				
Treatment		L!						•				
		Total chlorophyll (mg/g fresh weight)										
N₀P₀K	0.933j	0.940j	0.963ij	0.947f	1.093L	1.140k	1.100L	1.11 f				
N _i P _i K	0.900j	0.973i	0.953ij 🛛	0.972e	1.187ij	1.207hi	1.173	1.189e				
N ₂ P ₁ K	1.127g	1.067h	1.037h	1.077d	1.267e	1.2471	1.217gh	1.243c				
N ₃ P ₁ K	1.253bc	1.197ef	1.167f	1.2065	1.313d	1.247f	1.247ef	1.2695				
N ₁ P ₂ K	1.107g	1.123g	1.110g	[1.113c	1.237fg	1.300hii	1.19011	1.2094				
N ₂ P ₂ K	1.243cd	1.180f	1.163f	1.196b	1.313d	1.267b	1.233fg	1.2716				
N ₃ P ₂ K	1.307a	1.287ab	1.217cd	1.270a	1.360e	1.287a	1.243ef	1.2978				
Mean	1.137a	1.110b	1.087c		1.263a	1.228b	1.200c					
[[N %			L				
N₀P₀K	1.747j	1.727j	1.827i	1.767g	1.947m	1.783n	2.053m	1 0785				
N _i P _i K	2.147g	2.097h	2.053h	2.099f	2.247hik	2.163iki	2 12021	2 177				
N ₂ P ₁ K	2.443d	2.310e	2.303e	2.352d	2.547cde	2.357feh	2 300ahi	2 4010				
N ₃ P ₁ K	2.600ab	2.447d	2.440d	2:496b	2.723ab	2.523bc	2.440ef	2.401C				
N ₁ P ₂ K	2.263e	2.310e	2.213f	2.262e	2.373fg	2.257g-j	2 19011	2 2734				
N ₂ P ₂ K	2.523c	2.437d	2.447d	2.369c	2.663c	2 473	2 440	7 536h				
N ₃ P ₂ K	2.637a	2.533c	2.567bc	2.579a	2.790a	2.640bc	2.540de	7 6570				
	1	l !	. '			d	ALUTUUL	2.037a				
Mean	2.337a	2.266b	2.246b	1	2.470a	2.3146	2.298b					
					P %	<u> </u>		L				
N ₀ P ₀ K	0.227k	0.267j	0.287i	0.260f	0.2671	0 32.30	0 3507	0 3136				
N ₁ P ₁ K	0.270	0.3001	0.323gh	0.298e	0.303h	0.360ef	0 3774	0.3131				
N ₂ P ₁ K	0.300i	0.320h	0.330gh	0.317d	0.330g	0 377dr	0.387cd	0.3470				
N ₃ P ₄ K	0.337fg	0.340fg	0.330gh	0.336c	0.3531	0 387cd	0.417ab	0.3040				
N ₁ P ₂ K	0.347ef	0.357de	0.367cd	0.357b	0.3531	0.377de	0.393bc	0.374				
N ₂ P ₂ K	0.357de	0.373cd	0.383ab	0.371a	0.370de	0.397bc	0 410ab	0.397.				
N ₃ P ₂ K	0.347cf	0.380bc	0.390a	0.372a	0.383cd	0.400bc	0.423a	0.3924				
Mean	0.312c	0.334b	0.344a	ſ	0.337c	0.3745	0.391a	0.0778				
				·	K %		0.07.1	L				
N ₀ P ₀ K	2.510k	2.723j	2.813i	2.6821	2.6270	2.580n	2 0631	2 9136				
N _i P _i K	2.783i	3.017g	3.107f	2.969e	2.910m	3.1401	3 743h	3 0080				
N ₂ P ₁ K	2.967h	3.1376	3.193e	3.099d	3.087k	3.270eh	3 373.01	1 2270				
N ₃ P ₄ K	3.107f	3.270cd	3.290L	3.222b	3.247h	3.347de	3 440c	3.22 /C				
N ₁ P ₂ K	3.053g	3.133f	3.220e	3,136c	3.000L	3.190i	3 3006	3 1634				
N ₂ P ₂ K	3.1471	3.237de	3.293c	3.226b	3.15711	3.3734	3 4300	3 326b				
N ₃ P ₂ K	3.193e	3.357d	3.407a	3.319a	3.267gh	3.5378	3.400h	2 4210				
Mean	2.966c	3.125b	3.189a		3.042c	3.244b	3.313a	J				

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test.

The increase in phosphorus percentage in the leaves may be due to their enchanting effects on phosphour: absorption and/or translocation in the plants. The increase in the K% may be due to the direct or indirect effect of the used nutrients on the absorption and translocation of potassium. The increase in the N, P, K and total chlorophyll contents could be resulted from the increase in the uptake of nutrients through the root system which becomes more capable of absorbing more amounts of nutrients.

These results are in harmony with those recorded by El-Mahrouk and Kandeel (1997) on Calendula officinalis, Menesi (1995 a and b) on Ammi majus and Ammi visnaga, Badran et al. (2001) on Trapaeolum majus, Kandeel et al. (2002) on Chrysanthemum parthenium, Mohamed et al. (2002) on Pelargonium graveolus and Rosmarinus officinalis and Hamed et al. (2004) on Salvia officinalis and Origanum syriacum L. var. aegyptiacum.

Data in Table (5) showed that nitrogen percent was gradually decreased in both seasons by increasing GA_3 concentration but the differences were non significant between GA_3 at 50 and 100 ppm. Similar results were obtained by Badran *et al.* (2001) on *Tropaeolum majus.*

Also, data in Table (5) showed that P and K% in the leaves were increased by increasing GA_3 concentration. The highest values of both were obtained from the treatment of GA_3 at 100 ppm in the two seasons.

The increase in P and K% in *Calendula officinalis* leaves may be due to that GA₃ gave better growth and led to more P and K uptake. These results are in Conformity with those of many researches as **Khalafalla** *et al* (1998) on *Thevetia nereifolia* and *Koelreuteria paniculata*, **Karaguzel and Doran (2000)** on *Gladiolus*.

The interaction between NPK fertilization and GA_3 treatment was significant for chemical composition in the two seasons in most cases. The results are in harmony with those of El-Sayed (1991) on *Calendula officinalis* and Abd-Alazeem (1993) on *Tagetes minuta*.

REFERENCES

- Abdalla, N.M.; F.S. Badran; M.K. Aly; M.A. Abdou and M.K. Mohamed (1989). Effect of soil salinity and growth regulators on Chrvsanthemum morifolium Ramat (Lceccap). I. vegetative. growth and flowering characteristics. El-Minia J. Agric. Res. & Dev., 11 (3): 1165-1185.
- Abd-Alazeem, M.A. (1993). Influence of nitrogen fertilization sources and growth regulators on the growth and volatile oil of Tagetes minuta L plants. M.Sc. Thesis, Fac, Agric., Mini Univ., Egypt.
- Abd El-Azim, W.M. (2003). Production of Salvia officinalis L. plant under North Sinai conditions. Ph. D. Thesis, Fac, Agric., Cairo Univ., Egypt.
- Abou-Dahab, A.M.; R.S. El-Dabh and .A. Salem (1987). Effect of gibberellic acid on growth, flowering and chemical constituents of Chrysanthemum frutescens. Acta Hort. 205: 219-235 (Hort Abst., 57: 9619).
- Atakisi, I.; C. Saglam; H. Turhan, F. Arslanoglu, S. Kaba and F. Onemli (2001). Cultivation of sage (Saliva officinalis) in Thrace Region, Turkey. Zeitschrift für Arznei- & Gewürzpflanzen, 6 (1): 15-19. [Hort. Abst., 71: 10283].
- Attia, E.A.M. (2004). Physiological studies on some ornamental bulbs. Ph.D. Thesis Fac., Agric. Kafr El-Sheikh, Tanta Univ.
- Badran, F.S.; M.A. Abdou and M.K. Aly (1989). Effect of IBA and GA₃ on growth, yield and chemical composition of Luffa cylindrica plants. El-Minia. J. Agric. & Dev., 11 (3): 1093-1108
- Badran, F.S.; M.A. Abdou and M.M. Hassanein (2001). Effect of nitrogen fertilization and GA3 on growth, flowering and nitrogen content of Tropaeolum majus, L. plants. Proc. 5th Arab. Hort. Conf., Ismailia, Egypt, March 24-28, 2001: 1-22.
- Brown, J.D. and O.C. Lilliland (1946). Rapid determination of potassium and sodium in plant material and soil extracts by flame photometry. Proc. Amer. Soc. Hort. Sci., 48: 341-346.
- Dataram, K.; J.P. Verma and H.K. Verma (2001). Pre-planting soaking of corms with growth regulators influences flowering of gladiolus. Annals Agric. Res., 6 (2): 163-167. Devlin, R.M. (1979). Plant Physiology. 3rd Ed. Affiliated Est. West
- Press. New Delhi, P.: 159-205.
- El-Bably, S.M. (2003). Studies on some factors affecting productivity of some ornamental bulbs. Ph. D. Thesis, Fac. Agric, Kafr El-Sheikh, Tanta Univ.

- El-Mahrouk, E.M. and Y.R. Kandeel (1997). Effect of different nitrogen levels and sources on *Calendula officinalis*, L. J. Agric. Res. Tanta Univ., 23 (1): 18-31.
- El-Sayed, A.A. (1991). Influence of fertilization and plant growth regulators on marigold (*Calendula officinalis* L.) plants. Ph. D. Thesis, Fac. Agric. Minia Univ., Egypt.
- Funnell, K.A.; B.R. Mackay and C.R.O. Lawoko (1992). Comparative effect of promalin and GA₃ on flowering and development of Zantedeschia "Galaxy". Acta Hort., 292: 173-179.
- Guerrero Trivino, M. and C.B. Johnson (2000). Season has a major effect on the essential oil yield response to nutrient supply in *Origanum majorana*. J. Hort. Sci. and Biotech, 75 (5): 520-527. [Hort. Abst., 71: 2662].
- Hamed, A.S. (2004). Studies on planting of some medicinal plants in the desert. M. Sc. Fac. Agric., Kafr El-Sheikh, Egypt.
- Hassan, H.A.; A.A. Waly and M.A. Zaghloul (1991). Physiological studies of *Calendula officinalis* L. 1. Effect of nitrogen fertilization and GA₃ on the growth, flowering and chemical composition of the plants. J. Agric. Res. Tanta Univ., 17 (3): 737-446.
- Kandeel, Y.M.; E.S. Nofal; M.M. Khalafalla and T.E. Eissa (2002). Effect of nitrogen fertilization on vegetative growth, flowering and chemical composition of *Chrysanthemum* parthenium L. Bernh. Proc. 2nd Conf. Hort. Sci. 10-12 Sept 2002 Kafr El-Sheikh, Tanta Univ. Egypt (J. Agric. Res. Tanta Univ., 28 (3/111): 1359-1378.
- Karaguzel, O. and I. Doran (2000). The effects of GA₃ and limited KNO3 fertilization on quality characteristics and leaf nutrient contents of gladiolus. Ziraat Fakultes; Dergisi, 13 (2): 123-132.
- Khalafalla, M.M.; F.A. Menesy and Y.M. Kandeel (1998). Effect of CCC and GA3 on growth and chemical composition of *Thevetia nereifolia* Juss and *Koelreuteria paniculata* Laxm. under saline stress. Proc. 2nd Conf. Ornam. Hort. Ismailia, Egypt. October 24-26, 1998: 217-238.
- Makary, B.S. (1991). Studies on the effect of salinity and some growth regulators of Chrysanthemum plants. Ph.D. Fac. Agric. Assuit. Univ., Egypt.
- Menesi Fardous, A. (1995a). Effect of NPK fertilization on the growth and active constituents of *Ammi majus*, L. plants. J. Agric. Res. Tanta Univ., 21 (4): 704-713.
- Mencsi Fardous, A. (1995b). Effect of NPK fertilization on the growth and active constituents of *Ammi visnaga*, L. plants. J. Agric. Res. Tanta Univ., 21 (4): 714-723.

- Mohamed, M.A.A. (1997). Effect of chemical fertilization on *Cuminum cyminum*, L. and *Nigella sativa*, L. plants under North Sinai conditions. M.Sc. Thesis, Fac. Agric. Cairo Univ., Egypt.
- Mohamed, M.A.A. (2002). Effect of fertilization and irrigation on rosemary and geranium plants under Sinai conditions. Ph. D. Thesis, Fac. Agric. Kafr El-Sheikh. Egypt.
- Moran, R. (1982). Formula for determination of chlorophyllous pigment extracted with N-N-dimethyl formanide. Plant Physiol., 69: 1376-1381.
- Piper, C.S. (1947). Soil and Plant Analysis, P 274-275. Univ. of Adelaide, Australia.
- Refaat, Azza M.; M.R. Abd Al-Mocz and S.S. Ahmed (2001). The impact phosphorus rate and methods of application on yield and oil quality of Romanian sweet marjoram. Egypt J. Soil Sci., 41 (1-2): 93-109.
- Snedecor, G.W. and W.G. Cochran (1980). Statistical Methods 7th edition. The Iowa State Univ. Press. Ames. Iowa, USA.
- .Trough, E. and A.H. Meyer (1939). Improvement in deiness colorimetric method for phosphorus and arsenic. 1st Eng Chem. Anal. Ed., 1: 136-138.

الملخص العربى

تأثير التسميد بالمنتروجين والفوسفور والبؤتاسيوم (NPK) والرش بالجبريللين على النمو والإرهار والتركيب الكيماوى لنبات الإقحوان يوسف محمد رفعت قنديل

قسم البساتين - كلية الزراعة بكفر الشيخ - جامعة طنطا

أجرى هذا البحث فى المزرعة التجريبية بكلية الزراعة بكفر الشيخ – جامعة طنطا خلال موسمى ٢٠٠١/٢٠٠١ ، ٢٠٠٢/٢٠٠٢ م لدر اسة تلثير ٧ معاملات تسميد بالـ ن، بو، فو حيث استخدم التتروجين بثلاثة مستويات (١٠٠ ، ٢٠٠، ٣٠٠ كجم جرام سلفات امونيوم/فدان والفوسفور بمستويين (١٠٠ ، ٢٠٠كجم سوير فوسفات) والبوتاسيوم بمستوى واحد هو ٥٠كجم سلفات بوتاسيوم للفدان، وتأثير الرش بالجبريللين بتركيز ات صفـر، ٥٠، لنباتات الإقحوان. وكانت أهم النتائج المتحصل عليها كالآتى : ١-أدت جميع معاملات التسميد بالــن، بو، فو الى زيادة معنوية فى كـل صفات النمو الخضرى (ارتفاع النبات – عدد الأفرع للنبات – الــوزن الطازج والجاف للمجموع الخضرى – اللون الطازج والجاف للجذور) والإزهار (تاريخ الإزهار – طول فــنزة الإزهـار بـالحقل – عـدد الأزهار /نبات – قطر الزهرة – الوزن الطازج والجاف للأزهار – مدة حياة الزهرة بعد القطف) مما أدت الى زيـادة محتـوى الأوراق مـن الكلورفيل وكذلك النسبة المئوية من عناصر النـستروجين والفوسفور والبوتاسيوم مقارنة بمعاملة الكنترول خلال الموسمين.

أدت المعاملة بال_ ن_ت بور فو N₃P₂K (٣٠٠كجم سلفات أموني_وم + ٢٠٠ كجم سوبر فوسفات + ٥٠كجم سلفات بوتاسيوم/فدان) الى إعطاء أحسن النتائج لكل صفات النمو الخضرى والإز هـار مقارنـة ببـاقى المعاملات السمادية خلال الموسمين.

٢-أدت معاملات الرش بالجبريللين الى زيادة فـــى كــل صفــات النمــو. والإزهار لنبات الأقحوان باستثناء عدد الأفر ع/نبات وكـــانت أفضــل المعاملات هى الرش بمستوى ١٠٠ جزء فى المليون.

ومن ذلك فإنه ينصح بتسميد نبات الأقحوان بمعدلات ٢٠٠كجم سلفات أمونيوم + ٢٠٠كجم سوبر فوسفات + ٥٠كجم سطفات بوتاسيوم للفدان على أن نقسم هذه الكمية الى جرعتين متساويتين تضاف الأولى بعد ٣ أسابيع من عملية تفريد النباتات والثانية بعد ٢١ يوم مسن الأولسى مع استخدام الرش بالجبريللين بمعدل ١٠٠ جزء فى المليون فى نفس مواعيد التسميد السابقة وذلك بغراض الحصول على أفضل صفات خضرية وزهرية لنبات الأقحوان.