GENETIC ANALYSIS OF YIELD, YIELD COMPONENTS AND SOME CHEMICAL CONSTITUENTS IN SIX EGYPTIAN COTTON CROSSES (Gossypium harbadense L.) UNDER RAS-SUDR CONDITIONS

Salem, A.H.¹, H.A. Awaad¹, A.I.A. Hassan² and E.S.A. Moustafa²

- 1. Agron. Dept., Fac. Agric., Zagazig Univ., Zagazig, Egypt.
- ^{2.} Plant Genetic Resources Dept., Desert Res. Center, El-Matariya, Cairo, Egypt.

Accepted 8/12/2005

ABSTRACT: Six populations (P₁, P₂, F₁, F₂, B₁ and B₂) of six cotton crosses, namely 1) Giza 89 × Dandara, 2) Giza 83 × Ashmoni, 3) Giza $45 \times$ Giza 70, 4) Giza $45 \times$ Giza 83, 5) Giza $80 \times$ Giza 86 and 6) Giza 89 × Ashmoni were raised in a randomized complete block design during the three successive summer seasons of 2000, 2001 and 2002 at Ras-Sudr Agriculture Research Station of Desert Research Center, South Sinai. The aim of the study was to determine the adequacy of genetic model and gene action controlling yield and its components i.e., number of fruiting branches/plant, number of open bolls/plant, boll weight, seed cotton yield/plant and some chemical constituents such as potassium, magnesium and concentrations as well as proline content. The collected data were subjected to two-way analysis of variance according to Steel and Torrie (1980). The results indicated that the scaling test (A, B and C) provide evidence of non-allelic interaction in controlling number of fruiting branches/plant, number of open bolls/plant, boll weight and seed cotton yield/plant in all crosses and for chemical components potassium concentration in 1st, 2nd, 4th and 6th crosses; magnesium concentration in 1st, 5th and 6th ones; sodium concentration in 1st, 4th, 5th and 6th crosses and proline content in 1st, 2nd and 5th ones. The simple genetic model was adequate for explaining the inheritance of potassium concentration in 3rd and 5th crosses; magnesium

concentration in 2nd, 3rd, and 4th ones; sodium concentration in 2nd and 3rd crosses as well as proline content in 3rd, 4th and 6th ones. The additive gene effect (d) was more important in the inheritance of number of fruiting branches/plant in 1st, 2nd, 3rd, 5th and 6th crosses; boll weight in 1st and 2nd ones; potassium concentration in 2nd, 5th and 6th crosses; magnesium concentration in 1st, 3rd and 4th crosses; sodium concentration in the 2nd and 3rd crosses and proline content in 2nd, 3rd, 4th and 6th ones. The additive × additive (i) interaction type was important in the genetics of number of open bolls/plant and seed cotton vield/plant in 6th cross as well as boll weight in 4th and 6th crosses; however both additive and additive x additive interactions types were important in the genetic system controlling potassium concentration in 4th and 6th crosses and proline content in 5th one. The dominance (h) and its digenic interaction type, dominance × dominance (I) were involved in the inheritance of boll weight and seed cotton yield/plant in 6th cross; number of open bolls/plant in 1st and 6th crosses; potassium concentration in 4th one; magnesium concentration in 6th cross sodium concentration in 5th cross and proline cutent in 1st one. Also, the dominance gene action played an important role in the genetics of potassium and magnesium concentration in3rd cross sodium concentration in 5th cross and proline content in 1st one. Additive × dominance (j) was significant for number of fruiting branches/plant in 2nd,4th and 6th crosses; number of open bolls/plant in 3rd cross only; boll weight in 1st and 3rd crosses and seed cotton yield/plant in 3rd one. Narrow sense heritability was high (>50%) for number of fruiting branches/plant in 3rd cross, potassium concentration in 5th cross and magnesium concentration in 2nd one. Whereas: it ranged from low to moderate for number of fruiting branches/plant, number of open bolls/plant, boll weight, seed cotton yield/plant, sodium concentration and proline content.

Key words: Cotton, varieties, gene action, heritability, chemical constituents.

INTRODUCTION

Cotton is considered as the major fiber crop of global important through the world.

Improvement of cotton production in Egypt could be achieved by developing high yielding cultivars tolerant to environmental stresses to increase cultivated area (throughout newly reclaimed soil), and improving the agronomic practices. It is worthy to mention that some of the newly reclaimed soils in Egypt are desert and have limited quantity of water irrigation and high level of salinity. Cotton in this respect is classified as a salt tolerant crop and variation in salt tolerance has become observed among different varieties (Mass and Hoffman, 1977 and Afiah and Ghoneim, 1999). Also, resistance of cotton to salinity may differ according to climatic conditions (El-Sheik, 1961).

Regulation of transport and distribution of ions in various plant parts and within cells is an important feature ofthe of salt mechanism tolerance (Flowers et al., 1977 and Greenway and Munns, 1980). AS much as the specific accumulation of Na⁺ and/or Cl⁻ in plant tissues is toxic and found as one of the major causes of growth reduction under saline conditions (Greenway and Munns, 1980; Wyn Jones, 1981: Yeo and flowers, 1984 and Ashraf, 1994). However, proline function in plant tissues is to protect several enzymes against inactivating effects of stress. So, high values of proline content indicate that, plants are tolerant,

while the low values reveal that the plants are sensitive to salinity (Paleg et al., 1981).

Therefore, studying the type of gene action controlling yield and its components along with chemical constituents accounted the major importance in cotton breeding program. Since, decision making about the effective breeding procedure to be used is mainly dictated by the type of gene action controlling chemical constituents. Thus, the genetic information obtained from multigeneration reliable are compared with those based on one generation. Thus six populations $(\overline{P}_1, \overline{P}_2, \overline{F}_1, \overline{F}_2, \overline{B}_1)$ and \overline{B}_2) are considered the one which may give detailed information about type of gene action that control the studied characters.

Many investigators indicated the importance of genetic variance in the genetics of quantitative traits. Most of these genetic variances were due to the additive variance in some traits i.e., number of open bolls/plant, boll weight, lint percentage and seed index [Abul-Naas et al., 1983; Gomma and Shaheen, 1995] showed that dominance and additive x additive gene effects were important in

controlling vield and vield attributes. In this concern, Kassem et al. (1981) reported that the additive, dominance and epistatic gene effects were involved in the inheritance of most vield and vield attributes. On the other hand. Atta et al. (1982), El- Okkia et al. (1989) and Hendawy (1994) reported that both additive and non-additive gene effects were important in the inheritance of seed cotton vield, number of open bolls/plant, boll weight, seed index and lint percentage. The nonadditive and environmental variances were larger in magnitude than the additive one in some cases.

So, the present study was carried out to investigate the nature of gene action and some genetical parameters for seed cotton yield/plant, number of

fruiting branches/plant, number of open bolls/plant, boll weight and chemical components i.e., potassium, magnesium, sodium concentrations as well as proline content in cotton leaves under Ras Sudr conditions.

MATERIALS AND METHODS

1. Description of the Studied Materials and Experimental Layout

The present investigation was conducted during the three successive summer growing seasons; 2000, 2001 and 2002 at Ras Sudr Agricultural Research Station of Desert Research Center, South Sinai. Six cotton crosses, derived from eight diverse parental cotton genotypes Table 1 have been used in the present study.

Table 1:The pedigree and origin of the cotton varieties under investigation

Genotype	Pedigree	Origin
1-Giza 45	Giza 28 (Sakha 3 × Sakha 4) × Giza 7 (Ashmouni)	Egypt
2-Giza 70	Giza59a(Giza36×Giza44)×Giza 56(Giza36×Giza40)Egypt
3-Giza 80	Giza 66 × Giza 73	Egypt
4-Giza 83 ⁻	Giza 67 × Giza 72	Egypt
5-Giza 85	Giza 67 × C.B. 58	Egypt
6-Giza 86	Giza 75 × Giza 81	Egypt
7-Giza 89	Giza 75 × R. 6022	Egypt
8-Ashmouni	Progenatore of Egyptian cotton cultivars	Egypt
9-Dandara	selected from Giza 3	Egypt
10-Karshenseki-	2 Russian variety (G. barbadense L.)	Russian

These genotypes were used to obtain the following six crosses: 1) Giza 89 x Dandara, 2) Giza 83 x Ashmoni, 3) Giza 45 x Giza 70, 4) Giza 45 x Giza 83, 5) Giza 80 x Giza 86 and 6) Giza 89 x Ashmoni.

In the first Season of 2000, the eight parental cotton genotypes were evaluated in a randomized complete block design with three replications, at the meantime pair crosses were performed to obtain F₁s seeds. In the second season, 2001, six F_1 cross seeds were sown to produce F₁ plants. Each of the F₁ plants were back crossed to their respective parents to produce first BC_1 ($F_1 \times P_1$) and second BC_2 $(F_1 \times P_2)$ back crosses. In the meantime, pair crosses were made to produce more F₁ seeds. F₁ plants were selfed to produce F2 seeds. In the third season, 2002, the obtained seeds of six populations $(P_1, P_2, F_1, F_2, B_1 \text{ and } B_2)$ for each of the six cotton crosses were sown and evaluated under normal condition of salinty (2000 ppm) using a randomized complete block design with three replications. Cotton seeds were sown on 26 March. Ridges were 3 m length and 60 cm apart with 20 cm between hills. Each hill was thinned to two plants. The experimental plot consisted of 15 ridges (5 ridges for F₂ generation

and 2 ridges for each of the parents, F1 and back crosses). In each year, the calcified soil was prepared before sowing fertilized with 24 unit P2O2 that equal about 150 superphosphate/ fed. Fertilization with nitrogen and potassium were carried out after 30, 60 and 90 days of solwing, however in each fertilization date, 20 kg N/fed as ammonium sulphate (20.6% N) and 10 Kg K_2O/fed . (48% k_2O) as potassium sulphate were applied.

2. Recorded Data

a- Chemical analysis

At the beginning of flowering random three samples of leaves from each entry were taken and oven dried according to A. O. A. C. (1975) to determine the chemical constituents, i.e., potassium, magnesium and sodium concentrations (Johnson and Ulich, 1959 and Allen et al., 1974) and proline content (Bates et al., 1973).

b- A gronomic characters

At harvest, data of yield and yield attributes (i.e., number of fruiting branches/plant, number of open bolls/plant, boll weight and seed cotton yield/plant were collected on guarded individual plants (i. e., 10 plants for each of the parents and F₁'s 15 plants for back cross progenies and 30 plants

for F_2 generation) in each replicate from the six populations.

3. Biometrical Analysis

Testing the genetic model

Two way analysis of variance was performed before biometrical analysis. The A, B and C scaling tests as outlined by Mather (1949) and Hayman and Mather (1955) were applied to test the presence of non-allelic interaction as follows;

$$A = 2\overline{B}1 - \overline{P}1 - \overline{F}1, B = 2\overline{B}2 - \overline{P}2 - \overline{F}1$$

and $C = 4\bar{F}_2 - 2\bar{F}_1 - \bar{P}_1 - \bar{P}_2$. Due to the unknown biased effect of non-allelic interaction, the simple genetic model (m, d and h) was applied when epistasis was absent using the formula by outlined Jinks and Jones (1958) as follows; Mean (m) = $\left\{ \left[\frac{1}{2} \hat{P}_1 + \frac{1}{2} \hat{P}_2 + 4 \hat{F}_2 - 2 \hat{B}_1 - 2 \hat{B}_2 \right] \right\}$

Additive

(d)=
$$\frac{1}{2}\bar{P}_1 - \frac{1}{2}\bar{P}_2$$
 and

Dominance

(h)=
$$6\bar{B}_1+6\bar{B}_2-8\bar{F}_2-\bar{F}_1-\frac{3}{2}\bar{P}_1+\frac{3}{2}\bar{P}_2$$
.

Whereas, in the presence of non-allelic interaction, the analysis was proceeded to compute the interaction types involved using the six parameters genetic model of Jinks and Jones (1958) as follows:

 $m = Mean of \bar{F}_2$.

 $d = additive effect = BC_1 - BC_2$.

h= Dominance effect =
$$\bar{F}_1 - 4\bar{F}_2 - \frac{1}{2}\bar{P}_1 - \frac{1}{2}\bar{P}_2 + 2\bar{B}C_1 + 2\bar{B}C_2$$
.

I = Additive \times additive type of gene interaction= $2BC_1+2BC_2-4F_2$.

J=Additive ×dominance type of gene interaction= $BG - \frac{1}{2}\bar{P}_1 - BC_2 + \frac{1}{2}\bar{P}_2$.

L = Dominance × dominance type of gene interaction = $P_1 + P_2 + 2F_1 + 4F_2 - 4BC_1 - 4BC_2$. The significancy of the genetic components were tested using the "t" test where:

$$\pm t = \frac{\text{Effect}}{\sqrt{\text{variance of effect}}}$$

The estimates of genetic components variance and heritability value in both broad and narrow senses $(T_{(b)}$ and $T_{(n)})$ were determined according to Mather and Jinks (1982) as follows:

$$E = \frac{1}{3}(VP + VP + VP)$$

D=4VF-2(VBC+VBC)

$$H=4(V_{\xi}-\frac{1}{2}VD-E)$$

$$T_{\text{(b)}} = \frac{\frac{1}{2}D + \frac{1}{4}H}{\frac{1}{2}D + \frac{1}{4}H + E} \qquad \text{and} \qquad T_{\text{(n)}} = \frac{\frac{1}{2}D}{\frac{1}{2}D + \frac{1}{4}H + E}$$

RESULTS AND DISCUSSIONS

1. Mean Performance

A- Yield and its components

The reliability of genetic estimates depend components mainly on the amount of the genetic variability among the studied genotypes. Thus, before proceeding to the biometrical analysis, the "t" statistical test was applied to the studied genotypes for the different characters. The results indicated significant differences between parental providing cotton genotypes. evidence for the presence of considerable amount of genetic variability which could be used for further biometrical analysis.

Mean and standard error of the six populations (P₁, P₂, F₁, F₂, BC₁ and BC₂) of six cotton crosses for the studied characters are given in Table 2. According to the mean of F₁'s as compared with its respective parental genotypes. Results revealed that, the F₁'s exceeding the high performing parent for number of fruiting branches/plant in all crosses, except the 4th one; and boll weight and seed cotton yield/plant in 1st cross only. These results provide

evidence for the presence of overdominant gene effects and the increasing alleles were more frequent than decreasing ones in the genetic constitution of parental cotton genotypes.

While, the F₁'s mean were less than the lower parent for number of open bolls/plant in 1st, 2nd and 4th crosses; boll weight in 6th cross and seed cotton yield/plant in 3rd, 4th and 6th crosses, providing evidence for predominant of decreasing alleles and negative heterotic effects.

The F₁'s means were equal to the lower parent for number of open bolls/plant in 3rd cross and boll weight in 4th one, showing complete dominance for these characters.

The F₂'s of the six studied crosses in each character ranged 9.623±0.393 (cross 1) to from 14.451±0.526 (cross 2) for number of fruiting branches/plant; 6.766±0.335 (cross 5) 14.378±0.799 (cross 2) for number of open bolls/plant; 1.742±0.185 (cross 5) to 2.121 ± 0.132 (cross 1) for boll weight and 11.171±0.580 (cross 5) to 32.683±0.832 (cross 1) for seed cotton yield/plant. Such wide range indicate the presence of appreciable amount of genetic

Table 2: Mean ± S.E. for the six populations for seed cotton yield/plant(g), number of fruiting branches /plant; number of open bolls/plant and boll weight(g) at Ras Sudr Agriculture Research Station during summer season of 2002

Characters		See	d cotton y	/ield/plan	t(g)		,	Number	Number of fruiting branches/plant						
crosses population	1, -	2.	3	4	5	6 ,	1	2	3	4	5	6			
	22.736	28.246	30.743	30.798	16.434	23.116	8.711	11.222	11.200	11.278	11.311	8.701			
\mathbf{P}_1	±0.202	±0.118	±0.119	±0.062	±0.119	±0.138	±0.113	±0.041	±0.041	±0.034	±0.044	±0.036			
	25.453	36.636	10.440	40.493	14.300	37.062	10.962	13.480	9.600	9.901	9.530	13.400			
$\mathbf{P_2}$	±0.025	±0.040	±0.117	±0.037	±0.056	±0.018	±0.162	±0.028	±0.035	±0.030	±0.036	±0.037			
$\mathbf{F_1}$	28.365	17.806	23.038	23.673	14.950	20.300	13.406	14.600	14.233	10.650	12.461	15.600			
	±0.114	±0.049	±0.135	±0.013	±0.088	±0.145	±0.136	±0.049	±0.058	±0.028	±0.036	±0.030			
$\mathbf{F_2}$	32.683	27.944	20.689	18.995	11.171	12.659	9.623	14.451	11.000	13.300	11.852	13.333			
	±0.832	±2.071	±1.282	±0.733	±0.588	±0.557	±0.393	±0.526	±0.465	±0.379	±0.372	±0.388			
\mathbf{BC}_1	19.845	23.670	15.724	23.264	14.152	38.039	9.010	8.401	13.761	11.455	12.268	10.201			
	±0.855	±1.410	±0.391	±0.475	±0.424	±1.366	±0.072	±0.035	±0.045	±0.054	±0.022	±0.026			
BC_2	30.325	16.359	15.602	15.257	11.310	36.575	9.714	14.346	8.615	11.280	10.600	13.712			
	±1.412	±0.261	±1.166	±1.157	±0.528	±1.724	±0.045	±0.030	±0.054	±0.037	±0.022	±0.033			

Table 2: Cont.

Characters	Nı	ımber of	open bol	ls/plant		U 81 U.	-	,	Boll we	eight(g)		
crosses opulation	1	2	3	4	5	6	1	2	3	·· 4	5	6
P1	11.922	18.084	15.080	15.428	8.700	9.492	1.910	1.570	2.270	2.032	1.693	2.644
	±0.116	±0.230	±0.191	±0.059	±0.298	±0.422	±0.032	±0.015	±0.008	±0.004	±0.004	±0.003
	14.068	12.760	4.350	16.400	11.023	12.244	1.813	2.986	1.183	2.493	1.313	3.043
P2	±0.163	±0.150	±0.079	±0.110	±0.211	±0.112	±0.004	±0.003	±0.004	±0.011	±0.003	±0.013
	10.501	9.329	4.533	11.600	9.286	11.023	2.722	2.181	1.450	2.040	1.502	1.853
F1	±0.139	±0.070	±0.097	±0.072	±0.119	±0.322	±0.024	±0.017	±0.018	±0.014	±0.003	±0.003
	11.551	14.338	10.353	11.014	6.766	7.250	2.121	1.932	2.063	1.833	1.742	1.775
F2	±0.462	±0.799	±0.546	±0.455	±0.335	±0.356	±0.132	±0.209	±0.184	±0.159	±0.185	±0.144
P.C1	10.083	11.600	11.284	12.667	8.700	16.286	1.983	2.034	1.465	2.006	1.683	2.317
BC1	±0.361	±0.707	±0.412	±0.224	±0.317	±0.427	±0.093	±0.030	±0.059	±0.053	±0.132	±0.100
DCA.	11.600	8.230	8.700	7.752	6.505	16.240	2.598	2.268	1.769	1.868	1.789	2.299
BC2	±0.483	±0.265	±0.500	±0.480	±0.265	±0.653	±0.131	±0.064	±0.414	±0.132	±0.072	±0.176

variability. Hereby, offer breeder great opportunity for isolating promising cotton genotypes.

The back cross population means are the mid-way between the F_1 and the parental genotypes for number of fruiting branches/plant, number of open bolls/plant, boll weight and seed cotton yield/plant in most studied crosses. These results suggested absence of dominance and genes controlling these characters are independently segregated. But, it deviated from the mid value of parents and their respective F₁ for number of fruiting branches/plant in 4th cross; number of open bolls/plant in 5th and 6th crosses; boll weigh in 3rd, 4th and 5th crosses and seed cotton yield/plant in 1st, 4th and 5th crosses. These results suggest that, polygenic genes are more pronounced for these characters.

B- Chemical constituents

Data of mean performance of chemical composition of 6 crosses and its components Table 3 revealed that, the F₁'s exceeding the high performing parent for potassium concentration in 3rd and 5th crosses; magnesium concentration in 4th cross; sodium concentration in 1st and 4th crosses

and proline content in 2nd and 6th crosses. The results indicated the presence of overdominance gene effects and positive heterotic effects which may result in adequate genetic base for further improvement.

While, the F₁'s mean were less than the lower parent for potassium concentration in 1st, 2nd and 4th crosses; magnesium concentration in 3rd and 5th crosses; sodium concentration in 2nd, 3rd, 5th and 6th crosses and proline content in 4th and 5th crosses, providing evidence for the predominance of decreasing alleles and negative heterotic effect in these crosses for the studied characters.

The F_2 of the six studied crosses in each character ranged from 68.788± 0.943 (cross 3) to 78.707±1.399 (cross 5) potassium concentration; 103.800± 0.772 (cross 3) to 112.300±1.350 (cross 1) for magnesium concentration; 43.506 ± 1.088 (cross 6) to 50.117±0.769 (cross 3) for sodium concentration and from 0.705 ± 0.149 (cross 5) to $1.228\pm$ 0.206 (cross 2) for proline content. Such wide range indicate the presence of a fair amount of genetic variability. Thus, offer the

Table 3: Mean \pm S.E. for the six populations for chemical composition potassium, magnesium, sodium concentration and proline content at Ras Sudr Agriculture Research Station during summer season of 2002

Characters		Potassiun	n concent	ration(gr	n/100gm))	Magnesium concentration(gm/100gm)								
Crosses population	1 -	2	3	4	5	6	1	2	3	4	5	6			
	70.313	68.520	68.410	68.300	78.360	70.320	107.450	105. 331	105.303	105.370	108.390	107.333			
P 1	±0.217	±0.147	±0.192	±0.170	±0.139	±0.124	±0.133	±0.171	±0.172	±0.141	±0.174	±0.134			
70.0	80.500	77.550	69.263	77.410	76.450	77.300	114.360	113.499	106.280	113.282	112.320	114.360			
P2	±0.228	±0.188	. ±0.174	±0.148	±0.150	±0.165	±0.180	±0.158	±0.192	±0.140	±0168	±0192			
774	68.866	65.317	71.366	65.487	80.336	75.270	113.291	110.363	104.380	114.388	105.250	109.346			
F1	±0.181	±0190	±0.238	±0.196	±0.187	±0.179	±0.188	±0.208	±0.170	±0.142	±0.174	±0.171			
77.0	76.612	70.700	68.788	72.100	78.707	78.100	112.300	110.200	103.800	109.501	104.217	108.811			
F2	±1.435	±1.399	±0.943	±1.574	±1.399	±1.418	±1.350	±1.814	±0.772	±1.746	±0.952	±1.373			
D.C.1	71.740	68.329	70.563	64.311	80.815	73.205	107.863	106.505	104.686	110.101	104.766	104.500			
BC1	±2.246	±0.895	±1.003	±0.684	±0.696	±1.769	±1.332	±1.708	±0.686	±1.215	±1.536	±1.167			
T) C(A	76.555	74.200	70.896	69.644	77.9 47	79.938	114.226	111.602	104.804	112.761	107.000	108.847			
BC2	±1.612	±0.712	±0.573	±1.551	±1.197	±1.858	±0.471	±0.763	±0.416	±0.668	±1.633	±1.705			

Table 3: Cont.

Characters		Sodium	concentr	ation(gm	/100gm)		Proline content (μ moles/gm f.w.)							
Crosses population	1	2	. 3	4	5	6	1	2	3	4	5	6		
P1	48.150	50.520	50.260	50.363	47.210	48.311	1.057	0.648	1.376	1.375	1.674	1.057		
rı.	±0.181	±0.240	±0.092	±0.137	±0.173	±0.171	±0.005	±0.002	±0.002	±0.002	±0.002	±0.003		
73.5	47.180	49.522	52.400	46.326	47.271	47,222	0.668	0.973	0.890	1.141	1.217	0.975		
P2	±0.218	±0.177	±0.155	±0.149	±0.261	±0.149	±0.002	±0.003	±0.011	±0.001	±0.002	±0.003		
274	49.791	47.491	48.400	52.360	44.400	45.274	0.989	1.966	1.332	0.799	0.429	1.148		
F1	±0.155	±0.175	±0.164	±0.115	±0.146	±0.161	±0.008	±0.006	±0.005	±0.002	±0.003	±0.003		
T23	46.455	48.954	50.117	48.500	45.303	43.506	1.057	1.228	1.125	0.876	0.705	1.013		
F2	±0.340	±0.831	±0.767	±0.969	±0.817	±1.088	±0.151	±0.206	±0.193	±0.102	±0.149	±0.161		
TO COL	46.711	48.600	48.104	48.771	44.813	45.000	1.104	0.896	1.080	1.156	1.314	1.185		
BC1	±0.473	±0.452	±0.586	±0.831	±0.975	±1.155	±0.218	±0.173	±0.189	±0.200	±0.136	±0.179		
	47.721	47.218	50.368	46.304	43.110	45.244	1.219	1.372	1.116	1.157	1.288	1.314		
BC2	±0.495	±1.191	±0.518	±1.291	±1.197	±1.237	±0.178	±0.141	±0187	±0.200	±0.180	±0.136		

breeder apportunity for great effective selection to isolate of specific patterns cotton genotypes. The F₂ values for potassium, magnesium, sodium concentrations and proline content tended to be decreased from F1 to F_2 indicating inbreeding depression and accumulation of decreasing alleles.

The back cross population means are in the mid-way between the F_1 and the parental genotypes for potassium, magnesium, sodium concentrations and proline content in most studied crosses. But, it deviated from the mid value of parents and their respective F_1 for the same characters in some crosses. Thus, polygenic effect is more pronounced.

2. Assessment the Types of Gene Action Using First Degree Statistic (Six Population Model)

In the present study, scaling test (A, B and C) was employed to test the presence of epistasis. For this purpose, six populations biometrical approach have been applied in six cotton crosses for yield and its components and some chemical constituents.

A- Yield and its attributes

In this investigation (A, B and

C) scaling tests were employed to test the presence of epistasis. The results in Tables 4 and 5 indicated significant non-allelic interactions for number of fruiting branches/plant, number of open bolls/plant, boll weight and seed cotton yield/plant in all crosses. These results indicate the presence of epistasis, and may be taken as an evidence for the failure of simple genetic model to ascertain the genetic variation for these characters in the corresponding crosses. In this respect, inheritance of number of fruiting branches/plant, number of open bolls/plant and cotton seed yield/plant were under complex genetic control for the studied crosses in. cotton genotypes (Awaad and Hassan, 1996). Moreover, Younis (1999) Allam (2003)indicated the presence of non-allelic interaction in controlling seed cotton yield. In addition El-Disougi and Zeina (2001) reported that the complex genetic model played a great role in the inheritance of number of open bolls/plant, seed cotton yield/plant and boll weight.

The adequacy of genetic model, Table 4 and 5 indicated that, the additive gene effect (d) was the main type controlling the

inheritance of number of fruiting branches/plant in 1st, 2nd, 3rd, 5th and 6th crosses and boll weight in 1st and 2nd ones, indicating that, superior genotypes could be identified from - its phenotypic expression. In the respect, additive gene action played a major role in determining the inheritance of no. of fruiting branches/plant [Awaad and Hassan: 1996] seed cotton vield/plant, number of open bolls/plant and boll weight (Gomaa, 1997; Esmail et al., 1999; El-Disougi and Zeina, 2001; El-Adly, 2004 and Abd El-Hadi et al., 2005).

On the other hand, the interaction type of gene action additive × additive was positive and significant for number of open bolls/plant and seed cotton yield/plant in 6th cross as well as boll weight in 4th and 6th crosses; while in the 3rd only it was negative significant. and Therefore, phenotypic selection was effective for improving the foregoing characters the Similar corresponding crosses. findings were obtained by Khalil and Khattab (1997); Abd El-Gelil, (2001) and Allam, (2003) for seed cotton yield/plant.

The dominance (h) and its digenic interaction type,

dominance x dominance (1) were significant and involved in the inheritance of boll weight and seed cotton yield/plant in 6th cross only as well as number of open bolls/plant in the 1st and 6th crosses: The considerable amount of non fixable gene action type displayed by these characters in the corresponding crosses may suggest that, improving these characters could be achieved through hybrid breeding method. Similar trends were reported by Khalil and Khattab (1997) for number of open bolls/plant; Esmail et al. (1999) and Abd El-Hadi et (2005) for seed cotton yield/plant and boll weight and Allam (2003) for seed yield/plant.

Moreover, the interaction type additive x dominance (i) was significant negative and number of fruiting branches/plant in 2nd, 4th and 6th crosses; number of open bolls/plant in 3rd cross only; boll weight in 1st and 3rd crosses and seed cotton yield/plant in 3rd one, showing more frequent decreasing alleles increasing ones. In this respect, Allam (2003) indicated that the interaction additive type negative dominance was and significant seed cotton for

Table 4: Scaling tests, gene effects and heritabilty for seed cotton yield/plant(g) and number of fruiting branches/plant using six populations in six cotton crosses at Ras Sudr Agriculture Research Station during summer season of 2002

Character		Seed	cotton	yield/pi	ant(g)		Characte	Nu	mber o	f fruiti	ng bran	ches/pl	ant		
Cross	1 .	2	3	4	5	6	Cross	1	2	3	4	5	6		
Scaling							Scaling								
test							test								
$\mathbf{A}^{'}$	-3.90			-2.90	-0.90	11.30**	A	-4.1**	-9.0**	2.1**	1.0**	0.8**	-3.6**		
В	2.40	-7.50**		-11.6**		5.40	В	-4.9**	0.6*	-6.6**	1.9**	-0.7**	-1.6**		
C	8.90*	8.40	8.40*	-14.9**	-5.30°	-17.50**	C	-8 .1	3.8	-5.2	10.9*	1.6	-0.2		
	App	ropria	te genet	ic mod	lel		Appropriate genetic model								
m	11.27*	9.60	7.10**	6.60**	3.90**	4.30**	. m	9.6**	14.4**	11.0**	13.0**	11.8**	13.3**		
ď	-3.60	2.50	0.04	2.80	0.98	0.50	d	-0.7**	-5.9**	5.2**	0.2	1.6**	-3.5**		
h	-8.90*	-15.90*	-11.0**	-3.70	2.01*	30.90**	h	2.6	-9.9	4.4	-7.9	0.4	0.9		
i	- 10.50*	10.90	-6.80	0.36	2.20	34.20**	i	-0.9	-12.2	0.6	-8.0	-1.7	-5.4		
j	-3.20	3.97*	-3.50*	4.30**	0.63	2.90	j	0.4	-4.8**	4.3**	-0.5*	0.8**	-1.2**		
ì	11.90	17.90	5.20	14.20	0.98	-50.90**	. 1	10.0**	20.6**	4.0	5.1	1.7	10.9*		
T _(b)	16.71	20.69	12.13	17.22	17.15	12.15	$T_{(b)}$	40.11	56.64	74.74	68.62	65.59	36.59		
$T_{(n)}$	11.16	15.41	6.29	11.70	12.15	6.30	T _(n)	22.68	43.51	72.19	45.12	43.19	23.08		

Table 5: Scaling test, gene action and heritabilty for Number of open bolls/plant and boll weight(g) using six populations in six cotton crosses at Ras Sudr Agriculture Research Station during summer season of 2002

Character		Numbe	r of op	en bolls	s / plan	t i	Character	Boll weight (g)						
Cross	1	2	3	4	5	6	Cross	1	2	3	4	5_	6	
Scaling					2_//	· ·	Scaling test							
test														
A	-0.9	-1.4	0.9	-1.3*	-0.2	4.4	A			-0.55**	-0.06	0.17	0.14	
В	3.8*	-2.0**	3.0	-4.4**	-2.6 **	3.2	В	0.91**	-0.63**	0.91*	-0.80*	0.76**	-0.29	
C	-0.5	2.6	4.3	-4.1**	-4.0**	-4.8 ^{**}	C	-0.68	-1.19	2.14	-1.27°	0.96	-2.30**	
	App	ropriat	e genet	ic mode	e l			Appr	opriate	genetic	c mode	l		
m	3.9**	4.9**	3.5**	3.7**	2.3**	2.5**	m	2.10	1.90**	2.10**	1.80**	1.70**	1.80**	
d	-0.6	1.2	0.8	1.4	0.8	2.8	d	-0.61**	-0.23**	-0.30	0.14	-0.11	0.12	
h	-5.7**	-8.1*	-2.3	-3.1	1.0	12.6	b .	1.50**	0.78	-1.94**	0.19	0.03	1.10*	
i.	-0.8	-6.0	-0.4	-1.6	1.2	12.4**	į	0.66	0.88	-1.78**	0.42	-0.02	1.80	
j	-0.25	9.3	-1.1	1.6*	1.2*	0.6	j	-0.66**	0.47**	-0.73**	0.37	-0.30	0.22	
ì	2.1*	9.4*	-3.5	7.3 [*]	1.6	-20.0**	Ĭ	-0.64	-0.56	1.40	0.44	-0.91*	-1.97 *	
_	20.00	40.71	25.04		06.01	22.01		46.46		5	21.20	0406	20.00	
$\mathbf{T_{(b)}}$	38.92		35.04	26.61	26.21	32.01	$\mathbf{T}_{(b)}$	46.40	1-1	26.56		24.96	20.09	
$T_{(n)}$	32.91	31.42	29.44	21.09	22.65	26.25	T _(n)	42.20	39.35	21.17	26.83	19.96	14.76	

yield/plant and El-Adly (2004) for number of open bolls/plant and seed cotton yield/plant.

Heritability estimates depends magnitudes of on. its components part; additive (D) and dominance (H) gene effects. In this respect, narrow sense heritability (Tn) was varied from low to moderate for number of fruiting branches/plant; number of open bolls/plant; boll weight and seed cotton yield/plant in most studied crosses with a few exceptions. effect indicating great environmental changes on the gene expression. Whereas, it was high (72.19%) for number of fruiting branches/plant in 3rd cross. In this connection. low to moderate heritability estiamtes in narrow sense are reported for seed cotton vield and its attributes by several investigators [Khalil and Khattab, 1997; El-Disouqi and Zeina, 2001; Nassar, 2002 and Allam, 2003]. On the contrary, high heritability values in narrow sense were obtained by Gomaa (1997) for seed cotton yield/plant and boll weight; Younis (1998) for number of open bolls/plant; Esmail et al. (1999) for number of open bolls/plant and seed cotton/plant and Younis (1999) for boll weight.

B-Chemical constituents of cotton leaves

The results in Tables (6 and 7) indicate significant non-allelic interaction for potassium concentration in 1st, 2nd, 4th and 5th crosses; magnesium concentration in 1st, 5th and 6th crosses, sodium concentration in 1st, 4th, 5th and 6th crosses and proline content in 1st. 2nd and 5th crosses. These results showed the presence of epistasis and the simple genetic model was failed to ascertain the genetic variation for these characters in the corresponding crosses. In this respect, Hassan (2000) and Moursi (2003) concluded that the complex genetic model played a great role in the inheritance of leaves proline content.

The insignificancy of nonallelic interaction was observed in potassium concentration in 3rd and crosses; magnesium concentration in 2nd, 3rd and 4th crosses; sodium concentration in 2nd and 3rd crosses as well as proline content in 3rd, 4th and 6th The ones. previous results indicated that, the simple additivedominance genetic model proved to be satisfactory in explaining the inheritance of the foregoing characters. In this connection. simple genetic model was adequate for explaining the inheritance of proline content.

The adequacy of genetic model Table (6 and 7) indicated that, the additive gene effect (d) was the main type controlling the inheritance of potassium concentration in 2nd, 5th and 6th crosses; magnesium concentration in 1st, 3rd and 4th crosses; sodium concentration in the 2nd and 3rd crosses and proline content in 2nd, 3rd, 4th and 6th crosses. Meanwhile, the additive (d) and additive x additive (i) interaction type were important in the genetic system controlling potassium concentration in 4th and 6th crosses and proline content in 5th one. These results indicated that. the superior efficiently could genotypes identified from its phenotypic expression. Therefore, phenotypic selection was more effective for improving these characters for such cross. Similar findings were obtained by Moursi (2003) who concluded that the additive genetic significant variance was proline content.

The dominance (h) and its digenic interaction type, dominance × dominance (1) were significant and involved in the inheritance of potassium concentration in 4th cross and magnesium concentration in 6th cross. Sodium concentration in 5th

cross and proline content in 1st. one. Also, the dominance gene action played an important role in genetics sodium the of concentration in 5th cross and proline content in 1st cross. The considerable amount of non fixable gene action type displayed by these characters in corresponding crosses may suggest that improving these characters could be achieved through hybrid breeding method. In connection, dominance gene action played a major role in determining the inheritance of potassium concentration (Mahassen et al., 1999): sodium and potassium concentrations (Mahgoub Saved-Ahmed, 1999) and proline content (Hassan, 2002).

It is worthy to mention that both additive and dominance gene significant and effects were involved in the inheritance of potassium concentration in 1st and crosses and magnesium concentration in 6th cross. Thus, potassium concentration and concentration magnesium salinity tolerance criteria could be improved simultaneously through crossing and selection (pedigree method) to make the utmost of the type of gene effects.

Table 6: Scaling test, gene action and heritabilty for potassium concentration and magnesium concentration using six populations in six cotton crosses at Ras Sudr Agriculture Research Station during summer season of 2002

Character	P	otassiur	n conce	ntration	(gm/100	gm)	Character	Ma	gnesiun	n conce	tration	(gm/100	gm)
Cross	1	2	3	4	5	6	Cross	1	2	3	4	5	6
Scaling test	t.						Scaling test	†					
A	4.38	2.78	1.23	-5.17**	2.91	0.81	A	-5.14*	-2.66	-0.08	0.45	4.44	-7.63**
В	3.80	5.55**	0.98	-3.60	-0.98	7.23**	В	0.75	-0.65	-1.06	-2.26	-3.57	-6.06*
C	18.00**	6.13	-5.59	11.75**	-0.67	14.24**	C	0.81	1.29	-5.14	-9.4 1	-14.41**	-5.09
÷	A	ргоргіа	te genet	ic model				App	ргоргіаt	e geneti	c model	i	
m	76.60**	70.70**	61.04**	72.10**	74.81**	78.10**	m	112.30**	113.99**	102.19**	101.72*	104.20**	108.80**
đ	-4.80 [*]	-5.9**	-0.43	5.30	0.96**	-6.70**	d	-6.40**	-4.10**	-0.49	-3.96**	-2.40	-4.30*
h	-16.50**	-5.54	20.29*	-27.91**	10.06	4.74	h	-2.82	-11.55	4.25*	18.45	1.29	-10.15*
i	-9.90	2.20		-20.52**		-6.20**	i	-5.20				6.40*	-8.60
j	0.25	-1.39		-0.79		-3.21	j	-2.95				0.44	-0.79
ı	1.80	-10.53*		29.29**		-1.84	I	9.59*				1.61	22.29**
$T_{(b)}$	18.15	31.61	46.42	15.54	80.09	26.66	T _(b)	45.09	54.73	67.36	52.95	13.68	14.04
T _(n)	12.69	23.36	32.23	11.44	64.74	21.66	$T_{(n)}$	41.48	51.75	45.43	49.74	7.91	12.24

Table 7: Scaling test, action and heritability for sodium concentration and proline content using six populations in six cotton crosses at Ras Sudr Agriculture Research Station during summer season of 2002

Char	acter	S	odium	concen	tration(gm/100	gm)	Character	Pı	Proline content (µ moles/gm. f.w)						
/	Cross	1	2	3	4	5	6	Cross	1	2	3	4	5	6		
Scali	ng test	,						Scaling test								
	A	-4.54**	-0.79	-2.46	-5.32**	-2.02	-3.58	Α	0.162	-0.822	-0.548	0.140	0.525	0.165		
	В	-1.57	-2.61	-0.20	-6.08**	-5.48*	-2.09	В	0.781*	-0.195	0.010	0.374	0.930*	0.247		
4	С	-9.41**	0.80	0.94	-7.40	-2.10	12.07**	С	0.525	-0.641	-0.430	-0.610	-0.929	-0.276		
		Арр	propria	te gene	tic mod	lel			App	ropriat	e genet	ic mode	el			
J	m	46.50**	45.17	*45.93 * "	48.50**	45.3**	43.50**	m	1.057**	1.228**	1.241	0.136	0.705	0.07		
	d	-1.00	-4.52**	-1.07**	2.40	1.70	-0.20	d	-0.115	-0.476*	0.243	0.117**	0.026	0.041		
	h	5.12	-14.32	-12.79	0.02	-8.23*	3.91	. h	-1.779*	-1.489	-0.555	2.297	-1.235	2.694		
	i	3.00			-4.00	-5.40	6.40*	i	0.418	-0.376			2.384*			
	j	-1.49	i		0.38	1.73	-0.75	j	-0.310	-0.314			-0.203			
	1	3.11*			15.40*	12.90**	-0.73	1	-1.361*	1.394*			-3.839*			
7	·(b)	17.24	30.82	69.87	17.28	19.02	16.73	$T_{(b)}$	26.84	23.91	46.29	31,96	26.66	33.84		
7	(n)	11.85	20.63	48.80	5.93	15.53	14.48	$T_{(n)}$	16.36	12.50	34.13	26.75	14.41	27.03		

Narrow sense heritability "Tn" reflects fixable type of gene action transmissible from the parents to the progeny or from generation to another, was high (>50%) for potassium concentration in 5th cross and magnesium in 2nd one. These results allowing for considerable progress in salt tolerance through selection for both characters. In this regard, high heritability estimate in narrow sense (>50%) recorded for Potassium concentration (Mahassen et al., 1999). While, heritability narrow sense "Tn" ranged from low to moderate for the other characters in the corresponding crosses. In this respect, Hassan (2002) obtained narrow sense heritability value ranged from 28.8 to 46.4% for leaf proline content. While Moursi (2003) reported high narrow sense heritability (>50%) for leaf proline content.

Conclusion

It could be concluded that gene action of such cotton character varied according to the parents involved in cotton crosses. However, the additive gene effects played an important role in the inheritance of number of fruiting branches/ plant and the

concentration of potassium, magnisium and proline in cotton leaves of most crosses, indicating the efficiencey of phenotypic selection in improving characters. Ohterwise, the dominant gene effects and its digenic type played the major role in the inheritance of seed cotton yield, number of open bolls/plant and boll weight in almost crosses, indicating the effeciency of hybrid breeding method for developing these characters.

REFERENCES

A.O.A.C. 1975. Official Methods of Analysis of the Association of Official Agricultural chemists. Washington, D.C. 10th ed.

Abd El-Gelil, M.A.B. 2001. Estimate of some genetic parameters in two Egyptian cotton crosses. J. Agric. Sci., Mansoura Univ., 26: 4637-4645.

Abd El-Hadi, A.H., Z.A. Kosba, A.M. Zeina and H.M. Hamoud. 2005. Type of gene action, heterosis, inbreeding depression and heritability in intra-specific crosses of cotton (Gossypium barbadense L.). Egypt. J. Genet. Cytol., 34: 111-121.

- Abul-Nass, A.A., A.M. Samra and M.A. El-Kilany. 1983. Estimation of gene effect, inbreeding depression and heritability in a cross of Egyptian cotton. Annals of Agric. Sci., Moshtohor, 27:787-794.
- Afiah, S.A.N. and E.M. Ghoneim. 1999. Evaluation of some Egyptian cotton (Gossypium barbadense L.) varieties under desert conditions of South Sinai. Ann. Agric. Sci., Ain Shams Univ., Cairo, 44: 201 211.
- Allam, M.A.M. 2003. Genetic behaviour of some economic characters in a hybrid between two genotypes of extra long cotton. J. Agric. Sci., Mansoura Univ., 28: 811 818.
- Allen, S., H.M. Grimshay, J.A. Parkison and C. Quarmby. 1974. Chemical analysis of ecological materials. Osney, Oxford; Blok Well Scientific Publications.
- Ashraf, M. 1994. Breeding for salinity tolerance in plants. CRC Crit. Rev. Plant Sci., 13: 17-42.
- Atta, Y.T., H.Y. Awad and M.A. Gharbawy. 1982. inheritance of some quantitative characters in cotton cross [Ashmouni ×

- (Giza 72 × Delcero)]. Agric. Res. Rev., 60: 17-31.
- Awaad, H.A. and E.E. Hassan. 1996. Gene action, prediction and response to selection for yield and its contributing characters in six cotton crosses. Zagazig J. Agric. Res., 23: 217 237.
- Bates, L.S., R.P. Waldrem and I.D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil, 39: 205 207.
- El-Adly, H.H. 2004. Genetic studies on some quantitative characters in an interspecific cotton cross of (G. barbadense L.). Egypt. J. Appl. Sci., 19: 188-198.
- El-Disouqi, A.E. and A.M. Ziena. 2001. Estimates of some genetic paramters and gene action for yield and yield components in cotton. J. Agric. Sci., Mansoura Univ., 26: 3401 3409.
- El-Okka, A.F.H., H.A. El-Harony and M.D. Ismail. 1989. Heterosis, inbreeding depression, gene action and heritability estim-ates in an Egyptian cross (Gossypium barbadense). Comm. Agric. Sci. Dev. Res., 28:213-231.

- El-Sheik, A.M. 1961. Effect of salinity on morphology, anatomy, physiology and yield of the cotton plant. M.Sc. Thesis, Faculty of Agric., Alex. Univ. Egypt.
- Esmail, R.M., F.A. Hendawy, M.S. Rady and A.M. Abd El-Hamid. 1999. Genetic studies on yield and yield components in one inter-and two intraspecific crosses of cotton. Egypt. J. Agron., 21:37-51.
- Flowers, T.J., P.F. Troke and A.R. Yeo. 1977. The mechansim of salt tolerance in halophytes. Ann. Rev. Plant Physiol.,28:89-121.
- Gomaa, M.A.M. 1997. Genetic studies on yield, yield components and fiber properties in three Egyptian cotton crosses. Ann. Agric. Sci., Ain Shams Univ., Cairo, 42:195-206.
- Gomma, M.A.M. and A.M.A. Shaheen. 1995. Heterosis, inbreeding depression, heritability and type of gene action in two intra- barbadense cotton crosses. Ann. Agric. Sci., Ain Shams Univ., Cairo, 40: 165 176.
- Greenway, H. and R. Munns. 1980. Mechanism of slat

- tolerance in non-halophytes. Ann. Rev. Plant Physiol., 31: 149-190.
- Hassan; A.I.A. 2002. Gene action and heritability estimates of F₃ wheat families under saline conditions at Ras Sudr. Zagazig J. Agric. Res., 29: 405-420.
- Hayman, B.I. and K. Mather. 1955. The description of genetic interaction in continuous variation. Biometrics, 11:69-82.
- Hendawy, F.A. 1994. Genetical and graphical analysis of diallel cross in Egyptian cotton. Menofiya J. Agric. Res., 1:49 73.
- Jinks, J.L. and R.M. Jones. 1958. Estimation of the components of heterosis. Genetics, 43:223-224.
- Johnson and Ulrich. 1959.
 Analytical methods for use in plant analysis. River Side, Calif., U.S.A.; U.S. Dept. Agric. Colif. Univ. Inform. Bull, 766.
- Kassam, E.S., A.M. Khalifa, M.A. El-Morshidy and F. G. Younis. 1981. genetical analysis of some agronomic characters in Cotton. II- Yield and its components. Agric. Res. Rev., Egypt, 59: 68-81.

Khalil, A.N.M. and A.B. Khattab. 1997. Quantitative inheritance of seed cotton yield and some Agric. Res., 22: 43 - 55.

Mahassen. S. Sayed-Ahmed, S.A.A. Soliman and A.E. Abd-El-Maksoud. 1999. A genetical contents in rice grains under salt and drought conditions. - 1623.

Mahgoub, E.M.I., M.H. Sayed- Ilexin [Planti Physiol., 8: 107 - 114. Ahmed. 1999. The genetics of Steel, R.G.D and T.H. Torrie. and translocation in barley statistics. A biometrical (Hordeum vulgare L.). Arab-Univ. J. of Agric. Sci., 7: 129 approach. Mc Graw Hill Book 143.

1977. Crop salt tolerance current assessment. J. Irrig-

Mather, K. 1949. Biometrical 292. Genetics Great Br. Univ. Pess, 3rd ed, 396 pp.

Mather, K. and G.L. Jinks. 1982 Biometrical Genetics, 3rd Chapman and Hall, London.

Moursi, A.M. 2003. Performance of grain yield for some wheat Genotypes under stress by chemical desiccation. Ph. D.

Agric. Zagazig

Nassar, M.A.A. 2002. Heterosis, Agronomic traits. Menofiya J. Li inbreeding depression, potence and ريان ratio genetic some parameters in two intraspecfic crosses of Egyptian cotton. J.

approach to study some mineral Ling Ing. T.J. Douglas A. Van Daal and D.B. Keech. 1981. Proline, betaine and other Zagazig J. Agric. Res., 26: 1609: Organic solutes protect enzymes elil against heat inactivation. Aust.

Adv. Agric. Res., 7: 367 – 377.

Co., Inc. New York.

Mass, E.V. and G.J. Hoffman., at tolerance. In: Johnson, C.B. R.G. 1981. Salt ಟ್ಟ್ (Ed) ಪ್ರ Physiological processes Drain. Div., ASCE.103:115-134. Butter-Worth, London, pp. 271

> Yeo, A.R. and T.J. flowers. 1984. Meghanisms of salinity resistance in rice and their role as physiological criteria in plant breeding. In: staples, R.C.; G.H. (Eds.) Salinity tolerance in plantsstrategies for crop impovement. Wiley, New York. pp. 151 -170.

Younis, F.B. 1999. Genetic system and prediction for earliness, yield and its attributes in two interspecific cotton crosses between (G. barbadense L. and G. hirsutum L.). Al-Azhar J. Agric Res. 29:1-13.

Younis, F.G. 1998. Relative importance of gene effect in the inheritance of yield components and some fiber properties in an Egyptian cotton cross (Gossypium barbadense L.). Egypt. J. Appl. Sci., 13: 197-205.

السلوك الوراثي للمحصول ومساهماته وبعض المكونات الكيميائية فق ستة هجن من القطن المصري تحت ظروف وأسق مشترسنة المالية المصري تحت ظروف وأسق مشترسنة المالية المصري تحت طروف وأسق مشترسنة المالية المالية

عبد الحميد حسن سالم' -حسن عودة عواد' - أحمد إبر الهيم عدن التهميد حسن '-

إيهاب سعودي عبد الحميد مصطفى ٢) بسيدهسد و المدين يعلل والمدينة وال

المسم المحاصيل-كلية الزراعة-جامعة الزقازيق-مصر يست بالشفساء مان

. المعام الأصول الوراثية -مركز بحوث الصحراء -المطرية -القاهرة -مصر.

أجريت هذه الدراسة بمحطة بحوث راس سدر (محافظة جنوب سيناء) التابعة لمركز بحوث الصحراء خلال الموسم الصيفي لاعوام ۲۰۰۰، ۲۰۰۱، ۲۰۰۰ بستخدما نظام الستة عثالر لستة هجن من القطن هي : ۱) جيزة ۸۹ × دندرة ۲۰) جيزة ۲۰ × السموني ۳۰ جيزة ۵۰ × جيزة ۲۰ × بيزة ۵۰ × جيزة ۲۰ م بيزة ۱۰ بيزة ۵۰ بيزة مدر ۱۰ بيزة الفعل الجيني المستحكم في صفات المحصول ومساهماته (عدد الأفرع الثمرية للنبات، عدد اللوز المتفتح للنبات، وزن اللوزة، ومحصول القطن الزهر النبات) بالإضافة إلى بعض المكونات الكيتيائية مثل تركيز ملوحة في البوتاسيوم، الماغسيوم والصوديوم ومحتوى البرولين تحت تركيز ملوحة في شمر التروايين تحت تركيز ملوحة في شمررات. المليون وكان التصميم التجريبي المستخدم قطاعات كاملة العشوائية في شمرية النبات مكررات. ويمكن تلخيص أهم النتائج فيما يلى: – أظهرت نتائج اختبار المقياس (A, B & C) أن الموديل الوراثي غير البسيط هو الملائم لتفسير وراثة صفات عدد الأفرع الثمرية للنبات، وزن اللوزة ومحصول القطن الزهر للنبات في كل الهجن وصفة عدد اللوز المتفتح للنبات، وزن اللوزة ومحصول القطن الزهر للنبات في كل الهجن وصفة

تركيز البوتاسيوم في الهجين الأول، الثاني، الرابع والسادس، تركيز الماغنسيوم في الهجين الأول، الدابع، الخامس والسادس والسادس والسادس ومحتوى البرولين في الهجين الأول، الثاني والخامس.

كان الموديل الوراثي البسيط هو الملائم لتفسير وراثة صفات تركيز البوتاسيوم في الهجين الثالث والخامس، تركيز الماغنسيوم في الهجين الثاني والثالث والرابسع، تركيسز الصوديوم في الهجين الثاني والثالث ومحتوى البر ولسين في الهجين الثالث والرابسع والسادس.

كان الفعل الجينى المضيف هو الأكثر أهمية في وراثة صفات عدد الأفسرع الثمريسة للنبات في الهجين الأول، الثاني، الثالث، الخامس والسادس، وزن اللوزة في الهجين الأول والثاني، تركيز البوتاسيوم في الهجين الثاني، الخامس والسادس، تركيز الماغنسيوم في الهجين الأول، الثالث والرابع وتركيز الصوديوم في الهجين الثساني والثالث ومحتوى البرولين في الهجين الثاني، الثالث، الرابع والسادس. كما كان الفعل الجيني (المضيف المضيف) ذو أهمية في وراثة صفات ارتفاع النبات، عدد اللوز المتفتح للنبسات ومحصول القطن الزهر للنبات في الهجين السادس ووزن اللوزة في الهجين الرابع والسادس. وكسان الفعل الجيني المضيف والتفاعل (المضيف× المضيف) ذو أهمية في وراثة صفات تركير البوتاسيوم في الهجين الرابع والسادس ومحتوى البرولين في الهجين الخامس.

كما كان الفعل الجينى السيادى والتفاعل (السيادى السيادى) هو المتحكم في وراثة صفات وزن اللوزة ومحصول القطن الزهر للنبات في الهجين السادس ، عدد اللوز المتفتح للنبات في الهجين الأول والسادس ، تركيسز البوتاسسيوم في الهجين الرابسع وتركيسز الماغنسيوم في الهجين المحين السادس ، تركيز الصوديوم في الهجين الخامس ومحتوى البرولين في الهجين الأول. وكان الفعل الجيني السيادي ذو أهمية في وراثة صفات تركيز الصوديوم في الهجين الخامس ومحتوى البرولين في الهجين الأول.

كاتت كفاءة التوريث بالمعنى المحدود عالية (> 0 %) لصفات عدد الأفرع الثمريسة للنبات في الهجين الثالث، تركيز البوتاسيوم في الهجين الخامس وتركيز الماغنسيوم في الهجين الثاني بينما تراوحت قيم كفاءة التوريث بالمعنى المحدود منخفضة إلى متوسيطة لصفات عدد الأفرع الثمرية للنبات، عدد اللوز المتفتح للنبات، وزن اللوزة محصول النبسات من القطن الزهر ، تركيز الصوديوم ومحتوى البرولين.