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ABSTRACT 

The critical part of the development of automatic grading and sorting 

machines of apple is the detection of defects and stem. Stem must be 

recognized prior to any further processes. Hyperspectral imaging technique 

in visible and near infrared (VIS/NIR) region with the range of 400 to 1000 

nm was established for stem recognition in four apple cultivars. The studied 

cultivars were Granny Smith (green), Golden Delicious (yellow), Red 

Delicious (dark red), and McIntosh (multicolour). The spectral responses of 

stems and surrounding normal surface were collected and analyzed. The 

optimal wavelengths that gave the highest contrast between stem and its 

surrounding normal surface were selected depending on Variables 

Importance in Projection (VIP) scores extracted from Partial Least Square 

(PLS) analysis. These optimal wavelengths were 730, 770 and 850 nm. 

Then, Maximum Likelihood Classification (MLC) method was used to 

classify apple images based on whether or not they included a stem and to 

recognize its length and location. The experimental results showed that the 

system successfully classified a test set consisting of 200 images and a 

validation set consisting of 240 images at the optimal wavelengths. 

Keywords: Apple, Hyperspectral imaging, Stem detection, and Maximum 

Likelihood Classification.  

INTRODUCTION 

etection of defects, blemishes, stem, and calyxes as well as 

distinguishing them from normal surface is an essential part to 

develop automatic handling system of apple. In classical image 

processing related to classification of commodities like fruits and 

vegetables, there is high probability of misclassification due to colour 

similarity between defects and stem/calyx ends (Bennedsen and Peterson, 

2004 and Li et al., 2002).  

 

In addition, in some apple processing like peeling and coring, the orienting 

system is needed to orient the apples with the stem-calyx axis in the vertical 

position perpendicular to the image capturing camera.  
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Because the image processing system was not able to distinguish between 

defects and the stem or calyx ends, there is a need for an orienting system to 

ensure that apples were oriented with the stem/calyx out of sight of the 

camera before they were presented to the imaging system. With incorrect 

orientation, there was a risk that these would be wrongly classified as 

defective and hence lost. (Bennedsen and Peterson, 2004). 

An impressive amount of previous work using traditional image processing 

techniques has been dedicated to stem/calyx identification and discriminate 

them from defects (Crowe and Delwiche, 1996a, 1996b; Li et al., 2002; 

Penman, 2001; Ruiz et al., 1996; Unay and Gosselin, 2005; Yang, 1996; and 

Ying et al., 2003). However, no method has so far been found that provides 

satisfactory classification at a reasonable recognition rate. The earliest 

research by Brown and Segerlind, (1975) and Reid (1976) demonstrated that 

the reflectance properties of stem and apple skin ripe, unripe, bruised, 

unpeeled, peeled and bruised peeled exhibit different reflectance properties 

within varieties. These reflectance differences suggest that selected 

wavelengths could be used to discriminate between apple defects and flesh 

or stem and calyx ends when suitable detectors have been designed. They 

reported that the preferred wavelength band for stem and calyx detection is 

725-800 nm. Several researchers have tried to address this problem with 

varying success, Kleynen et al. (2005) detected stem/calyxes using a 

correlation pattern matching algorithm based on a similarity template 

matching method. Wen and Tao (1999) developed a near-infrared machine-

vision system for automating stem/calyxes and defect inspection in apple 

using monochrome CCD camera attached with a 700nm long-pass filter. 

They separated stem-ends and calyxes from defects by means of the 

histogram density feature of the blob. They found that the off-line tests of 

200 stem-ends and 200 calyxes showed that it is very difficult to distinguish 

stem-ends/ calyxes from true defects, especially when stem/ calyxes appear 

at the edge of fruit. The recognition rates for stem and calyxes of their work 

were 83.50% and 86.00%, respectively. 

Compared with traditional machine vision inspection, which provides 

limited information for distinguishing the stem and calyxes, multispectral 

detection provides richer information in multiple images of different 

spectrum sensing results of the same object. In this direction to address the 
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stem/calyx recognition problem, Cheng et al. (2003) proposed a near-

infrared (NIR) and a midinfrared (MIR) dual-camera vision system. The 

NIR and MIR cameras had, respectively, a sensitive spectrum range from 

700 to 750 nm and from 7500 to 13500 nm. The NIR camera could identify 

both the stem/calyx portion of the apple and the true defects, while MIR 

camera could detect only the stem and calyxes on refrigerated fruits. Li et al. 

(2002) reported that stem and calyxes were separated from defects by using 

fractal features and artificial neural network. The method was tested on 

forty samples of “Fuji” apples. Defects and stem/calyxes were visually well 

segmented from the sound part of the fruit using band-pass optical filters of 

840 nm attached to the outside lens of the camera. Regarding the stem/calyx 

recognition, the accuracy of the neural network classifier was over 93%. 

Due to the interference between stem and some defects Throop et al. (2003) 

and Bennedsen and Peterson (2005a) developed experimental machine 

vision system to identify surface defects on apples using two optical filters 

at 740 and 950 nm, respectively. There was confusion between defects and 

stem/calyx area because defects appeared as dark areas, and so did shadows 

and parts of the stem/calyx area. They presented an approach to locate the 

defects and eliminate other dark areas. The design of this sorter 

distinguished itself by incorporating an orienting system, which aimed at 

orienting the apples with the stem–calyx axis perpendicular to the image-

capturing camera and hence out of sight of the camera. This design 

eliminates the need for distinguishing between defects and stem/calyx, 

which is a critical part of the development of automatic apple sorters. 

Bennedsen and Peterson (2005b) reported that with up to 5% of the apples 

incorrectly oriented there was a risk that these would be wrongly classified 

as defective and hence lost. Thus, they suggest adding more cameras to the 

system to acquire three sets of images for each apple: one covering the stem 

region, another the calyx region, and a number of images covering the 

circumference as the apple rotates in front of the camera. Kleynen et al. 

(2005) stated that errors of classification come from a bad segmentation of 

the defects or from a confusion with the calyx and stem-ends because 

defects like russet and recent bruises present a color similar to the healthy 

tissue. They used image at 800 nm because this wavelength band was not 
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influenced by natural variations of the skin color and offered the best 

contrast between the stem/calyxes and the rest of the fruit. 

From these studies, it appears that apple stem/calyx detection is a difficult 

task using conventional image acquisition devices. On the other hand, 

hyperspectral imaging systems provide a large amount of data which is very 

time consuming to acquire and to process. Thus reducing this data to such 

few optimal wavelengths and propose an image processing method having 

the potential of stem recognition could be applied in such a way in industrial 

applications. Thus, the overall objective of this research was to ascertain the 

capability of hyperspectral imaging to identify stem in images of apples and 

develop a proper wavelength selection method to form multispectral images 

in which stem could be recognized in various cultivars. 

 

MATERIAL AND METHODS 

1. Apple Samples 

Apples of four cultivars Granny Smith (green), Golden Delicious (yellow), 

Red Delicious (dark red), and McIntosh (multicolour) were obtained from 

local retail stores. Abnormal apples that might contain any defects such as 

bruises, diseases, and contaminations were excluded to eliminate any 

similarities between these defects and the stem. The fruit were stored at 3°C 

until the time of testing, then they removed from the storage 24h before 

image acquisition to be equalized with surrounding temperature. 

Hyperspectral image of the whole fruit was acquired with the stem in a wide 

range of orientations. Furthermore, the hyperspectral images were captured 

again after 1, 3, 7 days for the same fruits to detect the difference in the 

spectral features of the stem compared with the normal surface. Then the 

images were calibrated as described below and divided into two classes, the 

first class consisting of 200 images (fifty images from each cultivar) was 

used as a calibration set to be used in extraction the optimal wavelengths. 

The second class consisting of 240 images was used for validation and 

classification routines. 

2. Hyperspectral Imaging System 

2.1. Component of hyperspectral imaging system  

The developed hyperspectral imaging system as schematically shown in 

(Fig. 1) is composed of four components: (1) illumination unit which 
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consists of two 50W halogen lamps adjusted at angle of 45º to illuminate the 

camera’s field of view, (2) a fruit holder surrounded by white nylon tent to 

diffuse the light and provide a perfect lighting condition, (3) spectrograph 

(ImSpector V10E, Optikon Co., Canada) coupled with a standard C-mount 

zoom lens, and (4) CCD camera (PCO-1600, Pco. Imaging, Germany). The 

optics, spectrograph and the camera, has high sensitivity from 400 to 1000 

nm and the exposure time was set at 200 ms throughout the whole test. The 

camera-spectrograph assembly is provided with motor to move this unit 

through the camera’s field of view to scan the fruit line-by-line. This setup 

resulted in spatial-spectral images with spatial dimension of 400x400 pixels 

and 826 spectral bands from 400 to 1000 nm. The system was controlled by 

PC supported with Hypervisual Imaging Analyzer
®

 (ProVision 

Technologies, Stennis Space Center, USA) for image acquisition and for 

controlling camera, motor and spectrograph.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Hyperspectral imaging system: (a) CCD camera, (b) Spectrograph 

with a standard C-mount zoom lens, (c) Halogen lighting unit, (d) White 

nylon tent, and (e) PC supported with image acquisition software. 

2.2. Calibration of hyperspectral images  

Hyperspectral images were corrected by comparison with a white reference 

(Teflon white board with 99% reflectance) taking into account the dark 

current of the CCD detectors. The corrected image (R) is then defined using 

the following expression: 
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Where Ro is the recorded hyperspectral image, D the dark image recorded 

by turning off the lighting source with the lens of the camera completely 

closed with a black cap, and W is the white reference image. The 

calibration, processing and analysis of the images were conducted using 

Environment for Visualizing Images (ENVI 4.2) software (Research 

Systems, Inc., Boulder Co., USA). 

2.3. Extraction of spectral features of stem and normal surfaces 

The spectral signature of any object in the hyperspectral image is defined as 

the pattern of reflection, absorbance, and emitting of electromagnetic energy 

in distinctive manner at specific wavelengths due to the differences of 

products’ molecular compositions. This signature uniquely characterizes 

and identifies any given material over a sufficiently broad spectral band. So, 

due to the difference in molecular composition between stem and normal 

surface, it is required to identify the special characteristics of the stem in 

terms of its spectral responses at different wavelengths in the 

electromagnetic range from 400 to 1000 nm. Corrected images were used to 

extract such information about the spectral properties of stem/calyx ends as 

well as of the normal surface. This spectral information will be used for 

selecting the optimal wavelengths and classification purposes. About 2000 

pixels were manually and randomly selected to collect the average 

reflectance spectrum of normal surface from each image for each cultivar. 

Also, the reflectance spectrum of the stem area were collected using the 

same manner using about 200-500 pixels depending on stem size. 

2.4. Wavelength selection method 

The topic of wavelength selection is concentrated on establishing a formal 

methodology, which enables optimal utilization of specific spectral bands. 

In general, the selected wavelength(s) should reduce the data dimensionality 

while preserving the most important information contained in the lower 

dimensional data space. Any wavelength that preserves the most energy 

among the hyperspectral data, carries most spectral information and 

maintains any valuable details among tested objects is considered an 

optimal wavelength. This optimal wavelength depends on the behaviour of 

spectral curves of the materials under study and the difference beneath 
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them. However, there is not a standard method to select the optimal 

wavelengths from the whole spectrum. Therefore, to establish consistent 

multispectral imaging systems, several essential spectral bands are first 

sought through a variety of strategies, such as general visual inspection of 

the spectral curves and correlation coefficients (Keskin et al., 2004), 

analysis of spectral differences from the average spectrum (Liu et al., 2003), 

stepwise regression (Chong and Jun, 2005), principal component analysis 

(Kim et al., 2002; Mehl et al., 2004; and Xing and De Baerdemaeker, 2005), 

and others (Hruschka, 2001).  

In this study, to determine the optimal wavelengths, partial least squares 

(PLS) analysis was conducted for normal surface and stem spectra using 

SAS
®

 statistical software. PLS is implemented to transfer a large set of 

highly correlated and often collinear experimental data into independent 

latent variables or factors. When applied to spectra, the aim of PLS analysis 

is to find a mathematical relationship between a set of independent 

variables, the X matrix (Nsamples ×  Kwavelengths), and the dependent variable, 

the Y matrix (Nsamples ×  1). The spectrum source (normal surface and/or 

stem) represented the dependent variable (Y); meanwhile, the 826 

wavelengths represented the independent variables or the predictors (X). 

Typically, most of the variance can be captured with the first few latent 

variables while the remaining latent variables describe random noise or 

linear dependencies between the wavelengths/predictors. 

The PLS algorithm according to (Geladi and Kowalski, 1986a, 1986b; 

Haaland and Thomas, 1988a, 1988b; and Osborne et al., 1997) determines a 

set of orthogonal projection axes W, called PLS-weights, and wavelength 

scores T. Then, regression coefficients β are obtained by regressing Y onto 

the wavelength scores T as follow: 

ββ aa TXWY == *
^

                                             (1) 

With W* = (W (P`*W)
-1

), 

Where, 
^

Y is the predicted surface type (normal surface or stem), a is the 

number of PLS factors and P` is the wavelength loadings. To facilitate the 

analysis, the surface type (Y) was presented in binary codes, so that the 

spectra of normal surfaces were denoted by zeros meanwhile the stem 

spectra were represented by ones. 



The 14
th

. Annual Conference of the Misr Society of Ag. Eng., 22 Nov., 2006 

 
845 

The relative importance of wavelengths in the model with respect to surface 

type (Y) could be reflected by new scores called variables importance in 

projection (VIP) scores according to the following formula:  

∑
=

=
a

j

jjkk
SST

L
SSRwVIP

1

2 ).(                               (2) 

Where SSR is the residual sum-of-squares, SST is the total sum-of-squares 

of Y variable, and L is the total number of the examined wavelengths (826 

spectral bands). Variables Importance for the Projection (VIP) score of each 

wavelength could be considered as selection criteria. Wavelengths with 

higher VIP score are considered more relevant in classification (Bjarnestad 

and Dahlman, 2002). In general, predictors/wavelengths could be classified 

according to their relevance in explaining Y as: VIP > 1.0 (highly 

influential), 0.8 < VIP < 1.0 (moderately influential) and VIP < 0.8 (less 

influential) (Olah et al., 2004). In this study, all wavelengths above 

threshold of 1.0 were considered optimal wavelengths to be used for further 

classification processes 

2.5. Classification algorithm 

The method presented in this work represents an attempt to mimic the way 

in which humans evaluate and classify objects. The idea is to base the 

detection on spectral signature of each pixel using limited number of 

wavelengths as opposed to classical image processing which normally 

involves identification of the objects by segmentation.  

A supervised approach using Maximum Likelihood Classification (MLC) 

was used for this task. MLC assumes that the statistics for each class in each 

band are normally distributed and calculates the probability that a given 

pixel belongs to a specific class. Each pixel is assigned to the class that has 

the highest probability (i.e., the maximum likelihood). Only the images at 

optimal wavelengths (selected from VIP procedure) were used as the basis 

for this approach using ENVI software. The method depended on 

calculating the spectral characteristics of stem at only optimal wavelengths 

in terms of minimum, maximum and average reflectance as well as its 

covariance matrix, and then saving these data as the unique stem library to 

represent the stem class. Keeping the spectral signature of stem class in one 

hand and the reflectance from the whole fruit at the same optimal 
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wavelengths on the other hand, the pixel that carry the same spectral 

signature like stem are marked according to its highest probability. ENVI 

calculates the following discriminant functions for each pixel in the image 

as: 

( ) ( ) ( ) ( )
ii

T

iiii mxmxpxg −Σ−−Σ−= −1

2

1
ln

2

1
ln ω  

Where: 

 i        : Class number, 1 or 2 (stem or normal surface),  

 x       : The spectral reflectance of any pixel in the image at optimal 

wavelengths, 

iω      : The spectral data matrix of each pixel belonging to class i, 

( )ip ω : The probability of class having iω to be occurred in the image and is 

assumed the same for the other class (equal to 1/2). 

iΣ    : The determinant of the covariance matrix of the data in class iω , 
1−Σ i    : The inverse of the covariance matrix of the data in class iω , and 

mi      : The mean vector of the spectral reflectance for all pixels belonging 

to class i. 

In fact, this method can be implemented in such a way that the system can 

be updated without modification, simply by providing the system with the 

new signature of different classes, which is then used to train the 

classification. 

The resultant classified image usually needs further processing to better 

define the stem area, such as the elimination of isolated pixels and small 

zones. For this purpose, the binary image containing only the class stem was 

obtained by considering the class stem as the main object and merging the 

rest of the other pixels with the background pixels. Then morphological 

operation and a spatial filter were applied over this binary image.  

 

RESULTS AND DISCUSSIONS 

1. Spectral Characteristics of Stem and Normal Surface 

Figures (2a-d) show the reflectance spectra in the visible and near infrared 

(VIS/NIR) range between 400 and 1000 nm for normal surfaces and stems 

of different cultivars after 0, 1, 3, and 7 days. In spite of cultivar, the 

reflectance curves of stems were rather smooth across the entire spectral 

region and almost have the same features during the whole period especially 
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in the range from 400 to 900 nm. The presence of water in the fruit gave rise 

to the characteristic absorption bands that appear as localized minima, so 

that samples containing higher moisture contents had lower reflectivity 

across their spectra. In spite of cultivar and its background color, the 

absorption curves of the normal surfaces had three broadband valleys 

around 500, 690 nm, and 960 nm in addition to small valley at 840 nm. The 

absorption valleys around 500 and 690 represent carotenoids and 

chlorophyll pigments which represent the color characteristics in the fruit 

(Abbott et al., 1997); meanwhile, absorption valleys in the NIR at 840 and 

960 nm represent sugar and water absorption bands. The deeper the valley 

the higher the content of this attribute in the fruit. Therefore, cultivar 

Granny Smith (Green background color) has the deepest valley at the 

chlorophyll absorption band (at 590 nm) meaning that it has the highest 

chlorophyll content as shown in fig. 2a. Meanwhile, the cultivar Golden 

Delicious (Yellow background color) has the lowest content of chlorophyll 

due to its shallow valley at the chlorophyll absorption band compared with 

the other cultivars. Within normal surface, more variability of relative 

reflectance from the same variety was found. This result was possibly 

caused by the variability of shape and size of fruit samples, even though 

calibration process extremely decreased this variability. 

The visual inspection of spectral curves shown in figures (2a-d) reveal that 

most of the reflectance of stems was very low compared with the normal 

surface and it is occasionally overlapped with the normal surface in the 

visible region in case of Granny Smith and Golden Delicious cultivars. 

Therefore, the detection of stem in case of these cultivars could be 

performed using the ordinary RGB camera by conventional machine vision 

technique that utilizes only the visible range of the electromagnetic 

spectrum. In case of Red Delicious and McIntosh cultivars, distinguishing 

stems from normal surface is rather difficult in the visible region due to 

intersections among their reflectance spectra in the visible region because 

stems and normal surface have the same color. However, it was observed 

that the reflectance of stems changed drastically and became more 

significance without any over-lapping taking place in the near infrared 

region between 700 to 900 nm for all cultivars. The most optimistic thing is 

that the reflectance of stem did not changed over time and the same pattern 
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of the reflectance characteristics was observed for stem after 0, 1, 3 and 

7days, which had much lower reflectance than normal tissue over the 

spectral region between 700 and 900 nm. Accordingly, the reflectance 

characteristic curves indicates that the spectral region between 700 and 900 

nm would be appropriate for stem detection because there was no confusion 

between normal surface and stem spectra in this region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Spectral feature of normal surface and stem at 0, 1, 3, 7 days for the 

cultivars (a) Granny Smith, (b) Golden Delicious, (c) Red Delicious, (d) 

McIntosh 

2. Selection of Optimal Wavelengths  

Variable Importance for Projection (VIP) scores extracted from PLS 

analysis of spectral data of stem and normal surface are depicted in fig.4a. If 

a predictor (wavelength) has a high regression coefficient (in absolute 

value) and a high value of VIP (Bjarnestad and Dahlman, 2002), then it is a 

prime candidate for stem discrimination from the normal surface. In general, 

a VIP threshold value of 1.00 was used as a criterion for corresponding 

highly influential predictors/optimal wavelengths.  
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Fig. 3 Variables Importance in Projection (VIP) scores resulting from PLS 

analysis of spectral reflectance data of stem and normal surface of 

different cultivars. 

The wavelengths in the broadband 460-650 and 700-890 nm are optimal 

wavelengths for stem detection in case of Granny smith cultivar. 

Meanwhile, the wavebands 410-895, 620-920, and 705-905 nm are optimal 

wavelengths for stem detection in Golden Delicious, Red Delicious and 

McIntosh respectively. Accordingly, figure (3) reveals that, depending on 

VIP threshold at 1.00, the wavelengths in the broadband of the NIR region 

from 705 to 890 are all effective in projection and then in stem 

discrimination in all cultivars. Within this range, wavelengths in the range 

from 730 to 850 nm corresponded to the highest VIP scores for all cultivars. 

Based on the previous spectral data analysis and the highest values of VIP 

scores, three wavelengths 730, 770, and 850 were chosen for stem detection 

purposes. The selected wavelengths are in the NIR region and can be used 

for stem detection despite the cultivar. The obvious advantage of working in 

the NIR range is that problem caused by color variations on normal surfaces 

can be circumvented 

3. Stem Detection Algorithm 

The stem detection algorithm is divided into three stages. The first stage is 

called the primary stage and it is composed of creating a binary mask to 

produce an image containing only the fruit, avoiding any interference from 

Threshold line 
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the background that could reduce discrimination efficiency. This was done 

using Matlab (Release 14, The MathWorks Inc., Natick, MA, USA) by 

thresholding which determines the threshold value based on a histogram of 

the grey values in the image. Image at 500 nm was used for this task 

because the fruit appeared opaque compared with the background and can 

be segmented easily by thresholding. The thresholded image showed the 

position of the apple in the image as a black area on a white background. 

This black and white image was used as a template to remove the 

background in the original image and to focus all image processing 

operations only in the black area representing the fruit and avoiding any 

discrepancy with the background region. The second stage included two 

primary steps, the first and the most important one is the extraction of the 

spectral features of stem and normal surface, and then selecting the optimal 

wavelength depending on the VIP scores as described before. The second 

step in this stage is to reduce the 826 spectral images for each sample to 

form a set of image at only three optimal wavelengths (730, 770, 850 nm) 

using the binary mask to separate the fruit area as the main object in the 

image. These three spectral images will be the base for the next image 

analysis processes. In these three images, stem’s pixels were generally 

darker than the normal tissue’s pixels. In most cases the simple thresholding 

was not be able to identify all of the area representing the stem, due to 

variations in the grey level within the stem area and the surrounding surface. 

So, the solution for this problem is to look for an alternative method to 

overcome this discrepancy utilizing the spectral signature of the stem in the 

three image altogether.  

The third stage and the final one comprised three steps as follows: 

(a) Extracting the spectral signature of the stem at only the optimal 

wavelengths. The minimum, maximum and average reflectance 

characteristics of stem for all calibration set fruits (200 images) were 

recorded and its covariance matrix was calculated. All of these statistics 

were saved in a file to represent the unique spectral signature of the stem. 

This saved file will be used for the next step of classification. 

(b) Conducting the Maximum Likelihood Classification (MLC) as described 

above utilizing the reflectance from for each pixel in the three images and 

from the saved unique spectral signature of the stem. According to this 
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approach each pixel has a spectral vector associated with it and pixels are 

segmented into the class they most closely resemble spectrally. Each pixel is 

assigned to the class that has the highest probability (maximum likelihood) 

according to the discriminant function for each pixel as described earlier. In 

case there were no stem and/or calyxes in the image, the resulting 

classification image will be blank indicating that the tested fruit did not 

present any stem at all.  

(c) Finally, the noise was removed by some morphological operations as 

median filtering, in addition to erosions and dilations to remove the 

separated pixels or zones that might carry the same features. If the stem is 

detected, its direction and lengths can be estimated for fruit quality 

evaluation purpose or for precise orientation in the processing lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Flow chart representing the sequences and stages of classification 

algorithm used for stem detection. 
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4. Validation of Stem Detection Algorithm 

Due to the fact that apples are rotating during sorting and grading processes 

to inspect the whole surface, the previous algorithms should be validated for 

detecting stem that might have different lengths and different orientations to 

know the capability of this method for stem recognition at different 

positions. The problem becomes very complex when a standing stem 

appears as a protrusion or the small spikes of a calyx appear on the 

boundary of the images (Yang, 1996). The validation image set consisted of 

240 images containing fruits without stem, images with short stem, images 

with long and thick stem, and finally images with branched stem as shown 

in figure (5). Images were acquired for Granny Smith, Golden Delicious, 

Red Delicious and McIntosh cultivars with stem distributed in different 

orientations (stem in the top position, stem in the right position, and stem in 

the down left position). It is important to indicate that each tested image is 

actually consisted of three sub-images at the selected optimal wavelengths 

(730, 770, 850 nm). Because the selected optimal wavelengths are in the 

NIR region, the color variations between varieties are neglected in this 

region. Figure (5) demonstrates the outcomes of the proposed algorithm for 

stem detection of different lengths and orientations. The first row of each 

group represented the original NIR image at optimal wavelengths (only one 

image of the three sub-images is presented for simplicity to visualize the 

fruit before applying the classification) and the second row showed the final 

result of maximum likelihood classification algorithm. It is obvious that the 

algorithm had great capabilities for stem recognition at different orientations 

and different lengths and thickness due to its high efficiency for identifying 

and isolating most of the pixels that carry stem signature. The potential 

usage of this process is so important in industrial application because it is 

desired to exclude all fruits without stem because absence of stem opens a 

way for possible invasion of infections during transport and storage (Ruiz et 

al., 1996) as well as excluding that ones having very sharp or stiff stem that 

might puncture adjacent fruits in the final package. 

The obtained results for the validation set images were 100% of succession 

in stem detection. There were very few pixels in the stem area were 

misclassified, but these few pixels did not affect the performance of 

classification algorithm. 
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Fig. 5 Stem detection at various orientations with stem located at top, right, 

and down left positions for short, long, branched and thick stem. The first 

row of each group represented the original NIR image and the second row 

shows the final result of maximum likelihood classification algorithm.  

 

CONCLUSION 

Hyperspectral imaging technique in visible and near infrared (VIS/NIR) 

range at 400-1000 nm was built for stem detection purposes in Granny 

Smith, Golden Delicious, Red Delicious and McIntosh apples. Optimal 

wavelengths that gave the highest contrast between stem and the normal 

surface were selected by analyzing the spectral data collected from stem and 

its surrounding normal surface using Partial Least Square (PLS). Three 

optimal wavelengths (730, 770, 850 nm) were selected depending on 

Variables Importance in Projection (VIP) scores extracted from PLS. 

Although each cultivar has its own optimal wavelengths in both VIS and 

NIR regions, the common wavebands that can be used for stem detection 

was in the range 705-890 nm in the NIR region to alleviate the problems 

aroused from color variations of cultivars. In this range, stem could be 

discriminated from the surrounding normal surface in all tested cultivars. 

The spectral characteristics of the stem in terms of its minimum, maximum 

Branched stem 

Short stem Long stem 

Thick stem 
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and average reflectance as well as its covariance matrix are used to reflect 

the unique spectral signature of the stem. Thereby, Maximum Likelihood 

Classification (MLC) method was used to classify apple images at these 

wavelengths to locate the stem using its unique spectral signature. The 

experimental results demonstrated that the system successfully classified a 

set of image consisting of 220 images with and without stem. Also, the 

method was able to locate the stem having various lengths and thickness as 

well as different orientations.  

Using VIP scores for wavelength selection and then MLC for classification 

opens a new avenue for more optimistic applications in commercial 

implementations for detecting various objects in the tested produces. 

Because the fruits used for this study did not suffer any damage, diseases, 

and/or injuries, further research should be done in order to discriminate 

between the stem region and some external defects to be satisfactory for 

practical implementation. 
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