Annals Of Agric. Sc., Moshtohor, Vol. 45(2): 817-839, (2007).

GENETIC STUDIES FOR IMPROVING PRODUCTIVITY OF PEA (PISUM SATIVUM L.) BY

Faris F.S; Ahmed, A.M. and Ali, R.M. Veg. Res. Dep., Hort. Res. Inst., Agric. Res. Center, Cairo, Egypt.

ABSTRACT

Genetic behaviour of plant height, number of days to flowering, number of pods per plant, dry pod weight, number of seeds per pod, dry seeds weight per pod, average seed weight and dry seed yield per plant were studied in crosses between five cultivars of pea (*Pisum sativum* L.) and their reciprocals during years of 2000 to 2002 at Sids Horticulture Research Station, Beni-sueif Governorate, Egypt. The crosses used were Master B x Pss10699, Lincoln x Pss10699, Victory Freezer x Pss10699, Master B x Bountiful, Lincoln x Bountiful and Victory Freezer x Bountiful and their reciprocals.

Additive and non-additive effect played the important role in inheritance of all the previous characters. Over dominance was detected for earlienss of flowering, high number of pods per plant, high average seed weight and high dry seed yield per plant in some or most crosses. Meanwhile partial dominance was detected for the tall plants, high dry pod weight and high dry seeds weight per pod, and for the small number of seeds per pod in most crosses.

Broad-sense heritability was high for plant height and number of seeds per pod in the cross Master B x Pss10669. Moreover, broad-sense heritability was higher also for number of days to flowering in all crosses except in the cross Master B x Bountiful, number of pods per plant in the cross Master B x Bountiful, dry pod weight in all crosses except in the crosses Master B x Bountiful and Lincoln x Bountiful and dry seed yield per plant in the crosses Master B x Pss10699, Master B x Bountiful and Victory Freezer x Bountiful. Generally, the high estimates of broad-sense heritability for most studied traits indicated that selection can be used for improving of these characters in peas.

Generally, the genetical analysis demonstrated that a considerable amount of readily fixable variation is present and available for the plant breeder to manipulate.

INTRODUCTION

Garden pea (*Pisum sativum* L.) is one of most important legume crops in Egypt for local marketing. Growth characters such as plant height and number of days to flowering are considered the most important components for higher yield

in pea. Moreover high pod quality is the major objective of pea breeding. Mihailovic et al. (1991); Anil et al. (1995) and Narayan et al. (1999) reported that number of pods per plant, dry pod weight, number of seeds per pod, dry seeds weight per pod and average seed weight are the main components of seed yield.

Additive and non-additive gene effects were predominant and important in the expression of plant height (Sharma et al., 1999 and Sharma and Rastogi, 2001), number of days to flowering (Parmar and Godawat1990), number of pods per plant (Anil et al., 1995; Satyawan et al., 2004; Singh and Mir, 2005 and Singh and Singh 2006), number of seeds per pod and average seed weight (Anil et al., 1995 and Tyagi and Srivastava, 2002) and seed yield per plant of pea (Mihailovic et al., 1991and Narayan et al., 1999). Meanwhile, Tyagi and Srivastava (2002) reported that a wide range of variability for seed yield and its components. They added that F_1 hybrids gave the highest range of variation compared to parents for number of pods per plant, number of seeds of per pod, seed weight and seed yield per plant. Singh and Singh (2003) indicated that additive and non-additive genetic variance were important in the inheritance of plant height and number of days to flowering in pea. On the other hand, additive genetic component was important in the expression of number of pods per plant and 100-seed weight (Singh and Singh, 2004). Ceyhan and Avei (2005) reported that additive and non-additive type of gene actions was important in expression of seed yield. Seem et al. (2005) found that genotypic coefficient of variation was high for plant height in pea. Recently, Singh and Singh (2006) reported that high coefficient of variation for plant height, number of pods per plant, 100-seed weight and seed yield per plant.

Over dominance and partial dominance played an important role in the inheritance of plant height (Zayed et al., 2005), number of days to flowering in pea (Srivastava, et al., 1986), number of pods per plant (Venkateswarlu and Singh, 1982 and Zayed et al., 2005), dry pod weight (Hamed, 1999 on bean), number of seeds per pod (Anil et al., 1993 and Vikas and Singh, 1999b), average seed weight (Gad and El-Sawah, 1986) and dry seed yield per plant (Gad and El-Sawah, 1986 and Saxena et al., 1988). While Panda et al. (1996) found over dominance for seed yield per plant. Zayed et al. (2005) reported that partial dominance which was responsible for the inheritance of plant height and number of pods per plant.

Heterosis were observed in different pea crosses for plant height (Sarawat et al., 1994) and number of days to flowering (Moitra and Singh, 1986 and Om-Parakash et al., 1993). Also heterosis were estimated for number of pods per plant (Arndt, 1980; Kharche and Narsinghani, 1994 and Sarawat et al., 1994), dry pod weight (Hamad, 1976 and Hamed, 1999 on bean), number of seeds per pod (Arndt, 1980 and Pant and Bajpai, 1991), average seed weight (Moitra and Singh, 1986) and dry seed yield per plant (Singh et al., 1994). However Tyagi and Srivastava (2001) revealed greater amount of heterosis over better parent in the crosses HUP2 x KPSD1, FC1 x T163 and FC1 x Pusa10 for seed yield per plant in pea. In addition Dipti et al. (2003) reported that the greatest heterosis was recorded for KS-226 x Azad p-3 in pea seed yield. Ceyhan and Avei (2005) and Zayed et al. (2005) found that maximum significant heterosis for earliness, number of seeds per pod and grain yield per plant. Inbreeding depression had been reported by Parmar (1993); Kharche and Narsinghani

(1994) and Tyagi and Srivastava (1999) who reported high positive inbreeding depression for seed yield.

High heritability in association with high genetic advance were observed for plant height (Singh et al., 1993; Tyagi et al., 1997 and Sureja and Sharma, 2000) and number of days to flowering (Kumar et al., 1997 and Gupta et al., 1998). Meanwhile Singh and Singh (2004) found that high heritability values for growth characters. Also high heritability values were found for number of pods per plant (Vikas et al., 1996; Ramesh et al., 2002 and Singh et al., 2003), dry pod weight (Shinde, 2000 and Ramesh et al., 2002), number of seeds per pod (Vikas et al., 1996 and Singh et al., 2003), average dry seed weight (Stelling, 1988; Partap, 1992; Kumar et al., 1997; Gupta et al., 1998 and Singh et al., 2003) and dry seed yield per plant (Stelling and Ebmeyer, 1990; Kumar et al., 1997; Gupta et al., 1998 and Shinde, 2000). However, Korla and Singh (1988) estimated moderate to high heritability values for number of seeds per pod. Singh and Singh (2004) indicated that heritability was high for number of pods per plant and 100-seed weight in F₁ and F₂ generations. The authors also added number of seeds per pod had moderate values of heritability in F₁ generation of pea. Recently, Singh and Mir (2005) and Singh and Singh (2006) found that high heritability estimates were predicted for plant height, days to 50% flowering, number of pods per plant and seed yield per plant.

The objective of the present investigation was to study the genetic performance for some growth and quality characters in order to develop successful selection strategy in the segregating generations of pea crosses which may lead to obtaining promising new lines or cultivars.

MATERIALS AND METHODS

This investigation was carried out at Sids Horticulture Research Station, Beni- Sueif Governorate, Egypt. Five pea (*Pisum sativum* L.) cultivars, namely Master B, Lincoln, Victory Freezer, Pss10699 and Bountiful were used in this study. Cultivars were grown each alone under open field conditions in two successive seasons to insure the purity of each parent before crossing. Cultivars were planted at two dates (31 st. October and 10 st. November 2000) to ensure the flowering periods in this genotypes. Six crosses and their reciprocals were made at flowering stage as follows:

Cross no 1: Master B x Pss10699

Cross no.2: Lincoln x Pss10699.

Cross no.3: Victory Freezer x Pss10699.

Cross no.4: Master B x Bountiful.

Cross no.5: Lincoln x Bountiful.

Cross no.6: Victory Freezer x Bountiful.

Flowers of female parents, i.e., Master, Lincoln and Victory Freezer were emasculated one day prior to anthesis and the pollen grains from the completely opened flowers of the male parents, i.e., Pss10699 and Bountiful were applied on the stigma to produce the F_1 seeds. Selected female parents on basis to

high quality of pod characters. Seeds of the straight F₁ crosses were sown on 1st November 2001 to produce F₂ seeds. Seeds of parental, F₁, F₁r and F₂ populations for each crosses were sown on 15th November 2002 in a randomized complete block design with four replicates. Each of the parents, F₁ and F₁r was represented by a single row, while the F₂ populations were represented by two rows per block.. Each row was 4.5 m long and 0.6 m wide. Individual seeds were sown at a distance of 25 cm apart. All cultural practices were applied according to the recommendations of Ministry of Agriculture. Data were recorded at harvesting time on individual plants from parents, F₁, F₁r and F₂ progenies in each cross for the following characters:

A-Vegetative and Flowering characters:

- 1-Plant height (cm.).
- 2-Number of days to flowering.

It was measured as the number of days from sowing until first flower anthesis.

B- Dry yield and its components:

- 1-Number of pods per plant.
- 2-Dry pod weight (gm.).
- 3-Number of seeds per pod.

It was measured as the mean of ten of pods per plant.

- 4-Dry seeds weight per pod (gm.).
- 5-Average seed weight (gm.).
- 6- Dry seed yield per plant (gm.).

Statistical analysis:

The genetic analysis were carried out on basis using several genetic methods as follow:

- 1- Mean standard deviation of the studied genotypes (Parents, F₁, F₁r and F₂ populations) was calculated according to Snedecor (1956). Mean: $x = \sum F x / n$ where: \sum means summation, F is the frequency, x is the class-center value and n is the total number of individual plants.
- 2- The coefficient of variance (C.V.%): was calculated according to the following formula.

$$C.V = \sqrt{\frac{S^2}{X}} \qquad x \ 100$$

- Standard error $(S \times) = S / n$
- 4- Arithmetic and geometric gene action was estimated according to Powers Lyon (1941) as follows:

a-The expected arithmetic mean of the
$$F_1 = \frac{P_1 + P_2}{2}$$

b-The expected arithmetic mean of the $F_2 = \frac{2}{P_1 + 2F_1 + P_2}$
Where: P_1 = observed mean of one parent.

 P_2 = observed mean of other parent. F_1 = observed mean of the F_1 populations. c- The expected geometric mean of the $F_1 = \overline{P_1}$, $\overline{P_2}$

d- The expected geometric mean of the F2 $\sqrt{\frac{P_1}{2}(P_1+P_2)}$. $\overline{F_1}$

5- Relative potency of gene set was used to determine the direction of dominance according to the formula given by Mather and Jinks (1971), as follows:-

Potency ratio =
$$\frac{\overline{F_1} - \overline{M.P}}{\frac{1}{2}(\overline{P_2} - \overline{P_1})}$$

Where:

 $\overline{F_1}$ = The observed mean of the F_1 population.

 $\overline{M.P}$ = The average of the observed means of the two parents.

P₁= The observed mean of the low parent.

 $\overline{P_2}$ = The observed mean of the better parent.

6- Heterosis was calculated according to the following formula:

Heterosis over the mid-parent (M.P) = $\overline{F_1}$ - M.P (Sinha and Khanna, 1975) x 100

Heterosis over the high parent (H.P) = $\frac{\overline{F_1} - \overline{H.P}}{\overline{H.P}}$ x 100 (Sinha and Khanna 1975)

where $\overline{F_1}$, $\overline{M.P}$ and $\overline{H.P}$ are the means of F_1 , mid parent and high parent, respectively.

7- Inbreeding depression was calculated according to Mather and Jinks (1971), as follows:

Inbreeding depression (I.D.) = $\frac{\overline{F_2} \cdot \overline{F_1}}{\overline{F_1}}$ x 100

8- Broad sense heritability (BSH) was estimated according to e quation:

B S H =
$$\frac{V_G}{V_P}$$
 x 100 (Allard, 1960)

Where:

 V_0 = Genotypic variance which was calculated by subtracting the environmental variance (V_E) from phenotypic variance (V_P) = V_P - V_E

 V_P = Phenotypic variance = (VF_2)

V_E = Environmental variance which was calculated as follows:

$$V_{E} = \frac{Vp_1 + Vp_2 + VF_1}{3}$$

The significance of means were determined using T- test.

RESULTS AND DISCUSSION

I - Vegetative and Flowering characters:

1- Plant height:

Data on plant height of parental, F₁, F₁r and F₂ populations of the crosses Master B x Pss10699, Lincoln x Pss10699, Victory Freezer x Pss10699, Master B x Bountiful, Lincoln x Bountiful and Victory Freezer x Bountiful are presented in Table (1). Parents were significantly different from each other in all crosses of this trait. In each cross, F₁ and F₂ means were intermediate between its two parents with a tendency towards the highest parent. High values of the coefficients of variability (Table, 1) were observed in population of F_2 than F_1 in all crosses. The F_2 populations exhibited a high variance in all crosses. These results are in accordance with that obtained by Seem et al. (2005) and Singh and Singh (2006) who found that high coefficient of variation for plant height of pea. Data of this character (Table, 2) showed that the observed F₂ mean of all crosses was relatively close to each of their expected arithmetic and geometric means which indicated that both of the additive and non-additive type of gene actions controlled the inheritance of plant height. These results are in agreement with those obtained by Sharma et al. (1999); Sharma and Rastogi (2001) and Singh and Singh (2003) who reported that additive and non-additive genetic variance were important in inheritance of plant height in peas. Data in Table (3) indicated that partial dominance towards the tall plants in the crosses Master B \times Pss 10699, Lincoln x Pss10699, Victory Freezer x Pss10699 and Victory Freezer x Bountiful. and partial dominance towards the short plants in the crosses Master B x Bountiful and Lincoln x Bountiful due to the exhibited value of potency ratio. These results are in agreement with those obtained by Zayed et al. (2005) indicated that plant height exhibited partial dominance in pea. Positive heterosis values (Table, 3) were observed in all crosses for this character except in the crosses Master B x Bountiful and Lincoln x Bountiful and ranged from 6.26% to 28.5% over mid parent. The highest value of heterosis (28.5%) was recorded in the cross Master B x Pss10699. On the other hand negative heterosis values were observed in all crosses and ranged from -28.99% to -12.06% over high parent. Positive inbreeding depression values (Table, 3) were observed for all crosses except in the crosses Master B x Pss10699 and Victory Freezer x Pss10699 and ranged from 6.58% to 11.55%. Concerning the heterosis result, Sarawat et al. (1994) who indicated that superiority of heterosis over mid parent and better parent in F_1 and F_2 of pea for plant height. Heritability (Table, 3) was relatively moderate to high values and ranged from 49.49 % to 71.90 % in all crosses, indicated that selection can be used for this character to be improve in these crosses. These results are in accordance with that obtained by Singh et al. (1993); Tyagi et al. (1997); Sureja and Sharma (2000) and Singh and Singh (2004) who estimated high heritability in broad sense values for this character. Singh and Mir (2005) and Singh and Singh (2006) stated that plant height exhibited high heritability values in F_2 of hybrids in field peas.

Table (1): Statistical constants of the plant height (cm) and number of days to flowering traits in parental, F₁, F₁r and F₂ populations of pea crosses.

ــــــــــــــــــــــــــــــــــــــ					opulations of	, ,	T.
Crosses	1	Characters	Pı	P ₂	\mathbf{F}_{1}	Fır	F ₂
			D'		<u> </u>		
			Plant h	eight (cm)	Į.	1	1
	~ .			ļ	Ì	-	ł
i ·	$(\mathbf{P_1})$	$X \pm S_{X}$	57. 1 ± 2.11	162.87 ± 4.04	141.33 ± 4.93	124.86 ± 2.53	125.10± 4.76
Pss10699 ((P ₂)	C.V. %	20.21	13.61	19.12	11.11	32.05
		S²	133.20	491,29	730.30	192,53	1607.58
No. of observed pla	ants	•	30	30	30	30	71
Lincoln ($(\mathbf{P_1})$		 	 	 	 	
	(P_2)	$X \pm S_{X}$	69.77 ± 1.97	162.87 ± 4.04	123.60 ± 4.87	150.20± 3.90	137.88 ± 3.72
133100//	(* 1)	C.V. %	15.48	13.61	21.59	14.25	21.92
No. of observed pla	onte	S²	116.60	491.29	712.04	458.09	913.52
			30	30	30	30	66
	$(\mathbf{P_i})$	$X + S_{X}$	64.07 ± 2.02	162,87 ± 4.04	143.23 ± 6.73	154.0 ± 4.64	134.48 ± 4.49
Pss10699 ((P ₂)	C.V. %	17.30	13.61	25.76	16.52	28.55
No. of observed pla	nte	S^2	122.82	491.29	1361.43	647.31	1473.81
			30	30	30	30	73
	$(\mathbf{P_i})$	$X^{-} \pm S_{X^{-}}$	57.1 ± 2.11	102.7 ± 4.92	78.00 ± 3.28	74.20 ± 2.94	83.70 ± 3.12
Bountiful ($(\mathbf{P_2})$	C.V. %	20.21	26.23	23.06	21.68	33.38
N		S²	133.20	725.73	323.65	258.92	780.49
No. of observed pla			30	30	30	30	80
,	$(\mathbf{P_1})$	$X \pm S_X$	69.77± 1.97	102.7 ± 4.92	72.93 ± 3.27	75.47 ± 3.61	 77.73 ± 3.95
Bountiful (I	P ₂)	C.V. %	15.48	26.23	24.60	26.22	42.84
		S ²	116.60	725.73	321.99	391.70	1108.71
No. of observed pla	ants		30	30	30	30	71
	$(\mathbf{P_1})$	$X = S_{X}$	64.07 ± 2.02	103.7 403	89.40 ± 5.28	90.40 4.79	06.52 : 471
Bountiful ($(\mathbf{P_2})$	$A = 5\chi^{-}$ C.V. %	17.30	102.7 ± 4.92 26.23	32.35	89.40 ± 4.78 29.32	96.53 ± 4.31 40.44
6		S ²)	725.73	1	,	, ,
No. of observed pla	ants		122.82		836.52 30	687.14 30	1524.00 82
No. of observed pla	ants	S²	122.82 30	725.73 30	836.52 30	687.14	1524.00
		S²	122.82 30	725.73	836.52 30	687.14	1524.00
Master ((P ₁)	S²	122.82 30	725.73 30	836.52 30	687.14	1524.00
Master (S²	122.82 30	725.73 30	836.52 30	687.14	1524.00
Master ((P ₁)	S ² No X ± S _X - C.V. %	122.82 30 umber of da 45.00 ± 0.26 3.20	725.73 30 ays to flowers 61.00 ± 0.39 3.50	836.52 30 ing 57.80 ± 0.67 6.33	687.14 30 52.60 ± 0.34 3.59	1524.00 82 53.30 ± 0.73 14.92
Master () Pss10699 ((P ₁) (P ₂)	S^2 N_1 $X = S_{X^2}$	122.82 30 umber of da 45.00 ± 0.26 3.20 2.07	725.73 30 hys to flower 61.00 ± 0.39 3.50 4.55	836.52 30 ing 57.80 ± 0.67 6.33 13.41	687.14 30 52.60 ± 0.34 3.59 3.56	1524.00 82 53.30 ± 0.73 14.92 63.29
Master () Pss10699 (No. of observed pla	(P ₁) (P ₂)	S ² No X ± S _X - C.V. %	122.82 30 umber of da 45.00 ± 0.26 3.20	725.73 30 ays to flowers 61.00 ± 0.39 3.50	836.52 30 ing 57.80 ± 0.67 6.33	687.14 30 52.60 ± 0.34 3.59	1524.00 82 53.30 ± 0.73 14.92
Master () Pss10699 (No. of observed pla Lincoln ()	(P ₁) (P ₂) ints	S ² No. (X ± S _X) C.V. % S ²	122.82 30 umber of da 45.00 ± 0.26 3.20 2.07 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30	52.60 ± 0.34 3.59 3.56 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118
Master () Pss10699 (No. of observed pla Lincoln ()	(P ₁) (P ₂)	S ² N1 X ± S _X - C.V. % S ² X ± S _X - C.V. %	122.82 30 umber of da 45.00 ± 0.26 3.20 2.07	725.73 30 hys to flower 61.00 ± 0.39 3.50 4.55	836.52 30 ing 57.80 ± 0.67 6.33 13.41	687.14 30 52.60 ± 0.34 3.59 3.56	1524.00 82 53.30 ± 0.73 14.92 63.29
Master () Pss10699 () No. of observed pla Lincolu () Pss10699 ((P ₁) (P ₂) ints (P ₁) (P ₂)	S^{2} $X \pm S_{X^{-}}$ $C.V. \%$ S^{2} $X \pm S_{X^{-}}$	122.82 30 umber of da 45.00 ± 0.26 3.20 2.07 30 61.60 ± 0.40 3.56 4.80	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54	52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42
Master () Pss10699 (No. of observed pla Lincoln () Pss10699 (No. of observed pla	(P ₁) (P ₂) ants (P ₂)	S ² N1 X ± S _X - C.V. % S ² X ± S _X - C.V. %	$\begin{array}{c c} & 122.82 \\ \hline & 30 \\ \hline \\ \textbf{umber of da} \\ \hline \\ 45.00 \pm 0.26 \\ \hline & 3.20 \\ \hline & 2.07 \\ \hline & 30 \\ \hline \\ 61.60 \pm 0.40 \\ \hline & 3.56 \\ \hline \end{array}$	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00	52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40
Master (1) Pss10699 (No. of observed pla Lincoln (1) Pss10699 (No. of observed pla Victory Freezer ((P ₁) (P ₂) ants (P ₁) (P ₂)	S ² Ni X ± S _X - C.V. % S ² X ± S _X - C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30	836.52 30 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102
Master (1) Pss10699 (No. of observed pla Lincoln (1) Pss10699 (No. of observed pla Victory Freezer ((P ₁) (P ₂) ants (P ₂)	S ² N ₁ X ± S _X C.V. % S ² X ± S _X C.V. % S ² X	122.82 30 umber of da 45.00 ± 0.26 3.20 2.07 30 61.60 ± 0.40 3.56 4.80	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54	52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42
Master (1) Pss10699 (1) No. of observed pla Lincoln (1) Pss10699 (1) No. of observed pla Victory Freezer (1) Pss10699 (1)	(P ₁) (P ₂) ants (P ₁) (P ₂) (P ₁) (P ₂)	S^{2} $X \pm S_{X^{-}}$ $C.V. \%$ S^{2} $X \pm S_{X^{-}}$ $C.V. \%$ S^{2} $X \pm S_{X^{-}}$	122.82 30 umber of day 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53
Master (Compared plants) No. of observed plants Lincoln (Compared plants) No. of observed plants Victory Freezer (Pss10699 (Compared plants) No. of observed plants	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N ₁ X ± S _X C.V. % S ² X ± S _X C.V. % S ² X	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26
Master (Compared plants) No. of observed plants Lincoln (Compared plants) No. of observed plants Victory Freezer (Pss10699 (Compared plants) No. of observed plants Master (Compared plants)	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N ₁ X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X - ± S _X - C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113
Master (Compared plants) No. of observed plants Lincoln (Compared plants) No. of observed plants Victory Freezer (Pss10699 (Compared plants) No. of observed plants Master (Compared plants)	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N1 X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± S _X - C.V. %	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 61.00 ± 0.39 3.50 61.00 ± 0.39	836.52 30 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34
Master (Compared planting of observed planting observed planting of observed planting observe	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N ₁ X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X - ± S _X - C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113
Master (Compared planting of observed planting observed planting of observed planting observed p	(P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂) ints	S ² N1 X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± C.V. %	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39	836.52 30 sing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07
Master (Compared planting of observed planting observed planting of observed planting o	(P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂)	S ² N ₁ X ± S _X C.V. % S ² X ± S _X C.V. % S ² X ± S _X C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85
Master (Compared planting of observed planting observed planting of observed planting o	(P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂) ints	S ² No X	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30	725.73 30 sys to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30 66.50 ± 0.28	836.52 30 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30 63.20 ± 0.34	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30 63.20 ± 0.34	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85 56.72 ± 0.51
Master (Compared planting of observed planting observed plan	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N ₁ X ± S _X C.V. % S ² X ± S _X C.V. % S ² X ± S _X C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85
Master (Compared planting of observed planting observed planting of observed planting observed p	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants	S ² N1 X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± S _X - C.V. % S ² X ± S _X - C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30 66.50 ± 0.28 2.29	836.52 30 ing 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30 63.20 ± 0.34 2.95	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30 63.20 ± 0.34 2.95	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85 56.72 ± 0.51 8.64
Master (Compared planting of observed planting observed planting of observed planting observed p	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂)	S ² N ₁ X ± S _X C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30 66.50 ± 0.28 2.29 2.33 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30 63.20 ± 0.34 2.95 3.48 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30 63.20 ± 0.34 2.95 3.48 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85 56.72 ± 0.51 8.64 24.01 92
Master (Company of the post of observed plane victory Freezer (Pss10699 (Company of observed plane) No. of observed plane victory Freezer (Pss10699 (Company of observed plane) No. of observed plane victory freezer (Company of observed plane) No. of observed plane victory freezer (Company of observed plane)	(P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants (P ₁) (P ₂) ants	S ² No and the second	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 45.00 \pm 0.26 3.20 2.07 30 64.40 \pm 0.51 64.40 \pm 0.51	725.73 30 sys to flowers 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30 66.50 ± 0.28	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30 63.20 ± 0.34 2.95 3.48 30 61.40± 0.44	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 58.4 ± 0.79 7.44 18.87 30 63.20 ± 0.34 2.95 3.48 30 61.80 ± 0.43	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85 56.72 ± 0.51 8.64 24.01 92 58.14 ± 0.54
Master Pss10699 No. of observed pla Lincoln Pss10699 No. of observed pla Victory Freezer Pss10699 No. of observed pla Master Bountiful No. of observed pla Lincoln Bountifui No. of observed pla Victory Freezer (1)	(P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂) ints (P ₁) (P ₂)	S ² N ₁ X ± S _X C.V. % S ²	122.82 30 umber of da 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30 64.40 \pm 0.51 4.31 7.70 30 45.00 \pm 0.26 3.20 2.07 30 61.60 \pm 0.40 3.56 4.80 30	725.73 30 ays to flower 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 61.00 ± 0.39 3.50 4.55 30 66.5 ± 0.28 2.29 2.33 30 66.50 ± 0.28 2.29 2.33 30	836.52 30 string 57.80 ± 0.67 6.33 13.41 30 58.80 ± 0.43 4.00 5.54 30 59.20 ± 0.55 5.14 9.27 30 58.6 ± 0.45 4.19 6.04 30 63.20 ± 0.34 2.95 3.48 30	687.14 30 52.60 ± 0.34 3.59 3.56 30 62.80 ± 0.25 2.15 1.82 30 61.80 ± 0.43 3.80 5.54 30 58.4 ± 0.79 7.44 18.87 30 63.20 ± 0.34 2.95 3.48 30	1524.00 82 53.30 ± 0.73 14.92 63.29 118 51.23 ± 0.73 14.40 54.42 102 55.49 ± 0.53 10.26 32.45 113 62.18 ± 0.34 5.07 9.93 85 56.72 ± 0.51 8.64 24.01 92

Table (2): Expected means of F₁ and F₂ populations in the growth characters for six crosses.

					A	rithm	etic									·	(ieom e	tric					
Characters	L				(Cross 1	No											Cross	No					
Characters	1	<u> </u>		2	3	3	4	1	:	5		<u> </u>		1		2	;	3	- 4	4		5		6
	F	F ₂	$\mathbf{F}_{\mathbf{I}}$	F ₂	$\mathbf{F}_{\mathbf{I}}$	F ₂	$\mathbf{F_i}$	F ₂	F ₁	F ₂	Fı	\mathbf{F}_2	\mathbf{F}_{t}	F ₂	F ₁	F ₂	F,	F ₂	$\mathbf{F}_{\mathbf{I}}$	F ₂	$\mathbf{F_1}$	F ₂	$\mathbf{F_1}$	F ₂
Plant height (cm.)	109.98	125.66	116.32	119.96	113.47	128.35	79.90	78.95	86.23	79.58	83.38	86.39	96.44	124.68	106.60	119.90	102.15	127.48	76.58	78.94	84.65	79.30	81.12	86.34
Number of days to flowering	\$3.00	55.40	61.30	60.05	62.70	60.95	\$5.75	57.17	64.05	63.62	65.45	63.42	52.39	\$5.35	6130	60.04	62.68	60.92	54.70	57.16	64.00	63.62	65.44	63.39

Table (3): Quantitative genetic parameters obtained for the growth characters of six crosses.

Parameters		Р	otenc	y rati	io		,		М	.P	H	etero	sis (%	6)	H	P				,	LD.	(%)				He	ritabi	ility (%)	
Crosses Characters	1	2	3	4	5	. 6	ì	2	3	4	5	6	ı	2	3	4	5	6	l	2 * 1	3	4	5	6	1	2	3	4	5	6
Plant height (cm.)	0.59	0.16	09'0	-0.08	-0.81	0.31	28.5	6.26	26.23	-2.38	-15.42	7.27	-13.22	-24.11	-12.06	-24.05	-28.99	-12.95	-11.48	11.55	-6.11	7.31	6.58	7.97	16.17	51.84	55.32	49.49	64.99	63.14
Number of days to flowering	0.60	8.33	-2.06	970	-0.35	-3.8%	9.06	4.08	-5.58	5.11	-1.33	-6.19	-5.24	4.53	-8.07	-11.88	¥.96	-7.67	27.78	-12.87	-6.27	6.11	-10.25	16.2-	89.45	88.06	77.89	64.95	85.27	78.26

- 1-Cross no 1: Master B x Pss10699.
- 2-Cross no.2: Lincoln x Pss10699.
- 3-Cross no.3: Victory Freezer x Pss10699.
- 4-Cross no.4: Master B x Bountiful.
- 5-Cross no.5: Lincoln x Bountiful.
- 6-Cross no.6: Victory Freezer x Bountiful.

2-Number of days to flowering:

Data obtained on number of days to flowering of parental, F1, F1r and F2 populations of all crosses are presented in Table (1). Parents were significantly different from each others in number of days to flowering in all crosses except in the cross Lincoln x Pss10699. The F₁ and F₂ means were intermediate between their parents with a tendency towards the highest parent in the crosses Master B x Pss10699 and Master B x Bountiful. While in the crosses Lincoln x Pss10699, Victory Freezer x Pss10699 and Victory Freezer x Bountiful were earlier than that of parents, also in the cross Lincoln x Bountiful, the F_1 mean was intermediate between their parents and the F₂ mean was lower than that of parents. High coefficient variability (Table, 1) was observed in population of F₂ in all crosses, indicating that the effects of both environment and genetics were involved in the inheritance of number of days to flowering. Moreover, the F₂ populations exhibited a high of variance in all crosses. The observed F₂ mean (Table, 2) of all crosses was relatively close to each of expected arithmetic and geometric means, indicated that additive and non- additive genetic variance were involved in the genetic behaviour of number of days to flowering. These results are in agreement with those obtained by Parmar and Godawat (1990) and Singh and Singh (2003) who reported that additive and nonadditive gene were important for the number of days to flowering of peas. Data in Table (3), showed that the potency ratio exhibited a high value indicating over dominance for earliness of flowering in the crosses Lincoln x Pss10699, Victory Freezer x Pss10699 and Victory Freezer x Bountiful. While partial dominance for earliness of flowering in the cross Lincoln x Bountiful, and for high number of days to flowering in the crosses Master B x Pss10699 and Master B x Bountiful due to exhibited value of potency ratio. The observed different the nature of dominance could be due to influence of environmental effects on this character which differed in the different parental genotypes. These results are in agreement with those obtained by Srivastava et al. (1986) on pea, who found that over dominarce and partial dominance was involved in the inheritance of number of days to flovering. Positive heterosis values (Table, 3) of 5.11% and 9.06% were found in the crosses Master B x Pss10699 and Master B x Bountiful over mid parent respectively. On the other hand negative heterosis values were found in all crosses based on high parer t. These results partially agree with that of Moitra and Singh (1986) and Om-Paraka; h et al. (1993) who showed that negative heterosis of pea for this character. Ceyhan and Avei (2005) and Zayed et al. (2005) working on peas, found that significant heterosis for earliness. Moreover, positive inbreeding depression value was observed in the cross Master B x Bountiful, i. e., value of 6.11%. The broad sense heritability for this character (Table, 3), was high, being 77.89% to 90.88% in all crosses except in the cross Master B x Bountiful was moderate (64.95%). These results are in accordance with the findings of Kumar et al. (1997); Gupta et at (1998); Singh and Singh (2004); Singh and Mir (2005) and Singh and Singh (2006) who indicated that number of days to flowering exhibited high heritability of pea.

II-Yield and its components:

1-Number of pods per plant:

The data of this trait for all crosses are presented in Table (4). Parents were significantly different in number of pods per plant in all crosses except in the cross Master B x Bountiful. The F_1 mean was higher than its two parents in

the crosses Lincoln x Pss10699, Victory Freezer x Pss10699 and Master B x Bountiful, while it was intermediate between its two parents in other crosses. The F₂ mean was intermediate between its two parents in all crosses except in the cross Master B x Bountiful where it was higher than their parents. The coefficients of variation of F_2 plants was higher than F_1 plants in all crosses indicating the existence of genetic and environmental variation affecting in this trait (Table, 4). In all crosses for this trait exhibited higher variance for F2 populations than F₁ Similarly, Tyagi and Srivastava (2002) and Singh and Singh (2006) who found that number of pods per plant exhibited high coefficient of variation of peas. Data in (Table, 5) indicated that the observed F₂ mean of all crosses was relatively close to each of their expected arithmetic and geometric means which indicated that both of the additive and non-additive type of gene actions controlled the inheritance of this character. This agrees with the findings of Anil et al. (1995); Satyawan et al. (2004); Singh and Singh (2004) and Singh and Mir (2005) who noticed that additive and non-additive gene actions were important in the inheritance of this trait. These results were confirmed by the high value of the potency ratio (Table, 6) which indicated presence of an over dominance towards the high number of pods per plant in the crosses Lincoln x Pss10699, Victory Freezer x Pss10699 and Master B x Bountiful. These results are in agreement with those reported by Venkateswarlu and Singh (1982) found that over dominance for number of pods /plant. On the other hand, partial dominance towards the high number of pods per plant was found for other studied crosses due to exhibited value of potency ratio for this character. The observed different the nature of dominance could be due to influence of environmental effects on expression of this character which differed in the different parental genotypes. Similarly, Zayed et al. (2005) reported that partial dominance for number of pods/plant. High positive heterosis (Table, 6) was observed in the cross Master B x Bountiful for both mid-parent and high parent (88.63% and 80.69% respectively). However high value inbreeding depression (21.37%) was found in this cross. Concerning the heterosis result, Arndt (1980); Kharche and Narsinghani (1994) and Sarawat et al. (1994) who found that significant heterosis for number of pods/plant of pea. Heritability estimated for this character (Table. 6) ranged from 34.72% to 83.39%. The higher value of heritability was observed in the cross Master B x Bountiful (83.39%), indicated that selection can be used for this character to be improve in this cross. These results, are in accordance with that obtained by Vikas et al. (1996); Ramesh et al. (2002); Singh et al. (2003); Singh and Singh (2004); Singh and Mir (2005) and Singh and Singh (2006) on pea, who observed that heritability was high for this trait.

2-Dry pod weight:

Data on dry pod weight of parental, F_1 , F_1r and F_2 population of all crosses are presented in Table (4). Parents were significantly different in dry pod weight in all crosses. The F_1 mean was intermediate between its two parents in all crosses except in the cross Victory Freezer x Bountiful where it was higher than the two parents. While F_2 mean was higher than its two parents in the crosses Victory Freezer x Pss10699, Lincoln x Bountiful and Victory Freezer x Bountiful and it was intermediate between two parents in the other crosses. The coefficient of variation of F_2 populations was higher than parents and F_1 plants in all crosses,

Table (4): Statistical constants of number of pods /plant and dry pod weight (gm.) traits in parental, F₁, F₁r and F₂ populations of pea crosses.

Crosses		Characters	P ₁	P ₂	F ₁	$\mathbf{F}_{1}\mathbf{r}$	\mathbf{F}_2
		N	umber of p	ods/plant			
Master	(\mathbf{P}_1)						
Pss10699	(\mathbf{P}_2)	X ± S _X -	37.00± 3.73	128.00 ± 8.23	123.00 ± 10.69	95.00 ±7.95	101,86 ± 6.71
		C.V. % S²	55.25	35,22	47.64	45.87	64.79
		S ²	417.93	2032.76	3434.48	1899.31	4355.99
No. of observed			30	30	30	30	97
Lincoln	(\mathbf{P}_1)	$X^{-} \pm S_{X^{-}}$	91.00±7.73	128.00 ± 8.23	139.00 ±11.65	121.47±12.69	102.41±7.23
Pss10699	(\mathbf{P}_2)	C.V. %	46.57	35.22	45.95	57.26	65.14
No. of observed	nlants	S ²	1795.86	2032.76	4080.00	4837.45	4450.84
Victory Freezer	(P_1)		30	30	30	30	85
Pss10699	(P ₂)	$X = S_{X}$	70.46 ± 8.77	128.00 ± 8.23	139.00± 9.06	167.00± 13.36	91.48 ± 6.96
13310077	(1 2)	C.V. %	68.25	35.22	35.73	43.85	72.98
No. of observed	olants	S²	2312.53 30	2032.76 30	2466.21 30	5362.76 30	4457.00 92
Master	(P ₁)			30	30	·	
Bountiful	(P_2)	$X \pm S_{X}$	37.00 ± 3.73	40.40 ± 3.64	73.00 ± 5.25	47.47±4.15	88.60± 6.03
	` -/	C.V. % S ²	55.25 417.93	49.39 398.11	39.41 827.59	47.90 517.15	64.82 3298.24
No. of observed	plants	3	30	30	30	30	91
Lincoln	(P ₁)	_					
Bountiful	(P_2)	$X^{-} \pm S_{X^{-}}$	91.00 ± 7.73	40.40 ± 3.64	81.00± 4.30	47.00 ± 3.01	78.23 ± 4.85
		C.V. % S ²	46.57 1795.86	49.39 398.11	29.07 554.48	35.16 273.10	58.11 2066.61
No. of observed	plants	3	30	30	30	30	88
Victory Freezer	(P ₁)	-					
Bountiful	(P_2)	X ± S _x -	70.46 ± 8.77	40.40 ± 3.64	69.00 ± 7.75	91.00 ± 6.25	67.47 ± 5.21
	,	C.V. % S ²	68.25 2312.53	49.39 398.11	61.58 1805.48	37.67 1175.17	71.17 2305.97
No. of observed	plants		30	30	30	30	85
		I	Ory pod we	ight (gm)			
	į	:			ĺ		į
Master	$(\mathbf{P}_{\mathbf{I}})$	$X \pm S_{X}$	1.21± 0.048	0.45± 0.026	0.79± 0.026	0.89± 0.032	1.03± 0.037
Pss10699	(\mathbf{P}_2)	C.V. %	21.86	31.43	17.90	19.46	33.63
N	-14-	S ²	0.07 30	0.02 30	0.02 30	0.03 30	0.12 85
No. of observed			.,00	30	30		
Lincoln Pss10699	(\mathbf{P}_1)	$X^{-} \pm S_{X^{-}}$	0.91± 0.032	0.45± 0.026	0.67± 0.026	0.80± 0.052	0.86± 0.033
L 29 T (10 3 3	(P_2)	C.V. %	19.03	31.43	21.11	35.35	32.89
No. of observed	alante	S²	0.03	0.02	0.02	0.08	0.08
·			30	30	30	30	75
Victory Freezer Pss10699	$(\mathbf{P_1})$ $(\mathbf{P_2})$	$X = S_X$	0.79± 0.026	0.45± 0.026	0.68± 0.036	0.63± 0.041	0.93± 0.033
1 3310077	(12)	C.V. %	17.90	31.43	29.41	35.49	32.26
No. of observed	nlants	S ²	0.02 30	0.02 30	0,04 30	0.05 30	0.09 83
Master	(P ₁)			- 30	30		- 83
Bountiful	(P_2)	$X \pm S_{X}$	1.21 ± 0.048	0.68± 0.032	1.08± 0.036	1.13± 0.055	0.93± 0.037
	\- 4j	C.V. % S ²	21.86	25,47	18.52	26.54	35.66
No. of observed p	olants	5 -	0.07 30	0.03 30	0,04 30	0.09 30	0.11 79
Lincoln	(P_i)						
Bounraful	(P ₂)	$X = S_{X}$	0.91 ± 0.032	0.68± 0.032	0.89± 0.036	0.79± 0.032	0.92± 0.032
	,	C.V. %	19.03 0.03	25,47 0.03	22.47 0.04	21.92	30.74
No. of observed p	olants		30	30	30	0.03 30	0.08 79
Victory Freezer	(P ₁)	_					
Bountiful	(P_2)	X ± S _X -	0.79 ± 0.026	0.68± 0.032	0.80± 0.026	1.13 ± 0.036	0.84± 0.033
	` -"	C.V. % S ²	17.90 0.02	25,47 0.03	17.68 0.02	17.70 0.04	35.71 0.09
No. of observed p	lants	3	30	30	30	30	80

Table (5): Expected means of F1 and F2 populations for six crosses in the quality characters.

						rithm											(Geome	etric					
Characters						Cross	No										,	Cross	No					
	1			2		3		<u> </u>		5		5	<u> </u>	1		2		3		1		5	6	
	$\mathbf{F_{I}}$	F ₂	$\mathbf{F_{l}}$	F ₂	$\mathbf{F_{I}}$	F ₂	F ₁	F ₂	F ₁	F ₂	$\mathbf{F}_{\mathbf{I}}$	F ₂	Fi	F ₂	F ₁	F ₂	F	F ₂	$\mathbf{F}_{\mathbf{I}}$	F ₂	$\mathbf{F_{l}}$	F ₂	F ₁	F ₂
Number of pod per plant	82.50	102.75	109.5	124.25	99.23	119.11	38.70	55.85	65.70	73.35	55.43	62.22	68.82	100.73	107.92	123.37	94.97	117.44	38.66	\$3.15	60.63	72.95	53.36	61.85
Dry pod weight (gm.)	0.83	0.81	99.0	0.67	0.62	0.65	0.94	1.01	0.79	0.84	0.73	0.77	0.74	0.81	20.0	0.67	09.0	9.65	0.91	1.01	0.79	28.0	0.73	0.77
Number of seeds per pod	5.63	56.4	5.00	4.73	4.97	4.72	5.80	5.73	5.16	5.38	5.13	9.00	5.49	6.90	4.96	4.73	4.93	4.71	5.69	5.73	5.14	5.38	5.12	5.00
Dry seeds weight per pod (gm.)	0.64	0.55	0.50	0.51	44.0	14.0	0.70	0.78	0.56	0.60	0.50	0.51	95.0	D.S4	0.47	0.51	0.43	4.0	9,0	0.78	0.55	09.0	0.50	0.51
Average seed weight (gm.)	0.10	0.10	0.09	0.10	0.0	0.09	0.11	0.14	0.11	0.11	0.10	0.10	0.10	0.10	0.09	0.10	80.0	0.09	0.11	0.13	0.11	0.11	0.10	0.10
Dry seed yickl per plant (gm.)	37.63	46.18	51.56	63.92	43.01	55.84	29.08	43.18	43.01	50.77	34.46	37.00	37.63	45.38	49.46	62.71	42.59	\$4.35	27.60	40.81	36.28	50.18	31.24	36.91

1-Cross no 1: Master B x Pss10699.

2-Cross no.2: Lincoln x Pss10699.

3-Cross no.3: Victory Freezer x Pss10699.

4-Cross no.4: Master B x Bountiful.

5-Cross no.5: Lincoln x Bountiful.

6-Cross no.6: Victory Freezer x Bountiful.

Table (0)												tero		_												11		114	077	
Parameters		Po	ten	cy ra	tio				M	.P			313 (H	P					.d, 1	(%)	ı			Her	itabi	lity (%)	
Crosses Characters	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6
Number of pods per plant	0.89	1.59	1.38	20.18	090	06.0	49.09	26.94	40.08	88.63	23.29	24.48	-3.91	8.59	8.59	69.08	-10.99	-2.07	-17.19	-26.32	-34.19	21.37	-3.42	-2.22	54.96	40.77	49.06	83.39	55.67	34.72
Dry pod weight (g m.)	-0.10	-0.04	0.35	15.0	0.83	1.18	4.82	-1.47	9.68	14.89	12.66	9.59	-34.71	-26.37	-13.92	-10.74	-2.20	-1.26	30.38	28.36	36.76	-13.89	3.37	5.00	69.17	71.25	70.00	57.27	58.75	74.44
Number of seeds per pod	-1.07	-0.84	-0.87	-0.12	96.0	-0.60	-24.16	-10.60	-10.06	-2.24	8.53	-5.07	-38.11	-20.60	-19.75	-17.83	-0.53	-12.57	12.18	16.33	2.46	-14.28	-2.86	-0.82	69.52	64.52	62.71	52.36	66.53	55.49
Dry seeds weight per pod (g m.)	-0.60	0.03	-0.04	0.58	09.0	0.23	-30.23	0.99	-1.12	21.98	13.27	2.97	-53.61	-26.09	-22.81	-11.34	-7.25	-8.77	13.33	7.84	2.27	-22.09	-6.37	13.46	40.00	42.50	61.67	37.33	61.43	90.99
Average seed weight (g m.)	0.13	1.19	09.0	2.62	0.57	2.33	3.96	27.17	10.46	36.52	3.77	3.48	-19.85	3.54	-6.86	19.85	-2.65	1.96	18.09	4.27	26.31	-10.83	12.73	5.77	54.61	58.00	68.82	62.07	21.43	42.73
Dry sced yield per plant (gm.)	26.93	1.70	4.27	3.07	0.67	0.35	45.44	47.92	29.66	96.94	36.08	14.71	43.01	15.33	40.06	49.65	-11.49	-19.37	45.86	12.35	19.19	12.52	9.40	59.02	86.47	59.21	64.03	77.77	57.33	9.07

¹⁻Cross no 1: Master B x Pss10699.

²⁻Cross no.2: Lincoln x Pss10699.

³⁻Cross no.3: Victory Freezer x Pss10699.

⁴⁻Cross no.4: Master B x Bountiful.

⁵⁻Cross no.5: Lincoln x Bountiful.

⁶⁻Cross no.6: Victory Freezer x Bountiful.

indicating the existence of genetic and environmental variation affecting this character (Table, 4). All the studied crosses showed high values of variance for this character. The observed F_2 mean (Tables, 5) of all crosses was relatively close to the arithmetic and geometric means, this indicated that dry pod weight is controlled by genes additive and non- additive effects. Data in Table (6) indicated over dominance towards the high dry pod weight in the cross Victory Freezer x Bountiful, due to the high value of potency ratio, while partial dominance for high dry pod weight in the crosses Victory Freezer x Pss10699, Master B x Bountiful and Lincoln x Bountiful, and for low dry pod weight in the two other crosses due to exhibited value of potency ratio. The observed different the nature of dominance could be due to influence of environmental effects on this character which differed in the different parental genotypes. This agreed with the findings of Hamed (1999) in beans. Positive heterosis was recorded over mid parent in the crosses Victory Freezer x Pss10699, Master B x Bountiful, Lincoln x Bountiful and Victory Freezer x Bountiful (Table, 6). Moreover, negative heterosis over high parent was recorded in all crosses for this trait. These results are in agreement with those obtained by Hamad (1976) and Hamed (1999) who stated that some crosses manifested positive heterosis while the most crosses exhibited negative one for pod weight of bean. The inbreeding depression values (Table, 6) ranged from -13.89 % to 36.76 % for all crosses. The cross Master B x Bountiful exhibited negative value of (-13.89%) inbreeding depression. Estimates of heritability for this trait (Table, 6) ranged from 57.27 % to 74.44 %. The cross Victory Freezer x Bountiful gave the highest heritability. These results were in agreement with that obtained by Shinde (2000) and Ramesh et al. (2002) who reported that the heritability values were found to be high for the dry pod weight in peas.

3-Number of seeds per pod:

The genetic parameters estimated for this character are presented in Table (7). Parents were significantly different from each others in all crosses. The F₁ and F₂ means were intermediate between its two parents in all crosses except in the cross Master B x Pss10699 where its F₁ mean was lower than both parents. A higher values of coefficient of variation was found for F_2 than F_1 plants in all crosses indicating the existence of genetic and environmental variation affecting this trait (Table, 7). Moreover, higher variance value was detected for F₂ plants in all crosses. These results are quite similar to those reported by Tyagi and Srivastava (2002) found that a wile range of variability for number of seeds per pod of pea. Data in (Table, 5) showed that the observed F₂ mean of all crosses was relatively close to arithmetic and geometric means, indicated both of the additive and non-additive type of gene actions controlled the inheritance of this character. This result agreed with the findings of Anil et al. (1995) who indicated that additive and non-additive genetic variances were involved in the genetic behaviour of number of seeds per pod in pea. Different types of dominance, i.e., over dominance for low number of seeds per pod in the cross Master B x Pss10699, partial dominance for high number of seeds per pod in the cross Lincoln x Bountiful, and for low number of seeds per pod in the other crosses (Table, 6). The observed different the nature of dominance could be due to influence of environmental effects on this character which differed in the different

parental genotypes. This result agreed with the findings of Anil et al. (1993) and Vikas and Singh (1999b).on peas, reported that number of seeds/pod was controlled by dominance gene action. Positive heterosis (Table, 6) was recorded over mid parent in cross Lincoln x Bountiful (8.53%), while negative heterosis was found over high parent in the all crosses which ranged from -38.11% to -0.53 %. These results are in agreement with those obtained by Arndt (1980); Pant and Bajpai (1991); Ceyhan and Avei (2005) and Zayed et al. (2005) who reported that number of seeds per pod exhibited maximum significant heterosis in pea. Positive inbreeding depression was observed in the crosses Master B x Pss 10699, Lincoln x Pss10699 and Victory Freezer x Pss10699 only (Table, 6), Estimates of broad sense heritability for number of seeds per pod (Table, 6) ranged from 52.36 % to 69.52 %, the cross Master B x Pss10699 gave the highest values of heritability. These results indicated the great role of the environment on the inheritance of this trait. High heritability estimates obtained by Vikas et al. (1996); Singh et al. (2003) and Singh and Singh (2004) on pea, while medium to high heritability estimates were obtained by Korla and Singh (1988) on pea.

4-Dry seeds weight per pod:

Data on dry pod seeds weight of parental, F₁, F₁r and F₂ populations of all crosses are shown in Table (7). Parents were significantly different in dry seeds weight in all crosses. The F₁ and F₂ means were intermediate between their parents in all crosses except in the cross Victory Freezer x Bountiful where the F_2 mean was higher than its two parents. High values of the coefficient of variability (Table, 7) were observed in the segregating population of F_2 than F_1 in all crosses. The F_2 plants gave high variance in all crosses (Table, 7) which indicated the existence of genetic and environmental variation for this trait. Data in Table (5), showed that the observed F₂ mean was relatively close to the arithmetic and geometric means of all crosses, indicated that both of the additive and non-additive type of gene actions controlled the inheritance of this character. Quantitative genetic parameters obtained for dry seeds weight per pod are shown in Table (6). The estimated potency of gen; set confirmed the partial dominance for high dry seeds weight per pod in the crosses Lincoln x Pss10699, Master B x Bountiful, Lincoln x Bountiful and Victory Freezer x Bountiful, and for low dry seeds weight per pod in the crosses Maste B x Pss10699 and Victory Freezer x Pss10699. Positive heterosis for this trait (Table, 6) was found in all crosses, except in the crosses Master B x Pss10699 and Victory Freezer x Pss10699, which ranged from 0.99% to 21.98% over mid parent. At the same time, negative heterosis was observed in all crosses over high parent. Positive inbreeding depression values for this character were achieved in all crosses (Table, 6) except in the crosses Master B x Bountiful and Lincoln x Bountiful where it was negative which ranged from (2.27 % to 13.46 %). Heritability was moderate for this character (Table, 6) which ranged from 61.43% to 66.00% in the crosses Victory Freezer x Pss10699, Lincoln x Bountiful and Victory Freezer x Bountiful, While it was low in the other crosses.

5-Average seed weight:

Data for average seed weight of the studied genotypes are shown in Table (8). In all crosses parents were significantly different in average seed weight, except in the crosses Lincoln x Bountiful and Victory Freezer x Bountiful. The F_1 mean was

higher than their parents in the crosses Lincoln x Pss10699, Master B x Bountiful and Victory Freezer x Bountiful, and it was intermediate between the two parents in the other crosses. The F₂ mean was higher than its two parents in all crosses except in the cross Master B x Pss10699 where it was intermediate between its two parents with a tendency towards the highest parent, indicating the existence of genetic and environmental variation affecting this character. Coefficient variability of F₂ populations of (Table, 8) was higher than that of F₁ population in all crosses. The analysis of variance for these genotypes showed that F₂ variance was higher than that of F₁ in all crosses. This result agrees with the findings of Tyagi and Srivastava (2002) and Singh and Singh (2006) who showed that high coefficient of variation for 100- seed weight of pea. The Observed F₂ mean (Table, 5) of all crosses was relatively close to each of their expected arithmetic and geometric means revealing that this character was controlled by additive and non-additive gene effects. These results were in accordance with estimates of Anil et al. (1995) and Singh and Singh (2004) who reported that additive and non- additive gene were important for this character of pea. Data in (Table 6), indicated that over dominance towards heavy seed weight in the crosses Lincoln x Pss10699, Master B x Bountiful and Victory Freezer x Bountiful due to the high value of potency ratio. While partial dominance towards the high seed weight in the crosses Master B x Pss10699, Victory Freezer x Pss10699 and Lincoln x Bountiful due to the exhibited value of potency ratio. The observed different the nature of dominance could be due to influence of environmental effects on this character which differed in the different parental genotypes. This result agrees with the findings of Gad and El-Sawah (1986) who observed different degree of dominance for 100-seed weight of pea. High positive heterosis (Table, 6) was obtained in the cross Master B x Bountiful (36.52%) over mid parent and (19.85%) over high parent. Variable results of heterosis for average seed weight have been also reported by Moitra and Singh (1986) who found negative heterosis for seed weight in most studied crosses of pea. Positive inbreeding depression (Table, 6) was observed of in all crosses which ranged from 4.27% to 26.31%, except in the cross Master B x Bountiful where it was negative for this trait. The broad sense heritability for this character (Table, 6) was above low to moderate in all crosses which ranged from 21.43 % to 68.82 %, except in the cross Lincoln x Bountiful which was low. Whereas Stelling (1988); Partap et al. (1992); Kumar et al. (1997); Gupta et al. (1998); Singh et al. (2003) and Singh and Singh (2004) who indicated that heritability for mean seed weight was high of pea.

6-Dry seed yield per plant:

Data obtained on dry seed yield per plant of parental, F_1 , F_{1r} and F_2 populations of all crosses are presented in Table (8). Parents were significantly different in all crosses for this character except in the cross Master B x Pss10699. The F_1 mean was higher than its two parents in all crosses except in the crosses Lincoln x Bountiful and Victory Freezer x Bountiful where it was intermediate between their parents. The F_2 mean was higher than its two parents in all crosses except in the cross Lincoln x Bountiful where it was intermediate between their parents. The coefficient of variation (Table, 8) of F_2 plants was higher than F_1 plants in all crosses. indicating the existence of genetic and environmental variation affecting this character. The F_2 populations had high variance value (Table, 8) in all crosses. These results are in accordance with those obtained by Tyagi and Srivastava (2002) and Singh and Singh

(2006) who noticed that seed yield per plant exhibited high coefficient of variation of pea. Data in Table (5) showed that the observed F₂ mean of all crosses was relatively close to each of their expected arithmetic and geometric means which indicated that both of the additive and non-additive type of gene actions controlled the inheritance of this character. These results are in agreement with Mihailovic et al. (1991); Narayan et al. (1999) and Ceyhan and Avei (2005) who observed that additive and nonadditive gene actions were important in the inheritance of dry seed yield/plant in peas. Data obtained on potency ratio (Table, 6) indicated over dominance for high seed vield per plant in the crosses Master B x Pss10699, Lincoln x Pss10699, Victory Freezer x Pss 10699 and Master B x Bountiful due to the high value of potency ratio. while partial dominance for high seed yield per plant in the crosses Lincoln x Bountiful and Victory Freezer x Bountiful due to exhibited value of potency ratio. The observed different the nature of dominance could be due to influence of environmental effects on the expression of this character which differed in the different parental genotypes. These results coincided with that obtained by Gad and El-Sawah (1986); Saxena (1988) and Panda et al. (1996) on pea, found over dominance for yield/plant. Positive heterosis (Table, 6) was found in all crosses and ranged from 14.71% to 96.94 % for mid parant. Moreover, negative heterosis was observed in the crosses Lincoln x Bountiful and Victory Freezer x Bountiful over high parent for this trait. The cross Master B x Bountiful had the highest value of 96.94 % and 49.65% based on mid-parent and high parent, respectively. These results are in agreement with previous results obtained on this trait by Singh et al. (1994) and Tyagi and Srivastava (2001) who noticed that high heterosis for seed yield /plant of peas. Dipti et al. (2003) on pea, showed that hybrid KS-226 x Azad P-3 hid the greatest heterosis for dry seed yield per plant (55.37 %). Ceyhan and Avei (2005) and Zayed et al. (2005) showed high significant heterosis over mid-parent and over better parent for pea seed yield. Positive inbreeding depression (Table, 6) was fount in all crosses and ranged 9.40 % to 59.02 %. This is in agreement with the findings of Parmar (1993); Kharche and Narsinghani (1994) and Tyagi and Srivasta a (1999) who indicated high positive inbreeding depression for pea yield. Heritability (Table, 6) was a moderate to high values, ranging from 57.33% to 86.47 %, indicating that selection in early segregating generation would be moderate to high effective. The crosses Master B x Pss 10699, Master B x Bountiful and Victory Freezer x Bo intiful showed high heritability values for dry seed yield. These results agree with that obtained by Stelling and Ebmeyer (1990); Kumar et al. (1997); Gupta et al. (1998); Shinde (2000); Singh and Mir (2005) and Singh and Singh (2006) working on pea, who estimated high heritability values for seed yield/plant.

CONCLUSION

In general, it can be concluded that additive or non-additive and dominance effects played the important role in inheritance of all the previous characters. Moreover, the high estimates of broad-sense heritability for most studied traits indicated that selection can be used for improving of these characters in peas. Also, the genetic analysis demonstrated that a considerable amount of readily fixable variation is present and available for the plant breeder to manipulate.

Table (7): Statistical constants of the number of seeds per pod and dry seeds weight per pod (gm.) traits in parental, F₁, F₁r and F₂ populations of pea crosses.

Crosses		Characters	P ₁	P ₂	Fı	Fir	F ₂
			Number of	seeds per po	od		
Master	$(\mathbf{P_1})$		1	1			
Pss10699	(P ₂)	_			•	:	
133100//	(* 2)	$X = S_{X}$	6.90± 0.12	4.37± 0.17	4.27± 0.16	5.53± 0.08	4.79± 0.16
		C.V. %	9.61	22.07	20.28	7.67	31.80
		S ²	0.44	0.93	0.75	0.18	2.32
No. of observed pl		· · · · · · · · · · · · · · · · · · ·	30	30	30	30	91
	(P ₁)	$X = S_x$	5.63± 0.15	4.37± 0.17	4.47± 0.19	4.67± 0.24	5.20± 0.18
Pss10699	(\mathbf{P}_2)	C.V. %	14.32	22.07	23.25	28.33	30.41
		S ²	0.65	0.93	1.08	1.75	2.50
No. of observed pl	ants		30	30	30	30	78
Victory Freezer	(P ₁)			1			
•	(\mathbf{P}_2)	$X \pm S_{X}$	5.57± 0.11	4.37± 0.17	4.47 ± 0.15	4.80± 0.12	4.58± 0.16
1 33 100 27	(2)	C.V. %	11.21	22.07	18.17	13.82	29.05
		S²	0.39	0.93	0.66	0.44	1.77
No. of observed pl	ants		30	30	30	30	72
Master	(P ₁)						
	(\mathbf{P}_2)	$X \pm S_{X}$	6.90± 0.12	4.70± 0.17	5.67± 0.24	5.73± 0.23	4.86± 0.17
-	/	C.V. %	9.61	19.50	23.33	22.21	29.96
No. of observed pl	ante	8.	0.44	0.84	1.75	1.62	2.12
			30	30	30	30	74
	(\mathbf{P}_1)	$X = S_{X}$	5.63± 0.15	4.70± 0.17	5.60± 0.16	5.47± 0.27	5.44± 0.17
Bountiful	(\mathbf{P}_2)	C.V. %	14.32	19.50	15,97	27.05	27.76
		S ²	0.65	0.84	0.80	2.19	2.28
No. of observed pla	ants	5	30	30	30	30	75
	(P ₁)				-	 	1
	(\mathbf{P}_2)	$X \pm S_X$	5.57± 0.11	4.70± 0.17	4.87± 0.19	6.07± 0.23	4.83± 0.14
Doduthai	(± 2)	C.V. %	11.21	19.50	21.34	20.97	27.23
		S ²	0.39	0.84	1.08	1.62	1.73
No. of observed plant	ants		30	30	30	30	87
		Dry	seeds weig	ht per pod (gm.)		
Master	(P ₁)		!	I	1	l	1
	(P ₂)					1	ļ
F 3510077	(12)	$X \pm S_{X}$	0.97± 0.041	0.32± 0.018	0.45± 0.032	0.71± 0.032	0.51± 0.025
	!	C.V. %	23.05	31.25	38,49	24.39	43.84
	İ	S ²	0.05	0.01	0.03	0.03	0.05
No. of observed pl	ants		30	30	30	30	81
Lincoln	$(\mathbf{P}_1)^{\top}$	_				T	
Pss10699	(P ₂)	$X \pm S_{X}$	0.69 ± 0.032	0.32 ± 0.018	0.51 ± 0.032	0.55± 0.026	0.55 ± 0.021
	/ {	C.V. % S²	25.10	31.25	33.96	25.71	36.36
No. of observed pla	ants	5	0.03 30	0.01 30	· 0.03	0.02 30	0.04 89
	 -			30	30	Ju	1 - 39
•	(\mathbf{P}_1)	$X^{-} \pm S_{X^{-}}$	0.57± 0.026	0.32± 0.018	0.44 ± 0.036	0.46± 0.041	0.45± 0.024
Pss10699	(\mathbf{P}_2)	C.V. %	24.81	31.25	45.45	48.61	54.43
	1	S^2	0.02	0.01	0.04	0.05	0.06
No. of observed pla	ints	~	30	30	30	30	106
	$(\mathbf{P_1})$						
	$(\mathbf{P_2})$	$X \pm S_{X}$	0.97 ± 0.041	0.44 ± 0.026	0.86± 0.048	0.79± 0.052	0.67± 0.030
Doummin (- 2/	C.V. %	23.05	32.14	30.76	36.47	40.87
N6-1.		S ²	0.05	0.02	0.070	0.083	0.075
No. of observed pla	———— i		30	30	30	30	83
	(\mathbf{P}_1)	,- a	0.60 0.00		0.64 . 0.755		0.70
Bountiful ((\mathbf{P}_2)	$X \pm S_{X^{-}}$	0.69± 0.032	0.44 ± 0.026	0.64 ± 0.032	0.61± 0.032	0.58 ± 0.029
		C.V. %	25.10	32.14	27.06	28.39	45.62
No. of observed pla	ints	S ¹	0.03 30	0.02 30	0.03	0.03 30	0.07
-	\longrightarrow		20	UC.	30	30	81
-	$(\mathbf{P_i})$	$X^- \pm S_{X^-}$	0.57± 0.026	0.44 ± 0.026	0.52± 0.018	0.57± 0.026	0.59± 0.026
Bountiful ((\mathbf{P}_2)	C.V. %	24.81	32.14	19.23	24.81	37.90
	İ	Si	0.02	0.02	0.01	0.02	0.05
No. of observed pla							

Table (8): Statistical constants of the average seed weight (gm.) and dry seed yield per plant traits in parental, F₁, F₁r and F₂ populations of pea crosses.

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Characters	Pı	P ₂	F ₁	Fir	F ₂
F	verage see	d weight (gm	.)		·*
		5 .3	[
_)		'
					0.124± 0.004
	1				29.08 0.0013
3	30	30	30	30	83
$X \pm S_{X}$	0.113 ± 0.006	0.071 ± 0.002	0.117± 0.005	0.122 ± 0.008	0.122 ± 0.004
C.V. %		•			31.74 0.0015
. 3 -	30	30	, 30	30	94
				 	
$X \pm S_X$	0.102 ± 0.004	0.071 ± 0.002	0.095± 0.005	0.106± 0.005	0.120 ± 0.004
C.V. %	24.01	19.92	29.77	26.68	34.36
S-	i				0.0017 94
		30		 	1 - 1
$X \pm S_{X}$	0.131± 0.006	0.099 ± 0.005	0.157± 0.007	0.134± 0.008	0.140± 0.005
C.V. %	24.14	30.30	24.67	33.37	38.46
S ²	r	i			0.0029
	30	30	30	30	114 -
$X = S_{X}$	0.113± 0.006	0.099± 0.005	0.110± 0.005	0.109± 0.004	0,124± 0.004
C.V. %	27.98	30.30	27.27	20.51	30.17
S	(1	1		0.0014
	. JU	30	30	30	90
$X^{-} \pm S_{x^{-}}$	0.102± 0.004	0.099± 0.005	0.104± 0.004	0 131± 0.004	0.110± 0.004
C.V. %	24.01	30.30	19.23	18.70	30.15
S ²	0.0006	0.0009	0.0004	0.0006	0.0011
				30	81
	Dry seed yi	eld per plant			
ŧ		ļ		t I	
v . e	30 27 / 2 27	37.00 - 7.15	54 73 ± 3 34	2537 4 6 25	79.83 ± 4.49
				T .	79.83 ± 4.49 60.14
S²	321.99	298.76	314.96	1367.65	2305.36
	30	30	30	30	114
v	66.13 : 6.46	75.00		0.73	07.0
					85.69 ± 4.58 56.61
S ²	1263.08	46.71 298,76	1317.86	630.71	2353.21
	30	30	30	30	112
v	40.03 : 7.04	38.00 3.45	(0.45 : 55	5.00	01.05 3.55
					81.85 ± 3.78 48.67
S ²	1		-	-	48.67 1587.04
	30	30	30	30	111
_					
	38.27 ± 3.27	19.90 ± 1.39	57.27 ± 3.96		64.44 ± 3.44
					55.47 1277.56
3	321.99			30	108
_					
$X \pm S_{X^-}$	66.13 ± 6.48	19.90 ± 1.40	58.53 ± 4.62	34,47 ± 3.37	64.03 ± 3.63
C.V. % S ²				-	61.14 1532.84
~	30	30	30	30	116
	49.03 ± 3.81	19.90 ± 1.39	39.53 ± 3.11	92.73 ± 5.82	62.86 ± 3.00
	Į.		I I		47.02 873.82
3	ľ	30		30	97
	X ± S _X - C.V. % S ² X ± S _X - C.V. % S ²	Average seed $X \pm S_{X}$ 0.131± 0.006 24.14 S^2 0.001 30 $X^2 \pm S_{X}$ 0.113± 0.006 S^2 0.001 30 $X^2 \pm S_{X}$ 0.102± 0.004 24.01 S^2 0.0006 30 $X^2 \pm S_{X}$ 0.131± 0.006 S^2 0.001 30 $S^2 \pm S_{X}$ 0.131± 0.006 S^2 0.001 S^2 0.131± 0.006 S^2 0.131± 0.006 S^2 0.102± 0.001 S^2 0.102± 0.004 24.14 S^2 0.103± 0.006 S^2 0.102± 0.006 S^2 0.102± 0.006 S^2 0.102± 0.004 24.01 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.004 S^2 0.102± 0.006 S^2 0.102± 0.006 S^2 0.102± 0.006 S^2 0.102± 0.006 S^2 0.102± 0.006 S^2 0.101± 0.006 S^2 0.102± Average seed weight (gm $X^{-} \pm S_{X^{-}}$ 0.131± 0.006 0.071± 0.002 30 30 30 30 30 30 30 30 30 30 30 30 30	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

REFERENCES

- Allard, R.W. (1960): Principles of Plant Breeding. John Wiley & Sons, Inc. 473 P.
- Anil, S.; Gupta, V.P. and Sirohi, A. (1993): Genetic analysis for harvest index, seed yield and related traits in pea. Crop Improvement 20 (2): 151-155. (c. f. Plant Breed. Abst. 64:7113,1994).
- Anil, S.; Gupta, V.P. and Sirohi, A. (1995): Genetic analysis for harvest index, seed yield and related traits in pea (*Pisum sativum L.*). Annals of Biology Ludhiana 11 (1-2): 197-200.
- Arndt, H. (1980): Investigation on the degree and range of heterosis effects in the garden pea (*Pisum sativum*). Tagungsbericht, Akademie der Landwirtschaftswissenschaften der Deutschen Demokratischen Republik No.168: 449 – 456. (c. f. Plant Breed. Abst.52:11245, 1982).
- Ceyhan, E. and Avei, M.A. (2005): Combining ability and heterosis for grain yield and some yield components in pea (*Pisum sativum L.*). Pakistan Journal of Biological Sciences. 8 (10):1447-1452.
- Dipti, G.; Semwal, B.D. and Srivastava, J.P. (2003): Heterosis in table pea (*Pisum sativum L.*. Poir). Progressive Agriculture 3 (1/2): 95–98.
- Gad, A.A and El-Sawah, M.H. (1986): Diallel analysis of pea crosses. 2-Yield and yield components. Egypt. J. Genet. Cytol. 15: 47–57.
- Gupta, M.K., Singh, J.P. and Mishar, V.K. (1998): Heritability, genetic advance and correlation analysis in pea (*Pisum sativum* L.). Crop Research (Hisar) 16 (2): 202–204.
- Hamad, I.A. (1976): Inheritance of yield, yield components, number of days to flowering, plant height and incidence of inter locular cavitiation of pods in snap beans (*Phaseolus vulgaris* L.). Dissertation Abstracts International, 36 (8):3701B – 3702B.
- Hamed, A.A. (1999): Genetical study on some economic characters of bean. M. Sc. Thesis, Cairo Univ. Egypt.
- Kharche, S.K. and Narsinghani, V.G. (1994): Heterosis and inbreeding depression in pea. Indian Journal of Pulses Research 7 (1): 18 20.
- Korla, B.N. and Singh, A.K. (1988): Genetic variability and genotype x environment interaction in pea (*Pisum sativum*). Vegetable Sci. 15 (2): 155 162. (c. f. Plant Breed. Abst. 60:4828, 1990).
- Kumar, D.; Verma, D.K. and Singh, N.K. (1997): Heritability and expected genetic advance in pea (*Pisum sativum* L.). Journal of Soils and Crops 7 (2): 113 118.
- Mather, K. and Jinks, J.L. (1971): "Biometrical Genetics". Chapman and Hall, Ltd., London, 382 P.
- Mihailovic, V.; Kraljevic, B.M. and Pataki, I. (1991): Inheritance of seed yield in spring forage peas. Genetika Beograd 23 (2): 111 119.
- Moitra, P.K. and Singh, S.P. (1986): Heterosis in peas. Narendra Deva J. Agric. Res.1(2):102-105.
- Narayan, R.; Rastogi, K.B.; Bhardwaj, V. and Kanaujia, S.P. (1999): Genetices of yield and quality traits in garden pea. Journal of Hill Research 12 (2):95 – 98.

- Om-Parakash, G.C Bajpai, Singh, A.K. and Prakash, O. (1993): Study on the hybrid vigour and inbreeding in pea.(In Hindi). Bhartiya Krishi Anusandhan Patrika 8 (2):90-94.
- Panda, P.K.; Singh, K.P.; Kar, R.M. and Singh, A.K. (1996): Genetic components for yield and its yield contributing traits in pea (*Pisum sativum L.*). J.Applied Biology 4 (1-2): 9-12.
- Pant, D.C. and Bajpai, G.C. (1991): Heterosis for yield and yield components in field pea. Indian J. Pulses Res. 4 (2):129-135.
- Parmar, B.S. and Godawat, S.L. (1990): Heterosis and inbreeding depression in pea (*Pisum sativum* L.). International Journal of Tropical Agriculture 8 (1): 19 22.
- Parmar, B.S. (1993): Heterosis and inbreeding depression in pea. Madras Agricultural Journal 80 (3): 150 152.
- Partap, P.S.; Bhata, G.L. and Arora, S.K. (1992): Studies on genetic variability and heritability for yield and component characters in pea (*Pisum sativum L.*). Crop Research Hisar 5 (3): 505 511.
- Powers, L. and Lyon, C.B. (1941): Inheritance studies on duration of developmental stages in cross within the gene Lycopersicon. J. Agric. Res., 63: 129.
- Ramesh, C.; Tewatia, A.S. and Dahiya, M.S. (2002): Genetic variability and heritability studies in garden peas (*Pisum sativum* L.). Haryana Journal of Horticultural Sciences 31 (3 4): 250 252.
- Sarawat, P.; Stoddard, F.L.; Marshall, D.R., and Ali, S.M. (1994): Heterosis for yield and related characters in pea. Euphytica 80 (1-2): 39-48.
- Satyawan, A.; Malik, B.P.S.; Ram, K. and Ram, D. (2004): Grouping of genotypes based on D2 analysis in field pea (*Pisum sativum L.*). Haryana Agricultural University Journal of Research 34 (2):129-132.
- Saxena, J.K., Singh, I.B. and Srivastava, R.L. (1988): Genetic architecture of yield and its components in pea (*Pisum sativum L.*). Genetika Yugoslavia 20 (2): 199 – 205 (c. f. Plant Breed Abst. 59: 5383,1989).
- Seem, M.; Kohli, U.K.; Devinder, M. and Dharminder, K. (2005): Genetic variability studies in pea (*Pisum sativum* L.). Haryana Journal of Horticultural Sciences 34 (1/2):140-141.
- Sharma, D.K.; Adarsh, B.; Chaudhary, D.R. and Bala, A. (1993): Studies on combining ability and gene action in pea (*Pisum sativ um L.*). Indian Journal of Hill Farming 12 (1-2): 32-36.
- Sharma, M.K. and Rastogi, K.B. (2001): Analysis of gene effects for agronomic and maturity characters in pea (*Pisum sativum* L.). Legume Research 24 (1): 32-35.
- Shinde, K.G. (2000): Genetic parameters for some quantitative and qualitative traits in pea (*Pisum sativum L.*). Orissa Journal of Horticulture 28 (1):21 24.
- Singh, A.P.; Singh, G.P. and Singh, A.K. (1993): Variability studies in tall and dwarf peas (*Pisum sativum* L.). Crop Research Hisar 6 (2):239 242.
- Singh, V.P.; Pathak, M.M. and Singh, R.P. (1994): Heterosis and its components in pea. Indian Journal of Pulses Research 7 (1): 15 17.
- Singh, G.; Singh, M.; Singh, V. and Singh, B. (2003): Genetic variability, heritability and genetic advance in pea (*Pisum sativum* L.). Progressive Agriculture 3 (1-2): 70-73.

- Singh, J.D. and Singh, I.P. (2003): Combining ability analysis in field pea. Indian Journal of Pulses Research 16 (2): 98 100.
- Singh, J.D. and Singh, I.P. (2004): Selection parameters for seed yield in field pea (*Pisum sativum* L.). National Journal of Plant Improvement 6 (1): 51 52.
- Singh, A.K. and Mir, M.S. (2005): Genetic variability, heritability and genetic advance in pea (*Pisum sativum* L.) under cold arid region of Ladakh. Environment and Ecology.23S (Special 3): 445-449.
- Singh, J.D. and Singh, I.P. (2006): Genetic variability, heritability, expected genetic advance and character association in field pea (*Pisum sativum L.*). Legume Research, 29 (1): 65-67.
- Sinha, S.K. and Khanna, R. (1975): Physiological biochemical and genetic basis of heterosis. Adv. Agron. 27:123 174.
- Snedecor, C.W. (1956): Statistical Methodes, Lowa state College Press. Ames, Iowa.
- Srivastava, P.L; Santoshi, U.S. and Singh, H.G. (1986): Combining ability and heterosis in pea. Crop Improvement 13 (1):20-23.(c.f. plant Breed. Abst. 57:2420,1989).
- Stelling, D. (1988): Selection for productivity during early generations of grain peas (Pisum sativum L.).109 PP. (c.f. Plant Gene CD 1987-1989).
- Stelling, D. and Ebmeyer, E. (1990): Selection in early generation of dried peas, Pisum sativum L. I- Values of heritability and efficiency of indirect selection. Plant Breeding 105 (3): 169 –179.
- Sureja, A.K. and Sharma, R.R. (2000): Genetic variability and heritability studies in garden pea (*Pisum sativum* L.).Indian Journal of Horticulture 57 (3): 243 247.
- Tyagi, M.K.; Joshi, A.K. and Singh, A.K. (1997): Variability and association among grain yield and its component characters in pea (*Pisum sativum L.*). Journal of Applied Biology 7 (1-2): 1 4.
- Tyagi, M.K. and Srivastava, C.P. (1999): Heterosis and inbreeding depression in pea. Annals of Agri Bio Research 4 (1): 71 – 74.
- Tyagi, M.K. and Srivastava, C.P. (2001): Analysis of gene effects in pea. Legume Research 24 (2): 71 76.
- Tyagi, M.K. and Srivastava, C.P. (2002): Genetic variability and correlation among yield and yield characters over two environments in pea. Indian Journal of Agricultural Research 36 (1): 53 56.
- Venkateswarlu, S. and Singh, R.M. (1982): Genetic architecture of yield components in pea. Indian J. Agric. Sci. 52 (11): 732-735.
- Vikas and Singh, S.P. (1999b): Line x tester analysis in pea (*Pisum sativum L.*). Annals of Agric. Bio Reseach 4 (1):93-98.
- Vikas, S.P. Singh; Rajvir, S. and Singh, R. (1996): Variability and inheritance of some quantitative characters in pea (*Pisum sativum L.*). Annals of Biology Ludhiana 12 (1): 34 – 38.
- Zayed, G.A.; Helal, F.A. and Farag, S.T. (2005): The genetic performance of some continuously variable characteristics of pea under different locations. Annals of Agricultural Science, Moshtoher.43 (1):349-358.

دراسات وراثية لتحسين الإنتاجية في البسلة

فايق ساويرس فارس، عبد الجواد محمد احمد، رجب مرعى على أقسام بحوث الخضر - معهد بحوث البساتين - مركز البحوث الزراعية

تم دراسة السلوك الوراثى لصفات طول النبات ،الأزهار المبكر و عدد القرون الجافة/النبات، وزن القرن الجاف ، وعدد بذور القرن الجاف، ، وزن بدور القرن الجاف ، متوسط وزن البذرة ومحصول البذور الجافة/النبات في تهجين خمسة أصناف من البسلة وتهجيناتها العكمية خلال الفترة من ٢٠٠٠-٢٠٠٢ بمحطة بحوث البساتين بسدس - محافظة بنى سويف - مصر. التهجينات لهذة الدراسة الوراثية هي:-

Pss10699 x لنكولن 4- ماستر بى Bountiful x - ماستر 5- فيكتورى فريزر ۱ – ماستر بی Pss10699 x ۳ – فیکتوری فریزر Pss10699 x ۵ – لنکو لن Bountiful x

كانت النتائج المتحصل عليها كالآتى:

أظهرت تقديرات فعل الجين الهندسي والحسابي وجود كلا من الفعل الاضافي وغير الإضافي للجينات وإنها تلعب دورا هاما في وراثة هذة الصفات السابقة. أظهرت قياسات درجة السيادة وجود سيادة فائقة في صفة الازهار المبكر و صفة عدد القرون العالي/ النبات : ومتوسط وزن البذرة العالى، وصفة المحصول العالي للبذرة الجافــة /النبات سيادة فنقة في بعض أو معظم التهجينات . أما السيادة الجزئية فقد ظهرت تجاة طول النبات ، رصفة وزن القرن العالى ، وصفة وزن بذور القرن العالى وصفة عدد بذور القرن الأق في معظم التهجينات. قدرت درجة التوريث على النطاق العسريض وكانت عالية لدخات طول النبات وصفة عدد بذور القرن الجاف في التهجين ماستر بي x I'ss10699. أيضا كانت عالية لصفة الأزهار المبكر في كل التهجينات لهذة الصفة ماعدا في التهجين ماستر بي Bountiful x ، وصفة عدد القرون/النبات في التهجيين ماستر بي Bountiful x ، وصفة وزن القرن الجاف في كل التهجينات لهذة الصفة ماعدا في التهجينات ماستر بي Bountiful x ولنكولن Bountiful x، وكذلك كانت عالية لصفة مدصول البذور الجافة/ النبات في التهجينات ماستر بي Pss 10699 x و ماستر بي Bountiful x وفيكيوري فريسزر Bountiful x عموما فسان درجسة التوريث العالية في معظم الصفات التي درست تدل على أنة يمكن استخدام الإنتخاب لتحمين هذة الدعفات في البعلة. وبصفة عامة يوضع التحليل الوراثي ان هناك كمية من الإختلافات الوراثية الميسرة والمتاحة لمربى النبات يمكن استخدامها في هذه الهجن لتربية وتحسين محصول البسلة.