# EFFECT OF SOME BIO-ORGANIC FERTILIZERS ON GROWTH, YIELD AND ROOT-ROT DISEASE SEVERITY OF EGGPLANT El-Said, M.E.<sup>1</sup>; A.A.El-Magrabi<sup>2</sup> and M.W.Khalil<sup>2</sup> - 1. Hort. Res. Inst., Agric. Res. Centre - 2. Plant Pathology Inst., A.R.C. #### **ABSTRACT** The field experiments were conducted at Kafr El-Wekala, Sherpin Dakahlia Governorate, Egypt during 2001 and 2002 summer seasons to study the effect of different organic fertilizers, mineral fertilizers and biofertilizer (EM1) on growth, yield and root rot disease of eggplant. The results could be summarized as follows:-Generally, using organic fertilizers with mineral fertilizers and EM, biofertilizer resulted in the highest results than using it without EM, biofertilizer. On the other hand, using 50% mineral fertilizer with 50% chicken manure exhibited the best results on growth plant characters (stem length, No. of shoots, plant fresh and dry weights and total yield followed by 50% mineral combination with 50% of other organic fertilizer combinations (farmyard manure without litter, farmyard manure with litter and compost, respectively). In the same time, the effect of organic fertilizers with or without EM; biofertilizer, the highest results were by using 50% mineral fertilizer + 50 chicken manure (10%), followed by farmyard manure without litter (10-15%), then farmyard manure with litter (15-20%) and compost (20-25%). Using organic fertilizer without EM1 biofertilizer gave little results than using it with EM1 biofertilizer, In the same time, chicken manure gave the best results from high to low dose. Concerning the effect of organic fertilizer with or without EM1 biofertilizer on root rot disease ## INTRODUCTION EM<sub>1</sub> biofertilizer to organic fertilizer gave best results than without it. severity, the chicken manure gave the best effect followed by farmyard manure without litter than farmyard with litter and compost when adding EM<sub>1</sub> biofertilizer than without it. The total counts of soil-borne fungi in thousand colonies per one gram of dried soil, the chicken manure gave the best effect than mineral fertilizer, farmyard manure without litter, farmyard manure with litter and compost, respectively. Adding Eggplant (Solanum melongena L.) is one of the most important solanaceae vegetable crops grown in summer season in Egypt. Pollution with chemical fertilizers arose as a factor of health care. Under Egyptian conditions, egg plant is infected with Fusarium oxysporum causing damping off and wilting of the plant that cause a great reduction in growth and yield. Up till now, synthetic fungicides are considered as the main control method for this disease and others. Such method imposes various undesirable side-effects as residual toxicity, environmental pollution and degradation development of fungicide resistance (Edwards, 1973). Many investigators showed that eggplants can be fertilizered with biofertilizers known as EM, (Effective microorganisms) which consists of mixed cultures of beneficial and naturally-occurring microorganisms that can be applied as inoculants to increase the microbial diversity of soil and plants (Higa, 1991 and Higa & Wididana, 1991a). Another approach is to inoculate the soil with beneficial antagonistic, antibiotic-producing microorganisms such as actinomycetes and certain fungi (Higa and Wididana, 1991a & 1991b). Beneficial microorganisms are these that can fix atmospheric nitrogen, decompose organic wastes, animal manures, detoxicty pesticides, suppress plant disease and soil-borne disease (Higa, 1991 and Parr and Hornick, 994). Magid et al. (1998) showed that using the chicken manure as an organic fertilizer for wheat crop increased grain yield, grain quality and straw yield, and in the same time decreased the Fusarium wilt of wheat. Also, Tratch and Bettiol (1997) found that, in general, concentration over 10% of cow manure caused inhibition of growth for the majority of fungi assayed (Fusarium oxysporum sp. phaseoli, Pythium aphanidermatum, and Rhizoctonia solani). Many investigators showed that many crops were inoculated with biofertilizer and fertilized with animals manure gave high yield and vegetative growth characteristics. Abd El-Rahman and Hosny (2001) indicated that application of chicken and cattle manures significantly increased vegetative growth characters of eggplant, i.e., plant height, number of leaves and leaf area over control. On tomato and potato plants, Awad (1998), Abdulla (1999), and El-Banna et al. (2001) demonstrated that vegetative growth characteristics as plant height, number of stems, number of tubers, fresh and dry weight of whole plants were increased as a result of applying chicken manure, compost and chicken manure combined with biofertilizer. On strawberry, Mohamed and Gabr (2002) found that application of chicken manure significantly increased most growth parameters including number of leaves, shoot and fresh dry weights of plant. Application of farmyard manure with and without biofertilizers contribute to plant growth through its effect on physical, chemical and biological properties of the soil as well as through its effect as a source of essential nutrients (El-Nagar, 1996). The effect of organic fertilizer might be related to its contents materials. It may improve the physical condition of the soil, provides energy for microorganisms activity, increases nutrient supply and efficiency of macro-elements as well as its ability to meet some micronutrient requirements (Cooke, 1982; Sahota, 1983; Tisdale *et al.*, 1985, and Kolbe *et al.*, 1995). # **MATERIALS AND METHODS** Two successive field experiments were carried out during summer seasons of 2001/2002 at Kafer El-Wekala village, Sherbeen, Dakahlia governorate, Egypt. Some physical and chemical properties of the experimental soil are recorded in Table 1. Table 1: Some physical and chemical properties of the experimental soil. | Physic | Physical characteristics | | | | | Chemica | charac | teristics | 3 | | |--------|--------------------------|------|-----------|-----|------------------------------|---------|----------|-----------|-----|-------| | Sand | Silt | Clav | Texture | рH | | Avail | able nut | rients (p | pm) | | | Saliu | SIIL | Clay | I exture | hu | N | P | K | Zn | Mn | Fe | | 31.2 | 36.5 | 37.5 | Clay-loam | 7.8 | 61.5 25.0 24.5 3.00 8.50 14. | | | | | 14.80 | $EM_1$ biofertilizer added with irrigation after planting at $1^{st}$ , $2^{nd}$ and $4^{th}$ irrigation. On March of 2001 and 2002 (summer season), eggplant seeds were sown in 30 cm apart on one side ridge, 5 m long and 0.7 m wide (4 ridges per plot). The experiment in both seasons of study was designed as split-split plot design with three replicates. The main plots were occupied to test two levels of biofertilizer (with and without $EM_1$ . In each plot, four organic fertilizers were randomly arranged to represent 4 sub plots. The sub-sub plot contained mineral: organic ratio treatments. The experiments included 34 treatments, 0, 25, 50, 75 and 100% of the recommended N fertilizer (ammonium nitrate 33.5%). The mineral fertilizers were added at three equal portions. Compost prepared from city garbage, which was obtained from Mansoura Manufacture for Organic Manure. The chemical analysis of organic fertilizers are shown in Table 2. Table 2: Chemical properties of bio and organic fertilizers. | | Macı | Macro-elements<br>(%) | | | | Micro-elements<br>(ppm) | | | | | |----------------|------|-----------------------|------|-----|-----|-------------------------|----|------|--|--| | | N | P | K | Fe | Mn | Zn | Cu | | | | | Compost | 1.35 | 0.48 | 1.90 | 151 | 312 | 64 | 37 | 7.80 | | | | Farm-1 | 7.2 | 6.5 | 5.5 | 130 | 320 | 70 | 40 | 6.00 | | | | Farm-2 | 7.1 | 6.2 | 5.3 | 142 | 325 | 78 | 42 | 5.54 | | | | Chicken manure | 8.7 | 7.8 | 6.2 | 190 | 360 | 80 | 50 | 7.60 | | | Compost, chicken manure and animal manure at rate of 20 m/fed. were spread and mixed with the surface soil layer (0-20 cm) before planting at 4 doses 100%, 75, 50 and 25% plus mineral fertilizer to complete the ratio. #### Data recorded: Random samples of 3 plants from each plot were chosen at 60 days from planting date, the following measurements were recorded. - -Plant height (cm): It was measured as the average length in centimeters of chosen plants from soil surface to plant stem apex. - -Number of leaves per plant of chosen plants. - -Fresh weight of plant as average weight per plant without roots in grams. - -Dry weight of plant: Fresh plants were dried out in an oven at 70°C until constant weight. - -Fruit yield: The fruits were harvested every week for six harvests up to the end of the season. #### Disease assessment: External symptoms were evaluated on a scale (0-4) according to Ciccarese *et al.* (1987) index. All plants showing symptoms of root rot and wilt category 4 in each plot were recorded (Category 4, six cm or more brown to black discoloration of lower stem and tap root region, most lateral roots decayed, most leaves yellowed, plants often stunted, wilted, moribund, or killed). Soil samples were collected from each treatment about 500 grams randomly for upper 15 cm of soil surface. The dilution plate technique (Crossan, 1967) on Martins medium (Martin, 1959) was used in experiments of isolation of soil-borne fungi. The plates were incubated at 24-27°C for 4-5 days. The resulting colonies per Petri-dish were counted and multiplied by the dilution factor to obtain the number of colonies / g soil. #### RESULTS AND DISCUSSION Data in Table (3) showed a significant increase in stem length, number of shoots/plant, No. of leaves/ plant, plant fresh weight (g/plant), plant dry weight (%) and total yield (kg / plot) by using farmyard manure without litter and chicken manure than farmyard manure with litter and compost organic fertilizer. On the other hand, data in the same table demonstrated that using 100% mineral fertilizer had positive effect on growth characters followed by 75% mineral + 25 organic fertilizer compared to 50% mineral + 50% organic fertilizer. Moreover, microorganisms as using as biofertilizers produce plant promoting substances, mainly AA, gibberellins and cytokinin like substance, which could stimulate plant growth, absorption of nutrient and metabolism process (Subba Rao, 1993 and El-Banna, 2001). Data in Table (4) showed that the best results of all growth characters was obtained by using chicken manure with EM<sub>1</sub> followed by farmyard manure without litter. On the other hand, the data in Table (5) showed that using 100% mineral fertilizer with $EM_1$ biofertilizer followed by 75% mineral + 25% organic and 50% mineral + 50% organic fertilizer significantly increased all growth characters than all treatments with or without $EM_1$ fertilizer. Results on the average of growth characters of eggplant by using 4 organic fertilizers combination with one mineral fertilizer are tabulated in Table (6). The data showed that the average of growth characters were differ between treatments and the best treatment was 50% mineral + 50% chicken manure on stem length, No. of shoots, plant fresh weight, plant dry weight and total yield. On the other hand, the farmyard manure without litter gave the best average of No. of leaves / plant. The effect of organic fertilizer might be related to its contents materials. It may improve the physical condition of the soil, provides energy for microorganisms activity, increases nutrient supply and improves the efficiency of macro elements as well as its ability to meet some micronutrient requirements (Cooke, 1982, Sahota, 1983, Tisdale et al., 1985, Kolbe et al., 1995 and El-Nagar, 1996). Data in Tables (7 and 8) showed the average of growth characters as affected by using combination between ratio of mineral fertilizer (100, 75, 50, 25% and zero) + organic fertilizers (compost, farmyard manure with litter, farmyard manure without litter and chicken manure) with or without EM<sub>1</sub> biofertilizer. Data in Table 6 indicate that the application of 50% mineral fertilizer + 50% chicken manure with EM<sub>1</sub> biofertilizer significantly increased stem length and No. of shoots / plant followed by the same treatment without EM<sub>1</sub> fertilizer as compared with all treatments. Table 3: Vegetative growth characters and total yield of eggplant plants as affected by biofertilizer, organic fertilizer and Min.: Org. ratio during 2001 and 2002 seasons. | Treatments | | Stem length (cm) | | No. of shoots<br>/ plant | | leaves<br>ant | | sh weight<br>3) | | y weight<br>3) | Total yield<br>(kg/plot) | | |-----------------------|---------|------------------|---------|--------------------------|---------|---------------|---------|-----------------|---------|----------------|--------------------------------------------------|---------| | | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | | A: Biofertilizer: | T | | | | | | | | | | <del> </del> | | | With EM <sub>1</sub> | 83.52 a | 83.27 a | 11.87 a | 12.15 a | 51.63 a | 51.20 a | 309.0 a | 312.0 a | 29.08 a | 28.99 a | 44.89 a | 45.12 a | | Without EM₂ | 81.77 b | 81.23 b | 11.23 b | 11.27 b | 49.48 b | 49.68 a | 301.0 a | 300.0 b | 28.56 b | 28.52 a | 43.44 b | 43.37 b | | B: Organic fert.: | | | | - | , | | | | | | <b>├</b> ── | | | Compost | 80.60 b | 81.40bc | 11.43ab | 11.47 a | 50.13ab | 50.43 a | 288.7 b | 299.5 b | 28.50 b | 28.56bc | 43.48 b | 44.01 a | | FYM without litter | 81.37 b | 80.47 с | 10.90 b | 11.77 a | 48.63 b | 49.57 a | 280.0 ь | 278.7 c | 28.53 b | 28.42 c | 43.32 b | 43.97 a | | FYM with litter | 83.33 a | 82.57 b | 11.87 a | 11.70 a | 51.73 a | 50.50 a | 321.8 a | 329.0 a | 28.97ab | 28.85ab | 44.59ab | 44.34 a | | Chicken manure | 85.27 a | 84.57 a | 12.00 a | 11.90 a | 51.73 a | 50.27 a | 329.7 a | 324.7 a | 29.29 a | 29.19 a | 45.21 a | 44.67 a | | C; Min. : Org. ratio: | Ţ | l | | | ] | | I | | | | Γ | , | | 100%: 0% | 86.50 a | 85.71 a | 12.50 a | 12.50 a | 53.08 a | 53.17 a | 339.8 a | 349.0 a | 29.37 a | 29.42 a | 47.44 a | 47.37 a | | 0%:100% | 78.75 b | 78.33 b | 10.92cd | 11.21 b | 46.92 b | 48.58 b | 257.1 b | 254.2 d | 28.27 с | 28.02 d | 40.69 c | 41.10 c | | 25%:75% | 79.75 a | 78.29 a | 10.79 d | 11.42 b | 47.42 b | 46.96 b | 274.0 b | 274.8 c | 29.39bc | 28.45cd | 41.84 c | 40.82 ¢ | | 50% : 50% | 84.96 a | 84.67 a | 11.63bc | 11.67ab | 52.96 a | 51.25 a | 325.0 a | 325.0 b | 28.86ab | | 44.63 b | | | 75% : 25% | 85.05 a | 84.25 a | 11.92ab | 11.75ab | 52.42 a | 52.25 a | 329.4 a | 329.4 b | 29.22 a | 29.03ab | 46.15ab | 46,96 a | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. Table 4: Vegetative growth characters and total yield of eggplant plants as affected by biofertilizer-organic fertilizer interaction during 2001 and 2002 seasons. | | | | | | | | • • | | | | | | | |------------|---------|------------|----------|----------|----------|----------|---------|---------|----------|------------------|----------|-----------|----------| | Bio- | Organic | Stem | ength | No. of | shoots | No. of | leaves | Plant | fresh | Plant dry weight | | Total | yield | | Fertilizer | Fert. | Fert. (cm) | | / plant | | / plant | | Welg | ht (g) | (g | ) . | (kg/plot) | | | | | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | | | 1 | 81.53cd | 81.73bc | 11.73ab | 11.87ab | 51.27abc | 50.67 a | 288.3 b | 303.0bcd | 28.77 bc | 28.96 ab | 44.61 ab | 44.12 ab | | With | 2 | 82.67bcd | 81.73bc | 11.13bc | 11.93 ab | 49.27 bc | 50.33 a | 281.0 b | 285.0 de | 28.83 bc | 28.63abc | 43.86 ab | 44.94 ab | | EM: | 3 | 84.00abc | 83.87ab | 12.13ab | 12.47 a | 52.33 ab | 52.13 a | 330.0 a | 332.7 a | 29.21 ab | 29.17 a | 45.24 a | 45.66 a | | | 4 | 85.87 a | 85.73 a | 12.47 a | 12.33 a | 53.47 a | 51.67 a | 336.7 a | 327.3 a | 29.53 a | 29.21 a | 45.87 a | 45.77 a | | | 1 | 79.67 d | 81.07bc | 11.13bc | 11.07 b | 49.00 c | 50.20 a | 289.0 b | 296.0 cd | 28.24 c | 28.16 c | 42.35 b | 43.90 ab | | Without | 2 | 80.07 d | 79.20 c | 10.67 c | 11.60 ab | 48.00 c | 48.80 a | 279.0 b | 272.3 e | 28.24 c | 28.21 c | 42.78 b | 43,00 b | | EM; | 3 | 82.67bcd | 81.27 bc | 11.60abc | 10.93 b | 50.93abc | 48.87 a | 313.7 a | 313.3abc | 28.73 bc | 28.54 bc | 43.94 ab | 43.02 b | | | 4 | 84.67ab | 83.40 ab | 11.53abc | 11.47 ab | 50.00 bc | 50.87 a | 322.7 a | 322.0 ab | 29.04 ab | 29.17 a | 44.55 ab | 43.56 ab | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. 1. Compost 2. FYM without litter 3. FYM with litter 4. Chicken manure. Table 5: Vegetative growth characters and total yield of eggplant plants as affected by biofertilizer-Min.: Org. ratio interaction during 2001 and 2002 seasons. | | | con aan | | | | <del></del> | | | | | | | | |--------------------|-------------|----------|--------------|-----------------|---------------|-------------|----------------|----------|-----------------|-----------|----------------|----------|----------------| | Bio-<br>fertilizer | Min. : Org. | | length<br>m) | No. of:<br>/ pl | shoots<br>ant | | leaves<br>lant | | fresh<br>ht (g) | Plant dry | y weight<br>3) | | yield<br>plot) | | rerunzer | | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | | | 100% : 0% | 87.17 a | 86.92 a | 13.00 a | 13.08 a | 54.25 a | 54.58 a | 342.1 a | 352.1 a | 29.63 a | 29.60 a | 49.10 a | 49.07 a | | With | 0% : 100% | 81.08cde | 79.17 de | 11.17bcd | 11.75 bc | 48.08 c | 49.08bcde | 267.1 bc | 259.5 cd | 28.44 bc | 28.13 b | 41.62 de | 41.76 d | | EM <sub>1</sub> | 25% : 75% | 79.25 ef | 80.17 cd | 11.17bcd | 11.83abc | 48.67 bc | 48.08 de | 270.4 bc | 277.1 c | 28.60 bc | 28.50 b | 41.53 de | 41.31 d | | ł | 50% : 50% | 84.92 ab | 84.83 ab | 11.83 bc | 12.25 ab | 54.00 a | 52.17 abc | 331.7 a | 332.5 ab | 29.05 ab | 29.22 a | 45.49 bc | 45.52 bc | | - | 75% : 25% | 85.17 ab | 85.25 ab | 12.17 ab | 11.83abc | 53.17 a | 52.08 abc | 333.8 a | 338.8 ab | 29.69 a | 29.51 a | 45.74 ab | 47.95 ab | | | 100% : 0% | 83.83abc | 84.50 ab | 12.00 ab | 11.92abc | 51.92 ab | 51.75abcd | 337.5 a | 345.8 a | 29.11 ab | 29.25 a | 45.79 bc | 45.66 bc | | Without | 0%:100% | 76.42 f | 77.50 de | 10.67 cd | 10.67 c | 45.75 c | 48.08 cde | 247.1 c | 248.8 d | 28.09 с | 27.90 b | 39.76 e | 40.44 d | | EM <sub>1</sub> | 25% : 75% | 80.25 de | 76.42 e | 10.42 d | 11.00bc | 46.17 c | 45.83 e | 277.5 b | 272.5 cd | 28.18 c | 28.39 b | 47.16 de | 40.34 d | | | 50% : 50% | 85.00 ab | 84.50 ab | 11.42bcd | 11.08bc | 51.92 ab | 50.33 bcd | 318.3 a | 317.5 b | 28.67 bc | 28.49 b | 43.77 cd | 44.44 c | | | 75% : 25% | 83.33bcd | 83.25 bc | 11.67 bc | 11.67bc | 51.67 ab | 52.42 ab | 325.0 a | 320.0 b | 28.75 bc | 28.56 b | 45.00 bc | 45.97 bc | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. 1. Compost 2. FYM without litter 3. FYM with litter 4. Chicken manure. Table 6: Stem length and No. of shoots/plant of eggplant as affected by biofertilizer, organic fertilizer and Min.: Org. ratio interaction during 2001 and 2002 seasons. | [ | 1 | T | Ste | m length | No. of s | hoots | |---------|-----------|------------------|---------------|----------------|------------|----------| | Biofer. | Organic | Min.: Org. | | (cm) | / pla | | | | Fert. | Ratio | 2001 | 2002 | 2001 | 2002 | | | | 100% : 0% | 88.67 abc | 88.33 abc | 13.00 ab | 12.67 ab | | | 1 | 0%:100% | 80.67defghij | 79.67efghijkl | 11.33abcde | 11.67 ab | | | 1 | 25% : 75% | 77.67ghij | 78.00hijkl | 11.33abcde | 12.00 ab | | | 1 | 50% : 50% | 79.67efjhij | 80.33defghijkl | 11.33abcde | 11.67 ab | | | <u></u> | 75% : 25% | 81.00cdefghij | 82.33cdefghi | 11.67abcd | 11.33 ab | | | | 100% : 0% | 87.00abcde | 75.33ghíjkl | 13.00 ab | 13.33 a | | | | 0%:100% | 80.33defghij | 78.33ghijkl | 10.33 cde | 11.67 ab | | | 2 | 25% : 75% | 77.33 hij | 78.33ghijkl | 10.33 cde | 11.00 ab | | | | 50% : 50% | 81.67cdefghij | 83.00bcdefghi | 10.67bcde | 11.67 ab | | With | | 75% : 25% | 87.00abcde | 83.67bcdefghi | 11.33abcde | 12.00 ab | | EM1 | | 100% : 0% | 87.00abcde | 88.00abcd | 13.00 ab | 13.33 a | | | 1 | 0%:100% | 82.00cdefghij | 78.00hijkl | 11.67abcd | 12.00 ab | | | β | 25% : 75% | 80.33defghij | 79.67efghijkl | 11.33abcde | 12.33 ab | | | 1 | 50% : 50% | 85.67abcdef | 90.00 ab | 12.00abcd | 13.00 ab | | | | 75% : 25% | 85.0bcdefgh | 83.67bcdefghi | 12.67 abc | 11.67 ab | | | | 100%:0% | 86.00abcdef | 86.00abcdefg | 13.00 ab | 13.00 ab | | | | 0%:100% | 81.33cdefghij | 80.67cdefghijk | 11.33abcde | 11.67 ab | | | 4 | 25% : 75% | 81.67defghij | 84.67abcdefghi | 11.67abcd | 12.00 ab | | | | 50% : 50% | 92.67 a | 86.00abcdefg | 13.33 a | 12.67 ab | | | · | 75% <u>:</u> 25% | 87.67abcd | 91.00 a | 13.00 ab | 12.33 ab | | | | 100% : 0% | 85.3abcdefg | 81.00abcdefghi | 12.33 abod | 12.33 ab | | | 1 | 0%:100% | 74.67 j | 81.33cdefghij | 10.67bcde | 10.33 b | | | 1 | 25% : 75% | 76.67 ij | 74.67 jkl | 10.33cde | 10.33 b | | | | 50% : 50% | 80.67defghij | 82.33 cdefghi | 11.00abcde | 10.67 ab | | | | 75% : 25% | 81.00cdefghij | 83.00bcdefghi | 11.33abcde | 11.67 ab | | | | 100% : 0% | 83.3 cdefghi | 81,33abcdefghi | 12.00abcd | 12.67 ab | | | 1 | 0% : 100% | 75.33 j | 73.33 kl | 10.00 de | 10.67 ab | | | <b>2</b> | 25% : 75% | 79.67efghij | 77.00 ijkl | 9.00 e | 12.00 ab | | | | 5Q% : 50% | 80.67defghij | 82.00cdefghij | 10.67bcde | 11.00 ab | | Without | <u></u> | 75% : 25% | 81.33cdefghij | _79.33fghijkl | 11.67abcd | 11.67 ab | | EM₁ | | 100% : 0% | 82.33cdefghij | 84.67abcdefghi | 12.67 abc | 11.00 ab | | | 1 | 0%:100% | 77.00 ij | . 77.00 ijkl | 11.33abcde | 10.67 ab | | | В | 25% : 75% | 81.00cdefghij | 73.00 1 | 11.00abcde | 10.67 ab | | | 1 | 50% : 50% | 86.33abcdef | 86.33abcdef | 11.33abcde | 11.33 ab | | | | 75% : 25% | 86.67abcdef | 85,33abcdefgh | 11.67abcd | 11.00 ab | | | | 100% : 0% | 84.33cdefghi | 85.0abcdefgh | 11.00abcde | 11.67 ab | | | | 0%:100% | 78.67fghij | 78.33ghijkl | 10.67bcde | 11.00 ab | | | 4 | 25% : 75% | 83.67cdefghi | 81.00cdefghij | 11.33abcde | 11.00 ab | | | | 50% : 50% | 92.33 ab | 87.33abcde | 12.67abc | 11.33 ab | | Maane 1 | ollowed I | 75% : 25% | 84.33cdefghi | 85.33abcdefgh | 12.00abcd | 12.33 ab | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. On the other hand, data in Table 7 showed that 50% mineral + 50% farmyard manure without litter with EM1 biofertilizer was the best treatment followed by 50% mineral + 50% chicken manure on No. of leaves / plant. In the same table, the treatment of 50% mineral + 50% chicken manure with EM<sub>1</sub> gave best average of plant fresh weight / plant followed by 75% mineral + 25% farmyard manure without litter. Compost 2. FYM without litter 3. FYM with litter 4, Chicken manure. Table 7: Stem length, No. of shoots/plant and No. of leaves / plant of eggplant as affected by organic fertilizer - Min.: Org. ratio interaction during 2001 and 2002 seasons. | Organic | Min.: Org. | Stem I | ength | No. of s | hoots | No. of | leaves | |---------|------------|-------------|-------------|-------------|-------|------------|--------------| | Fert. | Ratio | (CI | | / pla | | / p | lant | | | <u> </u> | 2001 | 2002 | 2001 | 2002 | 2001 | 2002 | | 1 | 100% : 0% | 87.00 b | 86.17abc | 12.67abc | 12.50 | 51.67abcd | 53.67 ab | | | 0% : 100% | 77.67 gh | 80.50defghi | 11.00cefg | 11.00 | 46.83de | 50.00abcde | | h | 25% : 75% | 77.17 h | 76.33 i | 10.83defg | 11.17 | 47.00cde | 45.50 f | | ] | 50% : 50% | 80.17efgh | 81.33cdefgh | 11.17bcdefg | 11.17 | 51.33abcde | 49.83abcdef | | | 75% : 25% | 81.0cdefgh | 82.67bcdef | 11.50abcdef | 11.50 | 53.83 ab | 53.17 abc | | | 100% : 0% | 85.17bcde | 84.83abcd | 12.50abcd | 13.00 | 52.33abcd | 51.67abcdef | | į. | 0% : 100% | 77.83 gh | 75.83 i | 10.17 fg | 11.17 | 45.67 e | 46.00 ef | | 2 | 25% : 75% | 78.50 gh | 77.67fghi | 9.67 g | 11.50 | 45.83 e | 50.33abcdef | | ŀ | 50% : 50% | 81.17cdefgh | 82.50bcdefg | 10.67 efg | 11.33 | 48.17 cde | 48.67bcdef | | | 75% : 25% | 84.17bcdef | 81.50bcdefg | 11.50abcdef | 12.83 | 51.17abcde | 54.00 ab | | | 100% : C% | 64.67bcdef | 86.33 abc | 12.83 ab | 12.17 | 53.83 ab | 45.00 ab | | İ | 0% : 100% | 79.50 fgh | 77.50 ghi | 11.50abcdef | 11.33 | 47.33 cde | 45.67 ef | | 3 | 25% : 75% | R0.67defgh | 76.33 hi | 11.17bcdefg | 11.50 | 49.00bcde | 46.00 def | | 1 | 50% : 50% | 86.90 bc | 88.17 a | 11.67abcdef | 12.17 | 56.50 a | 51.67 abcde | | | 75% : 25% | 85.83 bcd | 84.50abcde | 12.17abcde | 11.33 | 52.00abcd | 55.17 a | | | 100% : 0% | 85.17bcde | 65.50abcd | 12.00abcde | 12.33 | 54.50 ab | 53.33 abc | | Ì | 0% : 100% | 80.00efgh | 79.50efghi | 11.00cdefg | 11.33 | 47.23 cde | 47.50 cdef | | 4 | 25% : 75% | 82.67bcdefg | 82.83badef | 11.50abcdef | 11.50 | 47.83 tate | 50.33abcdef | | ) | 50% : 50% | 92.53 a | 86.67 ab | 13.00 a | 12.00 | 55.83 a | 53.17 abc | | | 75% : 25% | 86.00 bc | 83.33 a | 12.50 abcd | 12.33 | 52.67 abc | เจี2.00 abcd | | | | | | <del></del> | | | <del></del> | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. Data in Table 8 showed that the treatment 100% mineral and 75% mineral + 25% chicken manure with EM<sub>1</sub> biofertilizer were significantly increase on plant dry weight, in the same table total yield (Kg/plot) was increased by adding 100% mineral followed by 75% mineral + 25% farmyard without litter or 75% mineral + 25% chicken manure with EM<sub>1</sub> biofertilizer. These results are in line with those obtained by Awad, 1998; Magid *et al.*, 1998; Abdulla, 1999; Ouda, 2000; Abd El-Rahman and Hosney, 2001; El-Banna *et al.*, 2001 and Mohamed and Gabr, 2002. <sup>1.</sup> Compost 2. FYM without litter 3. FYM with litter 4. Chicken manure. The results of investigating the effect of organic fertilizer with or without $EM_1$ biofertilizer (compost, farmyard manure with litter, farmyard manure without litter and chicken manure) showed that chicken manure gave the best effect on disease severity at 50% mineral + 50% chicken manure (10%) followed by farmyard manure without litter (10-15%) then farmyard manure with litter (15-20%) and compost 20-35%) (Table, 11). Table 8: Plant fresh weight, plant dry weight and total yield of eggplant as affected by organic fertilizer - Min. : Org. ratio interaction during 2001 and 2002 seasons. | Organic | Min.: Org. | Plant fr | esh weight | Plant | dry weight | Total | • | |--------------|------------|----------|-------------|-----------|--------------|-------------|-----------| | Fert. | Ratio | 2001 | (g)<br>2002 | 2001 | (g)<br>2002 | (kg/p | 2002 | | <del> </del> | 100% : 0% | 317.5 bc | 323.3bcd | 29.17abc | 29.42abcd | 48.00 a | 47.14 a | | | ŀ | 292.2 de | 274.2 fg | 28.32 cd | 28.17 fgh | 41.11efg | 41.88 bcd | | | 1 | 267.5 de | 276.7 fg | 28.22 cd | 28.54cdefgh | 40,33 fg | 40.13 d | | | 50% : 50% | 294.2 cd | 316.7bcde | 28.26 cd | 28.30efgh | 43.67bcdef | 44.70 ab | | | 75% : 25% | 295.0 cd | 306.7cdef | 28.55abcd | 28.39defgh | 44.28abcdef | 46.20 a | | | 100% : 0% | 348.3 ab | 355.0 ab | 29.42abc | 29.54 abc | 46.72 ab | 47.38 a | | | 0% : 100% | 225.0 f | 211.7 i | 27.62 d | 27.88 h | 39.20 g | 40.48 cd | | 2 | 25% : 75% | 245.8 ef | 230.8 hi | 28.33 cd | 28.04 fgh | 40.99 efg | 39.91 d | | ÷ | 50% : 50% | 285.8cde | 294.2def | 28.23 cd | 28.26 fgh | 44.41abcde | 44.56 ab | | | 75% : 25% | 295.0 cd | 301.7cdef | 29.06abc | 28.42defgh | 45.28abcd | 47.50 a | | | 100% : 0% | 342.5 ab | 363.3 a | 29.23abc | 29.10abcdef | 47.19 ab | 47.79 a | | | 0% : 100% | 268.3 de | 250.0 gh | 28.42bcd | 28.11 fgh | 41.43defg | 40.62 cd | | 3 | 25% : 75% | 281.7cde | 295.0def | 28.21 cd | 28.71bcdefgh | 42.53cdefg | 41.19 bcd | | | 50% : 50% | 351.7 ab | 351.7 ab | 29.29abc | 29.10abcdefg | 44.92abcde | 44.10 abc | | | 75% : 25% | 365.0 a | 355.0 ab | 29.70 a | 29.34abcde | 46.88 ab | 47.71 a | | | 100% : 0% | 350.0 ab | 354.2 ab | 29.67 a | 29.64 ab | 47.88 a | 47.17 a | | | 0% : 100% | 265.8 de | 280.8efg | 28.70abcd | 27.96 gh | 41.01 ef | 41.43 bcd | | 4 | 25% : 75% | 300.8 cd | 296.7 def | 28.82abcd | 28.51cdefgh | 43.52 bcde | 41.75 bcd | | | 50% : 50% | 368.3 a | 337.5 abc | 29.66 a | 29.85 a | 45.52 abc | 46.54 a | | ı | 75% : 25% | 362.5 a | 354.2 ab | 29.59 ab | 29.99 a | 48.13 a | 46.44 a | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. 1. Compost 2. FYM without litter 3. FYM with litter 4. Chicken manure. Data in Tables (9 and 10) showed that the treatment 100% mineral and 25% mineral + 75% organic gave the best results (56.33 and 51.67 No. of leaves / plant; 320 and 300 g plant fresh weight; 29.35 and 28.27 g plant dry weight and 48.84 or 45.29 kg / plant of total yield. These results were followed by results of FYM without litter, FYM with litter and compost, where it gave low values compared with mineral and chicken manure with EM<sub>1</sub> and without EM<sub>2</sub> biofertilizer of all treatments. These results were in agreement with data reported by El-Banna et al. (2001) and Mohamed and Gabr (2002). Table 9: No. of leaves / plant and plant fresh weight (g) of eggplant as affected by biofertilizer, organic fertilizer and Min. : Org. ratio interaction during 2001 and 2002 seasons. | | 7 | 1 | No. of | | | esh weight | |----------|--------------------------------------------------|------------|---------------|--------------|---------------|-------------------| | Biofer. | Organic | Min.: Org. | / 140. 01 t | | | (g) | | Biolei. | Fert. | ratio | 2001 | 2002 | 2001 | 2002 | | | <del> </del> | 100% : 0% | 53.33abcdef | 56.33 ab | 320.0bcdefgh | 320.0abcdefghijkl | | | l . | 0% : 100% | 47.67cdefgh | 50.67abcdefg | 266.7hjijkl | 278.3jklmn | | | h | 25% : 75% | 48.00cdefgh | 45.33 fg | 261.7hijkl | 276.7klmn | | <b>[</b> | 1 | 50% : 50% | 51.67abcdefgh | 50.67abcdefg | 300.0cdefghij | 326.7abcdefghijk | | | i | 75% : 25% | 55.67 abc | 50.33abcdefg | 293.3efghij | 313.3cdefghijkl | | ] | | 100%:0% | 52.33abcdefg | 53.67abcdef | 340.0abcdefg | 355.0abcde | | | 1 | 0%:100% | 47.00defgh | 51.67abcdef | 230.0 kl | 213.3 op | | 1 | <b>½</b> | 25% : 75% | 46.67defgh | 47.00defgh | 248.7 jkl | 245,0mnop | | 1 | j | 50% : 50% | 49.67abcdefgh | 51.33abcdef | 291.7 efghij | 296.7fghijklm | | With | L | 75% : 25% | 50.67abcdefgh | 48.00bcdef | 296.7defghij | 315.0abcdefghijkl | | EM₁ | | 100% : 0% | 55.33abcd | 54.67abcd | 350.0abcde | 371.7 ab | | } | ļ | 0%:100% | 48.67bcdefgh | 46.33defg | 281.7ghijk | 265.0lmno | | | з | 25% : 75% | 48.00cdefgh | 50.00abcdef | 290.0efghijk | 286.7hijklmn | | Į | 1 | 50% : 50% | 57.67 a | 52.33abcdef | 353.0abcd | 366.7 abc | | ł | L | 75%: 25% | 53.00abcdef | 57.33 a | 375.0 ab | 373.3 a | | | | 100% : 0% | 56.00 abc | 53.67abcdef | 358.3 abc | 361.7 abcd | | | ļ | 0%:100% | 49.00bcdefgh | 47.67bcdefg | 290.0efghijk | 281.7 ijkima | | i | k | 25% : 75% | 52.00abcdefgh | 50.00abcdefg | 283.3fghijk | 300.0efghijklm | | | | 50% : 50% | 57.00 ab | 54.33abcdef | 381.7 a | 340.0abcdefgh | | | <u> </u> | 75% : 25% | 53.33abcdef | 52.67abcdef | 370.0 ab | 353.3 abcdef | | | I | | 50.00abcdefgh | 51.00abcdef | 315.0bcdefghi | 326.7abcdefghijk | | į | | 0%:100% | 46.00fgh | 49.33abcdefg | 315.0bcedghi | 270.0klmn | | | 1 | | 46.00fgh | 45.67efg | 271.7hijk! | 276.7 klmn | | [ | 1 | 50% : 50% | 51.00abcdefgh | 49.0abcdefgh | 273.3hijkl | 306.7defghijkl | | | | 75% : 25% | 52.00abcdefgh | 56.00 abc | 288.3fghijk | 300.0efghijklm | | ļ | J | | 52.33abcdefg | 49.67abcdefg | 356.7abcd | 355.0abcde | | l | 1 | | 44.33 gh | 50.67abcdefg | 220.0 L | 210.0 p | | 1 | <b>P</b> | 25% : 75% | 45.00 fgh | 45.00 fg | 245.0 jkl | 216.7 op | | l. | J | , | 46.67 fgh | 49.33abcdefg | 280.0ghijk | 291,7 ghijklm | | Without | | 75% : 25% | 51.67abcdefgh | 49.33abcdefg | 293.3efighijk | 288.3hijklmn | | EM, | I . | | 52.33abcdefg | 53.33abcdef | 335.0abcdefg | 355.0 abcde | | ł | } | | 46.00 fgh | 45.00 fg | 255.0 ijkl | 235.0nop | | 1 | β | | 60.00abcdefgh | 42.00 g | 273.3hijkl | 303.3efghijkl | | | | | 55.33abcd | 51.00abcdefg | 350.0abcde | 336.7abcdefghi | | ł | <u> </u> | 75% : 25% | 51.00abcdefgh | 53.00abcdef | 355.0abcd | 336.7abcdefghi | | | 1 | | 53.00abcdef | 53.00abcdef | 343.3abcdef | 346.7abcdefg | | | I | | 46.67fgh | 47.33cdefg | 241.7jkl | 280.0ijklmn | | ľ | ۱ ۴ | 25% : 75% | 43.67 h | 50.67abcdefg | | 293.3ghijklm | | | 1 | 50% : 50% | 54.67 abcde | 52.00abcdef | 355.0abcd | 335.0abcdefghij | | L | <u> </u> | 75% : 25% | 52.00abcdefgh | 51.33abcdef | 355.0abcd | 355.0abcdef | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. <sup>1.</sup> Compost <sup>2.</sup> FYM without litter <sup>3.</sup> FYM with litter <sup>4.</sup> Chicken manure. Table 10: Plant dry weight (g) and total yield (kg/plot) of eggplant as affected by biofertilizer, organic fertilizer and Min. : Org. ratio interaction during 2001 and 2002 seasons. | | T | | | ry weight | | l yield | |-----------------|--------------------------------------------------|------------|-------------|---------------|-----------------|-----------------| | Biofer. | Organic | Min.: Org. | | (g) | | /plot) | | Bloter: | Fert. | ratio | 2001 | 2002 | 2001 | 2002 | | | | 100% : 0% | | | 49.84 a | 46.94abcdef | | 1 | i | | | | | 40.63ghijk | | } | l <sub>1</sub> | | | | | 40.72ghijk | | l | [' | | | | | 45.23abcdefghi | | | ! | | | | 44.50abcdefghij | | | 1 | <del></del> | | | | | 49.25abc | | ļ | 1 | | 28.08cdef | | | 41.90defghijk | | | b | | | | | 40.99fahiik | | | Γ | | | | | 44.99abcdefghij | | With | | | | | | 47.57abcd | | EM, | | | | | 45.33abcdefghi | | | | | | | | | 41.56efghijk | | ĺ | ß | | 28.47bcdef | | | 41.49efghijk | | ļ | | | 29.58abcd | | | 44 53ocdefghijk | | | | 75% : 25% | | | | 49.94 ab | | 1 | | 100% : 0% | 30.27 a | 29.85abcd | 49.37 ab | 49.30abc | | | 1 | 0% : 100% | 28.71abcdef | 27.76 hi | 41.61efghij | 42.96defghijk | | | 4 | 25% 75% | 28.89abcdef | | | 42.03defghijk | | | İ | | | 30.04 ab | 46.67abcdef | 47.32abcde | | Ĺ | | 75%: 25% | 29.92ab | 30.10 a | 49.10abc | 47.23abcde | | | | 100% : 0% | 29.00abcde | 29.06abcdefgh | | 47.33abcde | | | | | | 28.02fghi | 39.65 ij | 43.12defghijk | | | 11 | | | | | 39 54 ijk | | ( | ĺ | | | | | 44.17bcdefghijk | | | <u></u> | | | | 44.07abcdefghij | | | ł | | | 29.39abcd | | 45.08abcdefghi | | | | | | | | | 39.07 jk | | | p | | | | | 38.84 k | | Į., | j | | 27.94 def | 27.94 ghi | | 44.17bcdefghijk | | Without | | | | | 45.23abcdefghi | | | EM <sub>1</sub> | | | | | 45.53abcdefghi | | | | L | | | | | 39.67hijk | | ] | β | | | | | 41.50efghijk | | ļ | | | | | 45.06abcdefghi | | | ( | <b>!</b> | | | | | 45.48abcdefghi | | | 1 | | | 29.43a\bcdefg | | 45.04abcdefghi | | | 1. | | | | | 39.90ghijk | | 1 | ľ" | | | | 44.43abcdefghij | | | | | | | | 44.34abcdefghij | | | Manna fal | <del>! </del> | 75% 25% | 29.20abco | 29.8/ apc | | 45.65abcdefgh | Means followed by the same letter(s) within each column do not significantly differ using Duncan's Multiple Range Test. On the other hand, Table (11) using organic fertilizer without $EM_1$ biofertilizer, the data showed that the best result of disease severity by using chicken manure (10-20%), farmyard manure without litter (20-25), farmyard manure with litter (25%) and compost (25-35%), respectively. Adding to mention before, the using of mineral fertilizer with $EM_1$ biofertilizer (10%) is better than without $EM_1$ biofertilizer on disease severity (20%). <sup>1.</sup> Compost <sup>2.</sup> FYM without litter 3. FYM with litter <sup>4.</sup> Chicken manure. Table 11: Effect of EM<sub>1</sub> biofertilizer and organic fertilizer on root rot disease severity. | Fertilizer | Min.:Org. | With EM <sub>1</sub> biofertilizer | Without EM, | |-----------------|--------------|------------------------------------|---------------| | | ratio | <u> </u> | biofertilizer | | | } | 35 | 35 | | Compost | 11 | 25 | 30 | | • | l III | 20 | 25 | | | V! | 20 | 25 | | | | 20 | 25 | | Farmyard manure | 1 11 | 20 | 25 | | without litter | 181 | 15 | 25 | | | l IV | 15 | 25 | | | | 15 | 25 | | Farmyard manure | 1 11 | 15 | 25 | | with litter | <b>1</b> 111 | 1 10 | 20 | | | IV | 10 | 20 | | | 1 | 15 | 25 | | Chicken | l ii | 10 | 20 | | Manure | 111 | 10 | 20 | | | . IV | 10 | 15 | | LSD at 5% | | 2.89 | 3.04 | | 1% | İ | 3.84 | 4.03 | Where I: 0% mineral + 100% Organic fertilizer. II: 25% mineral + 75% Organic fertilizer. IV: 75% mineral + 25% Organic fertilizer. The results of investigating the effect of bio and organic fertilizers on economic soil-borne fungi in eggplant under field conditions are shown in Table (11), that the effect of chicken manure from high dose to low on the total counts of soil-borne fungi in thousand colonies per one gram of dried soil had best effect than other treatments followed by mineral fertilizer and farmyard manure without litter, respectively. On the other hand, the effect of farmyard manure with litter and compost was less effect than all treatments at four doses. In the same treatment, using biofertilizer (EM<sub>1</sub>) added to organic fertilizer gave best results than without EM<sub>1</sub> biofertilizer in all treatments. The soil testing depending on identification of fungal genera only, those were Asperigllus penicillum, Fusarium and Rhizoctonia (Table 12). These results are in accordance with those recorded by Higa (1991) and Parr and Harmic (1994), who found that such animal manures detoxify pesticides, suppress plant disease and soil-borne disease. Table 12: Effect of EM<sub>1</sub> bio- and organic fertilizer on count of microorganisms of one gram dried soil. | Treatment and | | TC | Aspergillus | | | Rhizopium | No. | TC | Aspergillus | | Fusarium | Rhizopium | |----------------|------|--------|-------------|-----|-----|-----------|------|--------|-------------|-----|----------|-----------| | dose | of G | of all | тс | TC | TC | TC | Of G | Of all | TC | TC | TC | TC | | • | 4 | 3.0 | 1.5 | 1.0 | 0.2 | 0.3 | 4 | 3.1 | 0.0 | 1.3 | 0.5 | 0.4 | | Compost | 3 | 3.0 | 1.3 | 1.0 | 0.7 | <b>\</b> | 4 | 3.0 | 0.0 | 1.2 | 0.4 | 0.5 | | | 3 | 2.8 | 1.3 | 1.0 | 0.5 | | 4 | 3.0 | 1.0 | 1.0 | 0.5 | 0.5 | | Farmyard | 3 | 2.9 | 1.5 | 0.9 | | 0.5 | 4 | 3.0 | 1.1 | 0.9 | 0.4 | 0.6 | | manure | 3 | 2.8 | 1.4 | 0.8 | 0.6 | | 4 | 3.0 | 1.0 | 1.0 | 0.5 | 0.5 | | with litter | 3 | 2.9 | 1.3 | 0.9 | | 0.7 | 4_ | 2.9 | 1.2 | 1.0 | 0.2 | 0.5 | | Farmyard | 3 | 2.7 | 1.3 | 1.1 | 0.3 | | 4 | 2.8 | 1.2 | 0.9 | 0.3 | 0.4 | | manure | 3 | 2.7 | 1.4 | 1.0 | 0.3 | | 4 | 2.7 | 1.2 | 0.8 | 0.4 | 0.3 | | without litter | 3 | 2.6 | 1.5 | 1.0 | | 0.1 | 3 | 2.6 | 1.1 | 0.8 | | 0.7 | | | 3 | 2.3 | 1.0 | 0.7 | | 0.5 | 3 | 2.5 | 1.0 | 1.0 | 0.5 | | | Chicken | 2 | 2.1 | 0.9 | 1.2 | | | 3 | 2.4 | 1.0 | 8.0 | ì | 0.6 | | Manure | 2 | 2.1 | 0.8 | 1.3 | | - | 3 | 2.3 | 0.9 | 0.9 | | 0.7 | | Mineral | 4 | 3.0 | 1.2 | 0.8 | 0.4 | 0.6 | 4 | 3.2 | 1.5 | 0.8 | 0.3 | 0.6 | ### **REFERENCES** - Abd El-Rahman, S.Z. and Hosny, F. (2001). Effect of organic and inorganic fertilizers on growth, yield, fruit quality and storability of Eggplant. J. Agric. Sci. Mansoura Univ., 26(10):6307-6321. - Abdulla, A.M. (1999). Effect of organic and biofertilization on growth, yield and its quality and storability of potato. Ph.D. Thesis, Fac. of Agric., Cairo Univ., Egypt, 96 PP. - Awad, N.M. (1998). The use of microorganisms in ecological farming systems. Ph.D. Thesis, Fac. Sci., Cairo Univ., Egypt, 110 PP. - Ciccarese, F.; Frisullo, S. and Cirulli, M. (1987). Sever outbreaks of verticillium wilt on *Cicharium intybus* and *Brassica rape* and pathogenic variations among isolates of *V. dahliae*. Plant disease, 71:1144-1145. - Cooke, G.W. (1982). Fertilizing for Maximum Yield. 3<sup>rd</sup> Ed. Collins Professional and Technical Books, 465 pp. - Crossan, D.F. (1967). Selective isolation of soil microorganisms by differential media. In source book of laboratory exercises in plant pathology, 387 pp, W.H. Freeman and Company, San Francisco and London. - Edwards, C.A. (1973). Environmental Pollution by pesticides. Plenum Press, London, P. 1-9. - El-Banna, E.N.; Awad, E.M.; Ramadan, H.M. and Mohamed, M.R. (2001). Effect of bio-organic fertilization in different seasons on growth, yield and tubers quality of potato (*Solanum tuberosum*). J. Agric. Sci. Mansoura Univ., 26(3):1873-1882. - El-Nagar, E.M. (1996). Effect of applying some organic residues to sandy and calcareous soils on growth and composition of some plants. M.Sc. Thesis, Fac. of Agric., Mansoura, Egypt. 96 pp. - Higa, T. (1991). Effective microorganisms: A biotechnology for mankind. P.B. 14. In J.P. Parr, S.B. Hornic and C.E. Whitman (ed.). Proceeding of the First International Conference on Kyusei Nature Farming. U.S. Department of Agricultures, Washington, D.C., USA. - Higa, T. and Wididana, G.N. (1991a). Concept and theories of effective microorganisms. pp. 118-124. In J.F. Parr, S.B. Hornik; C.F. Whitman (eds). First International Conference on Kyusei Nature Farming. Proceeding of the Conference at Khon Kaen University, Khon Kaen Thailand, Oct. 17-21. - Higa, T. and Wididana, G.N. (1991b). Changes in soil micro flora induced by effective microorganisms. P. 153-162. In J.F. Parr, S.B. Hornik; C.F. Whitman (eds). Proceeding of the First International Conference on Kyusei Nature Farming. U.S. Department of Agricultures, Washington, D.C., USA. - Kolbe, H.; Meineke, S. and Zhang, W.L. (1995). Differences in organic and mineral fertilization on potato tuber yield and chemical composition compared to model calculations. Agribiol. Res., 48(1):63-73. - Magid, H.M.A.; Abdel-Aal, S.I.; Rabie, R.K. and Sabrah, R.E.A. (1998). Chicken manures as a biofertilizer for wheat grown on sandy soil of Saudi Arabia. Egyptian Journal of Soil Science, 38(1/4):329-338. - Martin, J.P. (1959). Use of acid rose Bengal and streptomycin in the plate method for estimating soil fungi. Soil Sci., 69:215. - Mohamed, F.H. and Gabr, S.M. (2002). Effects of organic manure and chemical fertilization on growth yield and quality characteristics of straw berries. J. Agric. Sci. Mansoura Univ., 27(1):561-572. - Ouda, A.M.M. (2000). Biological studies on tomato yield and its components. Ph.D. Thesis, Fac. Agric., Mansoura Univ., Egypt. 110 pp. - Parr, J.F. and Hornick, S.B. (1994). Assessment of the Third International Conference on Kyusei Nature Farming: Round Table Discussion by USDA Scientists, October 7, 1993. Published by the Nature Farming Research and Development Foundation, Lompoc, California, USA. - Sahota, T.S. (1983). Direct and residual effects of FYM, P and K on potato at shilling. Bengladesh Hort., 11(2):34-37. - Subba Rao, N.S. (1993). Biofertilizers in Agricultures and Forestry. 3<sup>rd</sup> Ed. Oxford. IBH Publishing Co. PVT Ltd. New Delhi Bombay, Calcutta, 219 pp. - Tisdale, S.L.; Nelson, W.L. and Beaton, I.U. (1985). Soil Fertility and Fertilizers. 4<sup>th</sup> Ed. MacMillan Publishing Company. A Division of MacMillan, Inc, New York, 454 pp. - Tratch, R. and Bettiol, W. (1997). Effect of biofertilizers on mycelial growth and spore germination of plant pathogenic fungi. Pesquisa Agropecuaria Brasilera, 32(11):1131-1139. تأثير بعض الأسمدة الحيوية والعضوية على النمو والمحصول وأعفان الجذور لمحصول الباذنجان . السعيد محمود السعيد ' - أمين على المغربي ' - محمد نجيب خليل ا ١- معهد بحوث البساتين - مركز البحوث الزراعية ٢- معهد أمراض النباتات - مركز البحوث الزراعية تم دراسة تأثير التسميد الحيوي والعضوي على الصفات الخضرية والمحصول وكذلك أعفان الجذور لمحصول الباننجان مختلطة بعنصر معادى معدنى واحد وكان يمثل التسميد الحيوى الساماد والمباد المباد الأسمدة العضوية عبارة عن سعاد الكتكوت والسماد البلدى بدون إضافات والسماد البلدى به إضافة فرشه وكذلك القمامة وأظهرت النتائج بصفة عامة أن استخدام السماد الحيوى EM أعطال الخطابية مسن الأسمدة العضوية أفضل عن استخدام الأسمدة العضوية بدونه في كل الحالات سواء الصفات الخضرية مسن طول الساق – عدد الأفرع – الوزن الطازج والوزن الجاف وكذلك المحصول ودرجة الإصابة باعفان الجذور وذلك في كل المعاملات التي أجريت في الحقل، وداخل هذه المعاملات أعطى سماد الكتكوت ، ٥٠ مختلطا بـ ،٥٠ سماد معدني أفضل النتائج في كل الصفات الخضرية والمحصول، ثم تبع ذلك بسالترتيب السماد البلدى بدون إضافة والسماد البلدى المضاف إليه الغرشة والقمامة في النهاية، على جانب آخر آتفقت النتائج المتحصل عليها من نفس المعاملات في تأثرها على أعفان الجذور من حيث تأثيرها على الإصابة بالمرض وكذلك أعداد الوحدات الميكروبية في واحد جرام تربة جافة تماما مما يوحسى بأن التسميد الحيوى بالمادة EM1 ذات فعالية في تأثيرها على أعفان الجذور وعند استخدام سماد الكتكوت مع السماد الحيوي EM1 أعطى تأثيرا أكبر على المرض وكذلك نوع المسببات المرضية المتواجدة بالتربسة وخاصة الفطريات الممرضة ، ولكن المعاملات الأخرى سواء سواء سماد الكتكوت بدون السماد الحيوى أو الأسمدة العضوية الأخرى مثل السماد البلدى بكلا نوعيه والقمامة سواء أضيف إليها السماد الحيوى أم لم يضاف اعطت أيضا نتائج مرضية على القوالي وكان في المؤخرة السماد العضوى (القمامة) بكلا الطريقتيسن سواء مضاف إليه سماد حيوى أو غير مخلوط به سماد حيوى (EM1) ،