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ABSTRACT

(Geostatistics provides descriptive tools to characterize the spatial distribution
of soil aftributes. Kriging techniques rely on the spatial dependence between
observations to predict attribute vaiues at un-sampled locations. Cokriging on the
other hand, utilizes the spatial correfation between two variables to map the primary
one, which is under-sampled, using information content of the secondary variable.
The present study aimed at applying cokriging technique to map topsoil free iron
oxides content (Fed) (primary variable) measured in 32 samples, using the
information content of topsoil clay contnet (secondary variabie) measured in 54
samples. Topsoil Fed ranged between 2 10 and 4.80%, whereas topsoil clay contnet
varied from 24.0 to 69.0%. The correlation coefficient, r, between the two variables is
0.83, which satisfies the most important criteria for carrying out cokriging. The fitted
semivariograms for both variables are Gaussian, and the cross-semivariogram
between the two variables is also Gaussian. The cokriged spatial distribution of topsoit
Fed was mapped and compared to kriged Fed. The cokriging results were cross-
validated and the standard error of estimation was maiched to that of kriging. The
study showed the superiority of cokriging upen kriging as a spatial mapping method,
especially if the primary variable is under-sampled.

Keywords: Terra Rossa, Geostatistical analysis, Cokriging, Kriging, Ciay contnet,
Free fron oxides, Cross-semivariogram, Semivariogram.

INTRODUCTION

The red color of many of the soils in the Mediterranean region was
the main reason that in the past the broad term “Red Mediterranean soils”,
occasionally “terra rossa”, became quite a common indication for all soils in
the region (Yaalon, 1997). Bresson (1993) staled that Red Mediterranean
soils resulted from a bisialiitic type of weathering with the release of high
amounts of iron oxides closely bound to clay minerais.

Terra rossa is reddish clayey to silty-clayey soil especiaily
widespread in the Mediterranean region, which covers limestone and
doiomite in the form of a discontinuous layer ranging in thickness from a few
centimeters to several meters. It is also found along more or less karstified
cracks and between the bedding surfaces of limestones and dolomites. Thick
accumulations of terra rossa-like material are situated in karst depressions in
the form of pedo-sedimentary colluvial complexes (Durn et al., 1999).

in Soil Taxonomy (Sail Survey Staff, 1998) terra rossa is classified as
Alfisols (Haploxeralfs or Rhodoxeralfs), Ultisols, Inceptisols (Xerochrepts) and
Mollisols (Argixerolls or Haploxeroils). According to the FAO system (FAO,
1974} terra rossa is recognised as Luvisols (Chromic Luvisols), Phaeozems
{Haplic Phaeozems or Luvic Phaeozems) and Cambisols.
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Qualitative and quantitative analysis of soil Fed are of great
pedological interest because Fed content and mineralogy reflect duration and
intensity of pedo-genesis. In addition, Fed greatly affect the adsorption
capacity of soiis with respect to oxyanions. Therefore, the knowledge of their
spatial variability is crucial, for example, for the risk assessment of selenate
and or arsenate toxicity (Zhang and Sparks, 1990; Bowell, 1994) or for the
site-adapted application of phosphate fertilizers (Torrent, 1987; Van der Zee
et al., 1988, Scheinost and Schwertmann, 1995).

Based on analysis of 48 terra rossa samples from various locations
around the world (Italy, Greece, Israel, Spain, Lebanon, France, Mexico,
Germany and Australia) Boero and Schwertmann (1989) found that Fed,
Fed/Fet, haematite/goethite ratios and Al substitution in haematite and
goethite vary to a rather limited extent which may indicate the specific
pedoenvironment under which terra rossa is formed. They suggested this
pedoenvironment is characterised by an association of Mediterranean
climate, high internal drainage due to the karstic nature of a hard lime-stone
and neutral pH conditions.

The average of Fed in this 48 terra rossa samples is 3.5% (+0.3).
While, Al-Zafry (2001) found that mean of Fed at Jabal Al-Akhdar "Libya" is
5.15%. Whereas, Durn (2003) found in 40 samples from Istria "Croatia”, Fed
averaged 3.68% (+0.28). This supports Boero and Schwertmann’'s {1989)
conclusion, that the rather limited extent of variation of selected Fed
characteristics may indicate a specific pedo-environment in which terra rossa
is formed.

According to Durn et al. (1999) terra rossa clay content ranges from
32.1 to 77.2% and generally increases with depth in the profiles. The higher
content of sand sized particles observed in a few samples is attributed to
rhizoconcretions which formed in terra rossa as the result of
palaeopedological processes which post-date terra rossa formation
(recalcification of terra rossa following its burial) or to the recent colluvial
additions of flysch.

Fed/clay ratios are relatively uniform in terra rossa from lIstria and
clearly indicate a predominance of co-illuviation of clay and Fe-oxides, i.e. a
connection between Fe-oxides and the clay fraction (Durn et al., 2001).
According to Fedoroff {1997) rubification occurs in the upper horizons, then
rubified soil material is translocated with the clays at depth. So, the
translocation of clay particles is responsible for the distribution of the red
colour throughout the whole profile. However, since they have been exposed
to various climatic fluctuations terra rossa scils can be affected by eluviation,
yellowing and secondary hydromorphy.

Geostatistics has been applied by many researchers to describe the
spatial variability using the semivariogram and predict the values of soil
attributes at un-sampled locations by different kriging (named after D.J. Krige)
techniques (Trangmar et al., 1985, Warrick et al., 1986; Burrough, 1989;
Webster and Oliver, 1989; Webster, 1991; Goovaerts, 1992, 1998 and 1999;
Bahnassy et at. 1995; and Bahnassy and Morsy, 1986), ecological properties
{Banerjee and Gelfand, 2002), and categorical variables (Bogaert, 2002).
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The term cokriging is used for spatial linear regression that uses data
defined by different attributes. The data set will contain the primary variable of
interast in addition to one or more secondary variables, which are spatially
cross-correlated with the primary variable. Thus, the dataset will contain
useful information about the primary variable. The cross-correlation between
variables is utilized to improve these estimates, and to reduce the variance of
the estimation error. The usefuiness of the secondary variable is often
enhanced by the fact that the primary variable of interest is under-sampled
(Issacks and Srivastava, 1889). The spatial relationship between the values
of the aftribute is governed by the regionalized variable theory, which states
that observations close to each other are more correlated than observations
taken at a further distance (Journel and Huijbregts, 1978). This means that
points spatially close to the estimation points should be given higher weights
than those further away {Cressie, 1993). The coregionalized variable theory
deals with the same situation as the regionalized variable theory, but the
variables under consideration are correlated, and behave the same
(McBratney and Webster, 1983 and 1986). Consequently, the cross-
semivariogram can be modeled as a joint function between the two variables
(Issacks and Srivastava, 1989). The linear coregionalization model allows for
different ranges of spatiat correlations for each variable (Wackernagei, 1994
and 1995).

Due to computation and notation difficuities related to cokriging
system {Journe!l and Huijbregts, 1978, Myers, 1982; and Deutsch and
Journet, 1998), a limited number of researches have been carried out utilizing
cokriging as a best linear unbiased estimator (B.L.U.E.). Danielsson et al,
(1998) applied cokriging to estimate the totai amounts and the spatial
distribution far organic carbon, nitrogen and phosphorus in the Gulf of Riga
surficial sediments, using loss on ignition as a covariable. Goovaerts (1998)
used different methods of kriging and cokriging to model the spatial
distribution of pH and etectrical conductivity in two transects in forest and
pasture soils. Rivoirard (2001) indicated that the cokriging could be collocated
or muiti-collocated depending on the configuration of data and the location at
which the value will be estimated. Bahnassy (2002) applied coliocated
colriging to study the spatial distribution of topsoil sodicity using the
information content of soil salinity. Morsy {2004) estimated the SAR and EC
contents in the surface and subsuface layers.

The current study amied at applying cokriging to predict the values of
the primary variable (free iron oxides), which is sparsely sampied and hard to
measure, using the information content of topsoil Clay content, which is
densely sampled and easy to measure, taking into consideration the fact that
these twa variable are correlated. The cokriged free iron oxides is compared
to the kriged free iron oxides and the standard error of estimation for both
methods was matched.
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MATERIALS AND METHODS

The Study Site

The studied site is located about 2 km. to the southwest of Al-Beida
city and named as Bil Ghara area (figure 1). The area is characterized by the
presence of short Wadies and some of them are branched from wadi ai-Kuf.
The studied site is part of one of these short wadies coarse. This site is
belong Omar Al-Mukhtar University as research farm for faculty of
Agriculture. Soils in the studied site are mainly Terra Rossa (Red
Mediterranean soil) which includes Typic Haploxeralfs and Typic
Rhodoxeralfs.

One of the most unique features characterizing Jabal Al-Akhdar
region, which is located in the north east part of Libya, is the diverse soils it
has. Six Soil order (out of 12 worldwide) are represented in this relatively
small area. The richness of soils in numerous sites was a result of
environmental and biotic factors. The most obvious of all is the annual
rainfali, characterized by wide range extending from 800 mm/ year.

The favorable environmentai conditions such as moderate average
temperature throughout the months of the year has supported the
development of diverse vegetative cover , including big trees like Juniper,
cedar, and Mastic in the South . Also, these environmentai differences have
supported a wide range of aromatic as well as medical herbs.

136 1ro
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Fig. 1: Location of the study area.
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Sampling Scheme and Soil Analysis

Fifty-four soil observations were collected over the study area. The
topsoil was analyzed for Clay%. These soil observations were used as a
secondary data for interpolating the Free Iron Oxides. Thirty-two sail
observations were taken randomly as a subset of the original data and
analyzed for Free Iron Oxides, which is considered as the primary variable.
The samples locations were georeferenced to the UTM coordinate system.
The spatial configuration of the soil observations used for Clay and Free iron
Oxides is shown in figure 2. Free iron oxides extractable with Na dithionite-
citrate bicarbonate (Fed)-exiracts practically all secondary Fe oxides- were
obtained after the method of Mehra and Jackson (1960) and measured with
AAS (Pye-Unicarn SP9).
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Fig. 2: Location of soil observations

Descriptive Statistical Analysis

The data for Clay% and Free Iron Oxides were analyzed for basic
statistics including mean, variance, standard deviation, minimum, maximum,
skewness, and kurtosis. The histogram for both variables was obtained, and
the correlation hetween the two variables was calcuiated.

Semivariogram and Cross-semivariogram Analysis

The semivariogram is defined as haif of the average squared
difference between two attribute values separated by vector h, for one
variable (Burrough and McDonnell, 1998).

1 N(D | ,
y(h)= M ;{Z(x,)—Z(x,+h)}
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where N(h) is the number of pairs at lag h, Z(x;} is the value of the attribute at
location (x;) and Z(x; "+ h) is the value of the attribute at location (x; + h)
separated by distance h. The separation vector h is specified with some
direction and distance (lag) tolerance. This semivariogram is used to model
both clay % and Fed %, and then fitting them to one of the known
semivariogram functions (Gaussian, Exponential, and Spherical). In case of
using two variables (cokriging) the cross-semivariogram is caiculated as
follows:
1 N(h)

yur(h) = ——— N g{zu(x,) Zu(xi+ W)Y Zv(x) = Zv(xi+ h)}

where Zu (Fed %) and Zv (salinity %) are the two variables. This equation is
used to model Fed using the information content of Clay, then fitting the
obtained model to one of the known cross-semivariograms represented by
Gaussian, Spherical, and Exponential functions.

Cokriging

A co-kriged estimate is a weighted average in which the value of U at
location X, is estimaied as a linear weighted sum of co-variables V. If there
are k variables k = 1, 2, 3,. . . V, and each variable is measured at n, places,
xx = 1, 2, 3.... Ng, then the value of one variable U at x, is predicted by
(Burrough and McDonnell, 1998):

, " Hv
z, () = DD AaZ (xu) for all V,

x=l i=l
where A is the weight assigned to variable k and Z(x,) is the value of the
variable at location i.

To avoid bias, i.e. to ensure that

Elzu(Xo) — Z'u(X,)]=0 and
the sum of weights A, = 1forU=V and
the sum of weights A =0 forV, = U

The first condition (sum of weights iy = 1) implies that there must be
at least one cbservation of U for cokriging to be possible. The interpolation
weights are chosen to minimize the variance:

6%y (%) = EfZulXo) = Zu(Xo)}]
There is one equation for each combination of sampling site and

attribute, so for estimating the value of variable j at site x,, the equation for
the g-th observation site of the k-th variable is:
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[
Z Z Aayi( X, Xgx ) + Dk = Yv(Xo, Xgt )
7=l o=l
for all g=1 to n, and all k=1 to V, where @ is the Lagrange's multiplier. These
equations together make-up the cokriging system.

Cross Validation

Cross validation is a technique, which is used to compare estimated
and true values using the information available in the data set. in cross
validation, the estimation method is tested at the locations of existing
samples. The sample value at a particular location is temporarily discarded
from the sample data set; the value at the same location is then estimated
using the remaining samples. Once the estimate is calculated, it is compared
to the true sample value that was initially removed from the sample data set.
This procedure is repeated for all samples. This could be expressed as
(Issaks and Srivastava, 1989):

Error=r=v'-v

Where v’ is the estimated value and v is the true value. Mean square error
(MSE) is calculated from the formula:

MSE=13%"
nog

Linking Geostatistics to Geographic Information Systems (GIS)

The estimates from cokriging and kriging, and the associated error
(Gamma Design, 2001) were exported to Arc View GIS software (ESR!,
1897) for better visualization, mapping and printout.

RESULTS AND DISCUSSIONS

Description of Spatial Patterns

The analysis of spatial data starts with posting the data values. Fig
{3) shows the spatial distribution of Free Iron Oxides sampled at 32 locations.
The spatial distribution of the variable is not random, but follows the
regionalized theory, i.e., observations close to each other on the ground tend
to be more alike than those further apart (Journel and Huijbregts, 1878). The
presence of such spatial structure is prerequisite to the application of
Geostatistics, and represents the first step towards spatial prediction
{Burrough and McDonnell, 1998).

The main pedogenic process which characterises terra rossa in
mediterranian region and Jabal Al-Akhdar is the accumulation of clay and is
manifested through; (1) clay illuviation in the form of coatings and/or (2)
microaggregates incorporated in the groundmass due to argilloturbation and
soil stress (Al-Zafry, 2001, Dum et al, 2001 and Durn 2003). According to
Fedoroff (1997) rubification occurs in upper horizons, then rubified soil
material is translocated with clays to depth.
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Fig. 3: Data posting for Iron

Descriptive Statistical Analysis

The statisticai analysis of the free iron oxides is clay% and shown in
table (1). It is clear that clay% has more variability than Fed as the Cv% is
aimost 18.57%. This is attributed to the greater number of soil samples (54)
used in the analysis compared to the number of samples (32) used for free
iron oxides analysis. Moreover, there is a greater number of soil samples with
low Fed values (fig 3), which lowered the mean compared to the standard
deviation. The histogram for both Clay% and Free Iron Oxides is shown in fig
{4). On the other hand, variance indicates that Free Iron Oxides has spread
on a wide range contrary to Clay%, which is distributed around a high number
of sampies with low values (Fig 4).

Freneney
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Fig. 4: The semivariograms for Clay% (above) and Fed (below)

Table 1: Descriptive statistical analysis for Clay % and Fed.

Statistical Paramater Clay % Fed
Mean 52.33 3.86
Standard Deviation 9.72 0.57
CV% (coefficient of variation) 18.57 14.77
Variance 94 45 0.33
Minimum 24.00 2.10
Maximum 69.00 4.80
N {number of samples) 54 32

Regression analysis of both clay% and free iron oxides indicated a
positively highly correlated two variables, which satisfies the need to carry out
cokriging analysis of Fed % using the information content of clay %. The
correlation ceefficient for this analysis is 0.93. Yates and Warrick (1987)
showed that if the correlation coefficient between a primary variable and the
covariable exceeds 0.5, then the inclusion of the covariable is favorable, and
cokriging performs better than kriging.

Clay % and Free Iron Oxides (fed) Semivariograms
The semivariograms for both clay and Fed were fitted to the
Gaussian model as shown in the following equation:

232
7(h) = Co+C{1 —exp(~ 1))
a2
Where C, is the nugget, C, is the sill, h is the separation distance (lag) in
meters, and a is the range.
The parameters for the fitted semivariograms for both clay and fed
are shown in table (2), and the semivariograms are shown in figure (5). The

formulated equations for these two variables are as follows:

}/[ron(m = 000k + 02611 ~ exp(- 3h2 H}
(600)2

}’Clayo/ﬂ(h) = 0.1 +1062{1 — expi— _3&)}
(600)2
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Table 2: Semivariogram types and parameters for clay and Fed

Variable Model [ Nugget {Cc) | Sill (Co+C1) Range (a) R*
0.1

Clay% Gaussian . 106.2 600 0.95
Fed Gaussian 0.001 0.361 600 0.937
0371 B ]
a ]
0.279
s
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0,093
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0.000
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Fig. 5: The semivariograms for clay% (above} and Fed (below)

It is clear that the coefficient of determination R® for both models
exceeds 0.90, which indicates the goodness of the estimation. Moreover, The
fitted Gaussian semivariogram indicates a smoothiy varying pattern for both
variables (Burrough and McDonnelt, 1998).

The Cross-semivariogram (Collocated semivariogram)

The cross-semivariogram of Fed and clay is of the collocated type,
which means that the estimation was performed using variables measured at
the same location. Table (3) and figure (B) indicate the parameters of the
fitted Gaussian cross-semivariogram between sodicity and salinity. The
Gaussian joint semi-semivariogram is as follows:

3h2

}/Fed - Claym, = 0.01 + 5.779{1 - exp(~ 60072

i}
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Table 3: Cross-semivariogram parameters between Fed and Clay%.

Variables Model Nugget (Co) | Sill (Co+C1) Range {a) R*
Fed and Clay Gaussian 0.01 5.779 600 0.549
§07 a
[a] a o
- 455
2 /
§3m
152
=]
e e
003 37524 175649 62574 350098
Separation Distance

Fig. 6: The cross-semivariogram between Fed and Clay %

The most important parameter in this estimation is the high R? (0.95)
obtained from the fitting process. This high estimation regression coefficient
comes very close {0 that of the simple linear regression (0.98) between Fed
and clay content. The advantage of cokriging over linear regression is that it
takes into consideration the spatial variability of the surrounding points, rather
than performing blindly the linear regression, which lacks this improvement.

Cokriging compared to Kriging

The output from cokriging process is a map of the spatial distribution
of Fed % based on the information content and the high correfation with ciay
%. Fig (7} shows the cokriged Fed % for the study area.

it is clear that the cokriged fed % is smoothed out, because
estimated values are less variable than actual values. This is expressed by
an overestimation of small values while large values are underestimated;
however the smoothing depends on the locat data configuration (Goovaerts,
1999).

Topsoil free iron oxides (Fed) was kriged in order to compare both
the cokriging results, and the standard error. Fig (8) indicates the resuits of
kriging Fed % and the associated error (standard deviation, SD). It is clear
that kriging aggregated the high Fed values in one contiguous group due to
the lack of information in the area between the topsoil Fed samples. On the
other hand, cokriging utilized the information content of soil clay content to
predict the values of topsoil Fed at un-sampled locations. Moreover, the
kriging standard deviation {standard error) shown in fig (8) have much higher
values especially at the boundary of the study area, and behaved very
erratically due to the lack of surrounding points. For these reasons, cokriging
is much preferred over kriging, especially if the primary variable is under-
sampled :
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Fig. 7: Cokriged Fed %.

Cross Validation of Cokriging and Kriging

The process of cross validation between the estimated and the true
value permits the evaluation of cokriging performance. Fig {9) shows the
linear regression between the cokriged and actual values of free iron oxides
(Fed). The standard error {SE) of prediction is low (0.01) due to the above-
mentioned reasons related to smoothing effect of cokriging, and the
configuration of the data.

For comparison sake, kriged Fed was cross validated to see how the
standard error (SE) of prediction behaves and check the results with
cokriging estimates. The standard error of kriging prediction is much higher
(0.177) than that of cokriging (0.01}. The kriging correlation coefficient is very
poor (0.161), as compared to the cokriging one (0.71).

For these reasons, cokriging is much preferred over kriging,
especially in the case of under-sampling the variable of interest. Moreover,
there must be an intensely sampled covaraible, which is correlated with the
variable of interest.
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Fig. 8: Kriged Fed % (above) and the standard deviation (below).
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Fig. 9: Cross validation between cokriged and actual values of Fed.
(The solid fine is the regression line, the dot-dash line is for r = 1)
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