GENE ACTION AND HETEROSIS IN DIALLEL CROSSES AMONG TEN INBRED LINES OF YELLOW MAIZE ACROSS VARIOUS ENVIRONMENTS

A.A. Motawei

Maize Research Section, FCRI, Sakha ARS, ARC, Egypt

ABSTRACT

Diallel cross (except reciprocals) among 10 diverse inbred lines of yellow maize were done. Fourty-five Fis and two standard yellow checks (SC155 and pioneer3080) were evaluated at Sakha, Sids and Nubaria Research Stations. Both additive and non-additive genetic effects were operating in the inheritance of all studied traits, with the additive playing the dominant role. The behavior of the two types of gene action varied from one location to another whereas, the variance due to interaction of general (GCA) and specific (SCA) combining ability with locations was highly significant for all traits except resistance to late wilt disease. Parental line Sk-10 was identified as the most useful source for increasing favorable alleles for grain yield, rows/ear, ear length, ear position, earliness and late wilt resistance. Also, inbred lines Sk-121 and Sk-9203 were good (favorable) general combiners for grain yield and late wilt resistance. Four single crosses i.e. SkN-7 x Sk-10, Sk-7070 x Sk-7078, Sk-10 x Sk-6241 and Sk-7070 x Sk-8001 were suitable combinations for SCA effects toward high yielding ability, early maturity and late wilt resistance. The highest and most desirable standard heterosis effects were shown by SC Sk-7070 x Sk-9203 followed by SC Sk-121 x Sk-9203 for grain yield. Five F_i 's (Sk-7070 x Sk-9203, Sk-10 x Sk-9203, Sk-121 x Sk-7070, Sk-10 x Sk-121and Sk-121 x Sk-7078) outyielded significantly the check cultivar SC155, they did not significantly differ from the SC3080 for grain yield and they showed high resistance to late wilt disease (over 99.5%). These yellow promising hybrids would be useful and valuable in hybrid breeding programs.

Keywords: Maize, Grain yield, Combining ability, Gene action, Heterosis.

INTRODUCTION

More attention has been given to the development of yellow maize hybrids, which are greatly demanded by poultry producers and feed factories. In addition, breeding efforts are also, directed towards the development of early maturing hybrids and the improvement of plant type especially for shorter plants and lower ear position. Elite single crosses are frequently identified through combining ability analysis of the data on diallel crosses of selected inbred lines. Furthermore, identification and use of heterosis patterns are essential for success of maize hybrid development programs.

Both additive and non-additive genetic effects played an important role in the expression of grain yield, ear length, rows/ear, days to 50% silking, plant height and ear position, however, preponderance of additive gene effects was observed in the genetic control of these traits (Preciado et al 1997, Ogunbodede 2000, Nass et al 2000 and Yu et al 2003). Numerous investigators found significant interaction of combining abilities with environments for grain yield and related traits (Teixeira et al 2001, Duarte et al 2003, Yousif et al 2003, El-Shenawy 2005 and Motawei 2005). Additive gene action and its interaction with locations represent the major portion in the inheritance of No.of ears/100 plant (Nawar et al 1979, El-Hosary 1988, Mosa 2001 and Motawei 2005). Late wilt resistance was controlled mainly by additive genetic effect (Galal et al 2002, Amer et al 2002, Mosa and Motawei 2005 and Motawei 2005).

The objectives of this study were to examine the combining abilities and their interactions with locations of ten selected maize yellow inbred lines in their diallel crosses and to identify candidates for promising hybrid combinations.

MATERIALS AND METHODS

Ten diverse inbred lines of yellow maize (SkN-7, Sk-10, B-73, Sk-121, Sk-6241, Sk-7070, Sk-7078, Sk-8001, Sk-8008 and Sk-9203) were crossed in a half-diallel fashion during summer 2004 at Sakha Station. In the subsequent season, 45 F_I's along with two check hybrids (SC 155 and pioneer 3080) were planted for evaluation in a randomized complete block design with 4 replications at three locations, i.e. Sakha (North Egypt), Sids (South Egypt) and Nubaria (New lands) Agricultural Research Stations. Plots were represented by single rows, 6 m long, 0.80 m apart, 25 cm between hills with 25 plants per plot after thinning. All cultured practices were applied as recommended.

Combined analysis across the three locations was done after testing the homogeneity according to Snedecor and Cochran (1967) for days to 50% silking, plant height (cm), ear position%, no.of ears/100 plants, ear length (cm), rows/ear and grain yield ard/fad (adjusted on 15.5% grain moisture). While, late wilt resistance under natural inoculation was evaluated over two locations (Sakha and Sids) only. The Griffing's 1956 Method-4, Model-I was applied for combining ability analysis. Percentage of standard heterosis over the two used commercial checks for days to 50% silking and grain yield ard/fad was estimated according to Meredith and Bridge (1972).

RESULTS AND DISCUSSION

Combined analysis of variance for nine studied traits (Table 1) revealed highly significant differences among locations for all traits except for resistance to late wilt disease where differences between locations were not significant. This pointed out that markedly environmental variations among Sakha, Sids and Nubaria locations (L) were detected. Mean squares due to crosses (C) and crosses x location (C x L) were found to be significant or highly significant for all studied traits. This result revealed wide genetic diversity between the parental materials used in this study and their hybrid combinations which obviously were affected by change in environmental conditions.

Table 1. Combined analysis of variance for nine studied traits over three locations (Sakha, Sids and Nubaria).

s.o.v	d.f	Days to 50 % silking	Plant height Ear position (cm) %		Ears/100plants	
Location(L)	2	902.88**	67021.19**	2006.8**	772.32**	
Error (a)	9	6.57	736.65	13.17	68.63	
Crosses(C)	44	34.21**	2113.96**	61.31**	263.94**	
CxL	88	3.2**	284.13**	16.63**	133.88**	
Error (b)	396	0.91	98.92	7.07	62.90	
Mean		60.42	60.42 236.01 52.22		103.94	
C.V %		1.06	4.2	5.09	7.63	
		Ear length (cm)	Rows/ear	Grain yield ard/fad	Late wilt resistance %	
Location(L)	2	422.75**	31.93**	637.27**	60.17	
Error (a)	9	5.68	2.41	20.38	17.24	
Crosses(C)	44	16.34**	13.36**	128.29**	42.12**	
CxL	88 2.34** 1.10 20.58*		20.58**	5.98**		
Error (b)	396	1.32	0.83	5.16	2.24	
Mean C.V %		18.73	15.47	26.98	98.70	
		6.13	5.89	8.42	1.52	

^{*, **} Significant differences at 0.05 and 0.01 levels of probability, respectively.

Mean performance of 45 crosses and two checks for nine studied traits over locations are presented in Table (2). Great variations were found among the F₁ crosses for all traits, where means ranged from 55.83 to 63.75 days for days to 50% silking, from 214.17 to 266.0 cm for plant height, from 46.21 to 56.7% for ear position, from 97.49 to 116.8 ears for ears/100 plant, from 13.8 to 18.2 rows for rows/ear, from 16.75 to 21.32 cm for ear length, from 89.0 to 100% for late wilt resistance and from 20.89 to 33.47 ardabs for grain yield (ard/fad). On the other hand, 9 single crosses (Sk-7070 x Sk-9203 (33.47), Sk-10 x Sk-9203 (32.70), Sk-121 x Sk-7070

Table 2. Means of 45 F_1 's and two check hybrids for nine traits across three locations.

	Days to	Plant	Ear	Ears/100	Ear	<u> </u>	Grain	Late wilt
Crosses	50%	height	position%	plants	length	Rows/ear	yield	resistance
	silking	cm		•	cm		ard/fad	%
SkN-7 × Sk-10	57.2	214.1	47.7	101.5	19.0	16.7	23.9	98.12
SkN-7 × B-73	58.4	215.0	52.3	101.2	17.5	18.2	23.8	98.7
SkN-7 × Sk-121	59.3	223.0	53.7	107.4	18.6	15.5	28.4	99.0
SkN-7 × Sk-6241	55.8	209.4	51.1	100.3	18.2	16.3	22.4	89.0
SkN-7 × Sk-7070	57.4	226.8	51.1	102.9	20.1	15.7	24.8	96.2
SkN-7 × Sk-7078	58.4	217.9	50.69	99.69	18.6	17.4	21.2	97.6
SkN-7 × Sk-8001	58.1	220.5	52.6	102.1	18.2	16.6	22.4	90.2
SkN-7 × Sk-8008	59.1	218.7	53.8	100.1	17.1	15.7	21.7	95.3
SkN-7 × Sk-9203	58.9	225.1	51.4	97.85	19.2	14.6	23.0	98.2
Sk-10 × B-73	60.5	244.1	48.3	102.98	19.1	16.6	29.9	100
Sk-10 × Sk-121	59.3	252.0	53.1	104.4	19.9	15.1	31.6	100
Sk-10 × Sk-6241	58.2	243.4	50.1	103.5	18.7	15.3	29.8	99.6
Sk-10 × Sk-7070	59.9	251.2	52.3	102.9	20.7	14.7	27.9	100
Sk-10 × Sk-7078	59.5	234.3	46.2	103.9	19.2	16.2	29.5	99.5
Sk-10 × Sk-8001	60.2	233.5	52.4	102.3	18.5	16.4	28.7	100
Sk-10 × Sk-8008	60.5	247.3	52.1	103.00	18.7	15.5	30.8	100
Sk-10 × Sk-9203	59.2	244.1	49.9	100.7	18.3	14.5	30.7	99.8
B-73 × Sk-121	61.6	249.3	51.9	110.0	17.8	15.6	28.5	100
B-73 × Sk-6241	60.6	230.0	50.1	103.4	16.8	15.3	25.3	100
B-73 × Sk-7070	60.6	245.2	51.5	104.9	20.2	15.2	25.1	99.2
B-73 × Sk-7078	60.8	233.4	48.9	98.88	17.4	16.3	22.2	99.5
B-73 × Sk-8001	62.8	236.3	54.3	102.7	17.7	17.9	26.6	99.8
B-73 × Sk-8008	61.7	248.5	53.4	111.5	17.2	16.1	27.2	99.5
B-73 × Sk-9203	62.5	245.1	51.7	104.7	19.4	15.0	28.8	100
Sk-121 × Sk-6241	61.2	231.3	52.0	103.0	17.7	14.4	24.5	99.8
Sk-121 × Sk-7070	62.5	266.0	54.2	116.8	20.2	14.8	31.7	99.5
Sk-121 × Sk-7078	61.0	248.5	51.7	102.2	19.0	15.43	31.4	99.8
Sk-121 × Sk-8001	62.0	232.6	56.3	106.1	17.6	15.0	28.1	99.6
Sk-121 × Sk-8008	62.5	248.0	56.3	103.9	18.1	14.9	27.9	99.8
Sk-121 × Sk-9203	62.6	261.4	56.7	104.1	19.6	14.6	32.7	100
Sk-6241×Sk-7070	61.0	244.2	53.8	111.5	19.0	13.8	26.3	99.0
Sk-6241×Sk-7078	58.6	227.5	51.1	102.5	18.0	15.3	27.0	98.0
Sk-6241×Sk-8001	59.5	216.2	52.0	103.4	17.4	15.4	24.0	97.1
Sk-6241×Sk-8008	59.8	225.8	50.9	100.9	17.5	14.6	23.4	98.1
Sk-6241×Sk-9203	60.8	227.4	52.4	114.7	17.0	14.0	27.1	100
Sk-7070×Sk-7078	60.4	244.1	51.0	100.2	21.2	15.0	25.3	99.2
Sk-7070×Sk-8001	61.1	241.4	55.5	113.4	19.4	15.6	26.9	97.3
Sk-7070×Sk-8001	61.7	252.3	54.7	100.9	20.5	14.3	26.4	98.8
Sk-7070×Sk-9203	61.5	252.8	53.3	115.0	21.3	13.6	33.4	100
Sk-7078×Sk-8001	60.0	232.6	51.4	102.2	17.8	17.3	28.1	99.3
Sk-7078×Sk-8008	60.8	241.4	52.6	97.49	19.3	15.7	30.3	99.6
Sk-7078×Sk-8008	61.5	231.6	48.2	106.3	19.3	14.4	30.3	100
	61.6	223.3	53.9	97.80	16.7	15.4	20.8	96.3
Sk-8001×Sk-8008	62.6	233.5	53.9 54.5	101.2	19.1	14.6	20.8 25.7	100
Sk-8001×Sk-9203		1				14.6		
Sk-8008×Sk-9203	63.7	233.9	54.5	99.40	19.6		26.5	100
SC 155	62.5	246.5	54.4	105.0	17.4	15.0	29.1	100 99.8
SC 3080 LSD 0.05	61.9	248.5	52.1	104.6	17.4	15.50	32.0	
l .	0.76	7.96	2.13	6.35	0.92	0.73	1.82	1.20
0.01	1.00	10.48	2.80	8.35	1.21	0.96	2.39	1.58

(31.73) Sk-10 x Sk-121 (31.67), Sk-121 x Sk-7078 (31.48), Sk-10 x Sk-8008 (30.82), Sk-10 x Sk-9203 (30.74), Sk-7078 x Sk-8008 (30.34) and Sk-7078 x Sk-9203 (30.33) did not show significant differences when compared with the best check hybrid pioneer 3080 (32.06) for grain yield (ard/fad). Furthermore, the first five of previous nine crosses outyielded significantly the other check hybrid SC155 (29.13 ard/fad) and exhibited high resistance to late wilt disease (over 99.5%). These promising yellow single crosses would be fruitful and valuable in hybrids production and breeding programs.

Heterosis percentages relative to the two checks for days to 50% silking and grain yield ard/fad are given in Table (3). The highest percentages and positive significant heterotic effects for grain yield were observed in SC Sk-7070 x Sk-9203 (14.88 and 4.41%) followed by SC Sk-121 x Sk-9203 (12.25 and 2.01%) relative to check controls SC155 and 3080, respectively. Moreover, eight other single crosses also exhibited desirable heterotic effects relative to SC155 with respect to yielding ability and early maturity. Conclusion indicated that the previous nine crosses could be used as good hybrids in maize breeding programs for high yield and earliness. Many investigators reported high heterotic effect for grain yield of maize (Akhtar and Singh 1982, Ogunbodede et al 2000, San et al 2001, Venugopal et al 2002 and Motawei 2005).

Mean squares due to general (GCA) and specific (SCA) combining ability and their interactions with locations are presented in Table (4). Highly significant mean squares due to GCA and SCA were detected for all studied traits, indicating that both additive and non-additive genetic effects are operating in the inheritance of these traits. However, additive gene effects exhibited larger contribution in the genetic control of all studied traits than those of non-additive genetic effects, since the ratio GCA/SCA mean squares exceeded the unity (Table 4). These results are in good agreement with those obtained by Ogunbodede et al (2000), Nass et al (2000), Katna et al (2002), Wu et al (2003) and Yu et al (2003) for days to 50% silking, plant height, ear position, ear length, rows/ear and grain yield, El-Hosary (1988) and Motawei (2005) for no.of ears/100 plants and Galal et al (2002), Mosa and Motawei (2005) and Motawei (2005) for resistance to late wilt disease.

Table 3. Standard heterosis percentage for days to 50 % silking and grain yield (ard/fad) relative to two check hybrids over three locations.

Crosses	days to 50	% silking	Grain yield ard/ fad			
Crosses	SC155	SC3080	SC155	SC3080		
SkN-7 × Sk-10	-8.4**	-7.53**	-17.68**	-25.19**		
$SkN-7 \times B-73$	-6.53**	-5.65**	-18.23**	-25.68**		
SkN-7 × Sk-121	-5.06**	-4.17**	-2.25	-11.16**		
SkN-7 × Sk-6241	-10.66**	-9.82**	-23.00**	-30.02**		
SkN-7 × Sk-7070	-8.13**	-7.26**	-14.67**	-22.45**		
SkN-7 × Sk-7078	-6.53**	-5.65**	-27.20**	-33.84**		
SkN-7 × Sk-8001	-6.93**	-6.05**	-23.07**	-30.09**		
SkN-7 × Sk-8008	-5.33**	-4.44**	-25.33**	-32.13**		
SkN-7 × Sk-9203	-5.73**	-4.84**	-20.85**	-28.07**		
Sk-10 × B-73	-3.2**	-2.28**	2.76	-6.60*		
Sk-10 × Sk-i21	-5.66**	-4,17**	8.71**	-1.20		
Sk-10 × Sk-6241	-6.8**	-5.92**	2.40	-6.92*		
Sk-10 × Sk-7070	-4.13**	-3.23**	-4.00	-12.76**		
Sk-10 × Sk-7078	-4.66**	-3.76**	1.51	-7.74**		
Sk-10 × Sk-8001	-3.6**	-2.69**	-1.49	-10.48**		
Sk-10 × Sk-8008	-3.2**	-2.28**	5.78	-3.86		
Sk-10 × Sk-9203	-5.2**	-4.30**	5.52	-4.09		
B-73 × Sk-121	-1.33*	-0.40	-2.03	-10.97**		
B-73 × Sk-6241	-2.93**	-2.01**	-13.83**	-20.77**		
B-73 × Sk-7070	-2.93**	-2.01**	-13.58**	-21.46**		
B-73 × Sk-7078	-2.66**	-1.75**	-23.81**	-30.76**		
B-73 × Sk-8001	0.53	1.47*	-8.700**	-17.03**		
B-73 × Sk-8008	-1.20	-0.26	-6.34*	-14.88**		
B-73 × Sk-9203	0.00	0.94	-1.08	-10.10**		
Sk-121 × Sk-6241	-2.00**	-1.07**	-15.90**	-23.57**		
Sk-121 × Sk-7070	0.13	-1.07	8.89**	-1.03		
Sk-121 × Sk-7078	-2.40**	-1.48*	8.04*	-1.83		
Sk-121 × Sk-8001	-0.66	0.26	-3.29	-12.11**		
Sk-121 × Sk-8008	0.00	0.94	-4.09	-12.84**		
Sk-121 × Sk-9203	0.26	1.21	12.25**	2.01		
Sk-6241×Sk-7070	-2.26**	-1.34*	-9.42**	-17.68**		
Sk-6241×Sk-7078	-6.13**	-5.24**	-7.11*	-15.58**		
Sk-6241×Sk-8001	-4.66**	-3.76**	-17.45**	-24.98**		
Sk-6241×Sk-8008	-4.26**	-3.36**	-19.71**	-27.03**		
Sk-6241×Sk-9203	-2.66**	-1.75**	-6.78*	-15.28**		
Sk-7070×Sk-7078	-3.33**	-2.42**	-12.94**	-20.87**		
Sk-7070×Sk-8001	-2.13**	-1.21	-7.39*	-15.83**		
Sk-7070×Sk-8008	-1.20	-0.26	-9.17**	-17.45**		
Sk-7070×Sk-9203	-1.60**	-0.67	14.88**	4.41		
Sk-7078×Sk-8001	-3.86**	-2.96**	-3.55	-12.40**		
Sk-7078×Sk-8008	-2.66**	-1.75**	4.12	-5.37		
Sk-7078×Sk-9203	-1.60**	-0.67	4.11	-5.38		
Sk-8001×Sk-8008	-1.33*	-0.40	-30.21**	-34.99**		
Sk-8001×Sk-9203	0.26	1,21	-11.64**	-19.69**		
Sk-8008×Sk-9203	2.00**	2.96**	-8.89**	-17.20**		
LSD at 0.05	1.21	1.22	6.25	5.76		
0.01	1.60	1.61	8.13	7.45		

^{*, **} Significant differences at 0.05 and 0.01 levels of probability, respectively.

Table 4. Combined analysis of combining ability and its interaction with locations.

s.o.v	d.f	days to 50% silking	Plant height cm	Ear position%	Ears/100plants		
GCA	9	147.06**	8874.92**	233.66**	551.88**		
SCA	35	5.20**	375.43**	16.98**	189.90**		
$GCA \times L$	18	7.17**	703.41**	29.66**	243.44**		
SCA×L	70	2.05**	176.36**	13.28**	105.71**		
Error	396	0.91	98.92	7.07	62.90		
GCA/GCA		28.30	23.60 13.80		2.90		
GCA×L/S0	CA×L	3.50	3.99	2.23	2.30		
		Ear length cm	Rows/ear	Grain yield ard/fad	Late wilt resistance%		
GCA	9	62.36**	57.14**	417.24**	127.09**		
SCA	35	4.50**	2.10**	53.99**	29.27**		
GCA×L	CA×L 18 5.01**		1.44*	38.60**	8.66**		
SCA×L	×L 70 1.65		1.02	15.94**	5.30**		
Error	396	1.32	0.83	5.16	2.24		
GCA/GCA		13.90	27.21	7.73	6.27		
GCA×L/S	CA×L	3.03	1.41	2.42	1.63		

^{*, **} Significant differences at 0.05 and 0.01 levels of probability, respectively.

Mean squares due to the interaction of GCA or SCA with locations were highly significant for all studied traits except of SCA x L for ear length and rows/ear which were not significant. These results revealed that the behavior of the two types of gene action varied from one location to another. Similar findings were obtained by Teixeria et al (2001), Duarte et al (2003), Yousif et al (2003) and Mosa (2003) for grain yield and other agronomic traits. On the other hand, mean squares due to GCA x L were higher than those due to SCA x L for all studied traits (Table 4), indicating that the additive gene action was more affected by the environmental conditions than the non-additive gene action. Similar trend was reported by Mosa (2003) and Motawei (2005) for grain yield, rows/ear and plant height and El-Shenawy (2005) for ear length and No.of ears/100 plants.

Estimates of GCA effects of the 10 inbred lines for nine studied traits combined across the three locations are given in Table (5). Desirable and highest estimates of g_i effects were achieved by the inbred line SkN-7 for days to 50% silking, plant height and rows/ear, the inbred line Sk-7078 for ear position, Sk-7070 for ears/100 plants and ear length, Sk-121 for grain yield and Sk-9203 for late wilt resistance. Moreover, inbred line Sk-10 was determined as the most useful source of increasing favorable alleles for grain yield, rows/ear. ear length, ear position, days to 50% silking and resistance to late wilt disease. Also, Sk-121 and Sk-9203 were good general combiners for both grain yield and late wilt resistance. From these results it could be concluded that these inbred lines appeared to be promising for breeding improved varieties.

Table 5. General combining ability effects of 10 inbred lines for nine traits over three locations.

	J113.				
Inbred lines	days to 50 % Plant height silking cm		Ear position%	Ears/100plants	
SkN-7	-2.606**	-19.162**	-0.652*	-2.787**	
Sk-10	-1.116**	5.035**	-2.17?**	-1.266	
B-73	0.758**	2.900**	-0.891**	0.639	
Sk-121	1.081**	11.035**	2.025**	2.795**	
Sk-6241	-0.970**	-8.568**	-0.693**	1.066	
Sk-7070	0.341	12.535**	0.993**	4.202**	
Sk-7078	-0.304	-2.214*	-2.235**	-2.733**	
Sk-8001	0.591**	-7.402**	1.670**	-0.495	
Sk-8008	0.997**	1.931*	1.566**	-2.527**	
Sk-9203	1.227**	3.910**	0.389	1.108	
LSD 0.05_gi	0.181	1.887	0.505	1.505	
0.01	0.238	2.484	0.664	1.981	
	0.269	2.813	0.752	2.24	
LSD 0.05_ g _i . g _{j 0.01}	0.355	3.703	0.99	2.95	
Inbred lines	es Ear length cm Rows/ear		Grain yield ard/fad	Late wilt resistance%	
SkN-7	-0.208	0.966**	-3.845**	-3.212**	
Sk-10	0.531**	0.237**	2.466**	1.100**	
B-73	-0.593**	0.893**	-0.606**	1.068**	
Sk-121	0.010	-0.470**	2.831**	1.178**	
Sk-6241	-1.062**	-0.550**	-1.606**	-0.946**	
Sk-7070	1.739**	-0.835**	0.685**	0.146	
Sk-7078	0.145	0.570**	0.310	0.553**	
Sk-8001	-0.708**	0.685**	-1.345**	-1.040**	
Sk-8008	-0. 416 **	-0.283**	-0.908**	-0.071	
Sk-9203	0. 562**	-1.210**	2.018**	1.225**	
LSD 0.05_g _i	0.218	0.173	0.431	0.347	
0.01	0.287	0.227	0.567	0.458	
	0.325	0.257	0.642	0.518	
LSD 0.05 g _i g _j 0.01	0.428	.339	0.845	0.682	

^{*, **} Significant differences at 0.05 and 0.01 levels of probability, respectively.

Estimates of SCA effects of 45 F_1 's for nine traits are shown in Table (6). Positive and significant SCA effects were obtained by 13 F_1 's for grain yield traits and 4 out of them (SkN-7 x Sk-10, Sk-7070 x Sk-7078, Sk-10 x Sk-6241, and Sk-7070 x Sk-8001) exhibited favorable SCA effects towards early maturity and resistance to late wilt disease beside high yielding ability. These combinations seem also to be the most promising materials for recurrent selection programs for high yielding ability with short growth season and resistance to late wilt disease.

Table 6. Specific combining ability effects of 45 F_1 's for nine traits over locations.

Crosses				,					
Crosses S0% beight position % plants length Rows/car yield % sthing cm high position % plants cm move ard/dal % % SkN-7 × Sk-121 0.45 -1.48* 1.59 0.01 -0.10 -1.7** 1.59 SkN-7 × Sk-121 0.44 -4.87 0.14 3.44 0.03 -0.47* 2.64** 2.33** SkN-7 × Sk-6241 -1.0** 1.14 0.36 -1.82 0.85** 0.35 0.91 -0.55* SkN-7 × Sk-7070 -0.7** 2.254 -1.40* -2.45 -0.11 0.05 -1.12 0.61 SkN-7 × Sk-8001 -0.23 1.10** -0.58 1.12 0.61 SkN-7 × Sk-8008 0.35 -0.02 1.12* 0.69 1.52 -1.0** -0.33 -0.38 0.56 -4.2** SkN-7 × Sk-8008 0.35 -0.02 -0.83 -0.33 0.56 -4.2** -0.45 SkN-7 × Sk-8008 0.35 -0.02 -0.83 -0.33 0.56 -0.5** -0.45 -0.45 SkN-7 × Sk-8008 0.35 -0.02 -0.83 -0.33 0.56 -0.5** -0.25 -0.45 -0.45 SkN-7 × Sk-9203 -0.12 -0.41 -0.63 -0.44 -0.63 -4.44* -0.63 -4.44* -0.63 -4.44* -0.63 -4.44* -0.63 -4.44* -0.63 -4.44* -0.63 -0.7** -0.5** -0.05*			Plant	Ear	Ears/100	Ear		Grain	Late wilt
SkN-7 × Sk-10	Crosses						Rows/ear		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-					
SkN-7 × Sk-121		:	:						
SkN-7 × Sk-241						i e			
SRN-7 × Sk-7076	SkN-7 × Sk-121								
SkN.7 × Sk.7078	SkN-7 × Sk-6241								
SkN-7 × Sk-8001	SkN-7 × Sk-7070					ı			
SkN-7 × Sk-8008	SkN-7 × Sk-7078					ı			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SkN-7 × Sk-8001	-0.23							
Sk-10 × B-73	SkN-7 × Sk-8008	0.35							
Sk-10 × Sk-121	SkN-7 × Sk-9203	-0.12							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-10 × B-73	0.44							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-10 × Sk-121	-1.0**			-0.90				
Sk-10 × Sk-7078	Sk-10 × Sk-6241	-0.08	10.9**	0.97	-0.17	0.53	0.08	_	
Sk-10 × Sk-8001	Sk-10 × Sk-7070	0.27							
Sk-10 × Sk-8008	Sk-10 × Sk-7078	0.58*	-4.49	-1.56*	3.95	-0.17	-0.04	-0.81	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-10 × Sk-8001	0.35	-0.13	0.69	0.05	0.09	-0.01	0.59	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-10 × Sk-8008	0.20	4.36	0.54	2.83		0.22	2.15**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-10 × Sk-9203	-1.2**	-0.78		-3.05	-1.42**	-0.01	-060	
B-73 × Sk7070	B-73 × Sk-121	-0.59*	-0.60	-1.27	2.60	-0.16	-0.32	-0.84	
B-73	B-73 × Sk-6241	0.46	-0.33	-0.55	-2.24	-0.34	-0.40	0.67	
B-73 × Sk-8001	B-73 × Sk-7070	-0.8**	-6.19*			0.35	-0.37	-1.7**	-0.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-73 × Sk-7078	-0.03	-3.27	-0.10	-2.94	-0.8**	-0.53*	-4.4**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-73 × Sk-8001	1.06**	4.83	1.41*	-1.35	0.30	0.93**	1.58**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-73 × Sk-8008	-0.42	7.74**	0.51	9.51**	-0.40	-0.01	1.89**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B-73 × Sk-9203	0.09	2.35	0.02	-0.87	0.86**	-0.16	0.38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.72**	-7.1**	-1.39*	-4.82*	-0.03	0.04	-3.7**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-121 × Sk-7070	0.74**	6.42*	-1.08	5.79**	-0.50	0.57*	1.19*	-0.52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-121 × Sk-7078	-0.19	3.75	-0.35	-1.77	0.09	-0.08	1.5**	-0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-121 × Sk-8001	-0.01	-6.9**	0.41		-0.30	-0.53	-0.19	0.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-121 × Sk-8008	0.01	-0.97	0.51	-0.31	-0.17	0.10	-1.04	0.06
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-121 × Sk-9203	-0.06	10.4**	2.10**	-3.78	0.42	0.78**	0.94	-1.10*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-6241×Sk-7070	1.29**	4.27	I.47*	2.52	-0.42	-0.34	0.21	1.09*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-6241×Sk-7078	-0.47*	2.36	1.86**	0.29	0.08	0.00	1.34*	-0.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-6241×Sk-8001	-0.45	-3.78	-1.12	-0.94	0.35	-0.11	-0.00	0.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-6241×Sk-8008	-0.61*	-3.53	-2.1**	-1.49	0.31	0.10	-1.10	0.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-6241×Sk-9203	0.15	-3.93	0.49	8.69**	-1.3**	0.28	-0.28	1.01*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-7070×Sk-7078	-0.03	-2.16	0.01	-5.17*	0.53	-0.13	-2.6**	-0.15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-7070×Sk-8001	-0.18	0.27	0.60	5.83**	-0.28	0.33	0.70	-0.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-7070×Sk-8008	-0.01	1.86	-0.03	-4.63*	0.51	-0.03		0.09
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-7070×Sk-9203	-0.48*	0.38	-0.11	5.81**	0.11	0.06	3.6**	-0.07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sk-7078×Sk-8001	-0.62*	0.86	-0.24	1.52	-0.35	0.59*	2.27**	1.20*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5.69*			0.85**		4.05 **	0.44
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-1.9**					-0.48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		•		-1.4**					-1.2**
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1.06	I		1			1.11*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		-7.9**	I		0.77**		-1.39*	0.14
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									0.91
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	l	1	1	i i			
0.01 0.87 9.07 2.42 7.23 1.048 0.831 2.07 1.67 LSD S _{ij} S _{ik} 0.05 0.714 7.44 1.99 5.93 0.859 0.681 1.70 1.372									
LSD S _{ij} S _{ik} 0.05 0.714 7.44 1.99 5.93 0.859 0.681 1.70 1.372	T2D 29 20 0.02		1	1	l	i			
		J	1	1		ı)		
			i	l					
<u> 0.01 0.939 9.799 2.61 7.81 1.13 0.897 2.33 1.896 </u>	0.01	0.939	9.799	2.61	7.81	1.13	0.897	2.33	1.806

^{*, **} significant differences at 0.05 and 0.01 levels of probability, respectively.

REFERENCES

- Akhtar, S.A. and T.P Singh (1982). Heterosis in varietal crosses of maize. Plant Breed. Abst. 25: 9169.
- Amer, E.A., H.E. Mosa and A.A. Motawei (2002). Genetic analysis for grain yield, downy mildew, late wilt and kernel rot diseases on maize. Mansoura. J. Agric. Sci. 27(4): 1965-1974.
- Duarte, I.A., J.M. Ferreira and C.N. Nuss (2003). Screening potential of three maize top cross testers. Pesquisa Agropecuaria Brasileira 38(3): 365-372.
- EL-Hosary, A.A. (1988). Heterosis and combining ability of ten maize inbred lines as determined by diallel crossing over two planting dates. Egypt . J. Agron. 13 (1-2): 13-25.
- EL-Shenawy, A.A. (2005). Combining ability of prolific and non-prolific maize inbred lines in their diallel crosses for yield and other traits. J. Agric. Res. Tanta Univ. 31(1): 16-31.
- Galal, A.A., E.A. Amer and A.A. EL-Shenawy (2002). Comparison among the four methods of Griffing (1956) in complete diallel set of maize inbreds. J. Agric. Sci. Mansoura Univ. 27(2): 733-737.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Biol. Sci. 9: 463-493.
 - Katna, G., H.B. Singh and J.K. Sharma (2002). Combining ability studies for yield and its related traits in maize (*Zea mays L.*). Crop Improvement 29 (2): 177-183.
- Meredith, W.R. and R.R. Bridge (1972). Heterosis and gene action in cotton Gossypium hirsutum L. Crop Sci. 12: 304-310.
- Mosa, H.E. (2001). A comparative study of the efficiency of some maize testers for evaluation a number of white maize inbred lines and their combining ability under different environmental conditions. Ph.D.Thesis, Fac. Agric., Kafr EL-Sheikh, Tanta Univ., Egypt.
- Mosa, H.E (2003). Heterosis and combining ability in maize (Zea mays L.). Minufiya J. Agric. 28(1): 1375–1386.
- Mosa, H.E. and A.A. Motawei (2005). Combining ability of resistance to late wilt disease and grain yield and their relationships under artificial and natural infections in maize. J. Agric. Sci. Mansoura Univ. 30(2): 731-742.
- Motawei, A.A. (2005). Combining ability and heterotic effect of maize inbred lines via diallel cross analysis. Minufiya J. Agric. Res. 30(1):197-214.
- Nass, L.L., M. Lima, R. Vencovsky and P.B Gallo (2000). Combining ability of maize inbred lines evaluated in three environments in Brazil. Scientia Agricela 57(1): 129-134.
- Nawar, A.A., M.E. Gomaa and M.S. Rady (1979). Heterosis and combining ability in maize. Egypt J. Genet. Cytol. 9: 255-267.

- Ogunbodede, B.A., S.R. Ajibade and S.A. Olakojo (2002). Heterosis and combining ability for yield and yield related characteristics in some Nigerian local varieties of maize (*Zea mays* L). Moor J. of Agric. Res. (1): 37-43.
- Preciado, E., A. Terron, V. Cordova, H. Mickelson and R. Lopez (1997). Yield related traits for the selection of early hybrids in subtropical maize. Agronomia Mesoamericana 8 (1): 35-43.
- San, V.F, A. Bejarano, J. Cross and C. Marin (2001). Heterosis and combining ability of tropical yellow endosperm maize populations. Agronomia tropical 51(3): 301-318.
- Snedecor, G.W. and W.G. Cochran (1967). Statistical Methods. 6th ed. Iowa State University Press, Ames, Iowa, USA.
- Teixeira, F. F., I.R.P. Scuza, E.E. Gomes, C.A.P. Pacheco, S.N. Parentoni, M.X. Santos and W.F Meirelles (2001). Combining ability of sweet corn inbred lines. Cienciae Agrotecnologia 25(3): 483-488.
- Venugopal, M., N.A. Ansari and K.G.K. Murthy (2002). Heterosis for yield and its component characters in maize (*Zea mays L.*). Research on Crops 3(1): 72-74.
- Wu, G., Y. Xue and D. He (2003). Combining ability analysis of maize inbred lines. J. of Maize Sci. 11(2): 32-36.
- Yousif, D.P., H.C Ali and R.H. Baker (2003). Estimation of heterosis and combining ability in local maize inbred lines. Dirasat Agric. Sci. 30(2): 246-259.
- Yu H., K. Xu, X. Chen, Z. Wu, Z. Jiang and X. Shen (2003). Analysis of combining ability and hereditary parameters of a major drought-resistant maize for yield traits. J. of Maize Sci. 11(1): 12-18.

التأثير الجينى وقوة الهجين باستخدام نظام الهجن التبادلية بين عشرة سلالات صفراء من الذرة الشامية عبربيئات مختلفة

تناصم عبده مطاوع

مركز البحوث الزراعية - معيد المحاصيل الحقلية - محطة البحوث الزراعية بسخا - قسم الذرة الشامية تم عمل كل التهجيئات التبادلية الممكنة بين عشرة سلالات مختلفة من الذرة الشامية الصفراء في نظام الدياليل (بدون الهجن العكسية) وذلك لقياس القدرة العامة والخاصة على التآلف وكذلك قياس تأثيرات قوة الهجين. تم تقييم الـ ٥؛ هجين فردى مع اثنين من هجن المقارنة الصفراء (هجين فردى تأثيرات قوة الهجين فردى بيونير ٣٠٨٠) وذلك في ثلاث مواقع هي محطة البحوث الزراعية بسخا و سدس والنوبارية في تصميم القطاعات الكامنة العشوائية في أربع مكررات في سوسم ٢٠٠٥. وقد تسم عمل تحليل التباين للقدرة على التآلف عبر المواقع لصفات محصول الحبوب بالإردب/فدان، تاريخ ظهـور

- 9% حريرة ، ارتفاع النبات ، موقع الكوز ، عدد الكيزان/ ١٠٠ نبات ، طول الكوز ، عــدد الــسطور بالكوز و مقاومة مرض الذبول المتأخر تبعا لــ (Griffing 1956 (Method-4, Model-I).
- كان لتأثير الفعل الوزائى المضيف والغير مضيف دورا فى وراثة كل الصفات المدروسة مع سسيادة دور الفعل الوراثى المضيف. كما أختلف سلوك نوعى الفعل الجينى من موقع لأخر حيث كان تبساين التفاعل بين القدرة العامة أو الخاصة على الانتلاف مع المواقع عالى المعنوية.
- تميزت السلالة الأبوية سخا- ١٠ بأنها مصدرا مفيدا لزيادة الأليلات المرغوبة لـصفات محـصول الحبوب ، وعدد السطور بالكوز، طول الكوز، موقع الكوز، التبكير وكذلك مقاومــة مــرض الــنبول المتأخر. كذلك كانت السلالتان سخا-١٢١ و سخا-٩٢٠٣ ذات قدرة تألف جيدة للمحــصول العــالى وكذلك للمقاومة لمرض النبول المتأخر.
- أظهرت الهجن الفردية الأربعة سخان ٧٠ × سخا-١٠ ، سخا-٧٠٠ × سخا-٧٠٠ ، سخا-١٠ ، سخا-١٠ ٢٠ مسخا-١٠ ، سخا-١٠ ٢٠ تأثيرات مرغوبة للقدرة الخاصة على التالف للمحصول مع النضج المبكر و مقاومة مرض الذبول المتأخر.
- لوحظت أعلى قيم لتأثيرات قوة الهجين المرغوبة بالنسبة لصنفى المقارنة المستخدمين في التجربة في التجربة في الهجين الفردي سخا-١٢١ × سخا- ٩٢٠٣ وثلك لصفة محصول الحبوب بالاردب/فدان.
- زادت خمسة هجن فردية في محصولها زيادة معنوية عن هجين المقارنة ١٥٥ ولم تختلف معنويا عن هجين المقارنة ١٥٥ ولم تختلف معنويا عن هجين المقارنة الآخر ٣٠٨٠ وأعطت مقاومة عائية لمرض الذبول المتأخر (أعلى من ١٩٠٥%) مما يشير إلى أن هذه الهجن الصفراء الحديثة ستكون مثمرة وذات قيمة في برامج إنتاج الهجن وهذه الهجن هي (هجين فردي سخا- ٧٠٧٠ × سخا ٩٢٠٣ ، سخا- ١٢١ × سخا- ١٢٠٧ ، سخا- ١٢١ × سخا- ٧٠٧٠).

المجلة المصرية لتربية النبات ١٠ (١):٧٠٤-١٨ (٢٠٠٦)