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ABSTRACT

The strategy for checking any violations of the analysis of variance
assumptions has rarely been adopted among researchers and data analysts
especially with models that contain more than one error term. The objective of
this work is to set out steps to check these assumptions of a split-plot design.
Analysis of variance assumptions have been checked for a field experiment laid
out in a split-plot design. Three whole-plot (WP) nitrogen fertilizer rates were laid
out in four randomized blocks, and maize (Zea mays L.) cultivars were in four
split plots (SP). To fulfill this objective a five-stage strategy was followed. These
checking stages were for: fit of the model, outliers, independence of the error
variable, equality of error variances, and finally normality assumption. This
strategy depends mainly on calculating the residual values of both the main- and
the sub-plot factors. In addition, the coefficients of multiple determination, R’
were calculated for whole- and sub-plots as measures of model lack of fit. Some
assumptions seemed to be violated during the two years of the study. In Year 1,
the pattern of residuals of the three N levels resembled a funnel-like shape; this
warrants a possible violation of equality of error variance assumption. In Year 2,
plotting of residuals indicates the presence of an extreme residual point at -
2.72078 standard units that lies within Block 2 with both N Level 1 and Cultivar
2. Regarding the independence issue, the residual spatial pattern, represented here
by spatial arrangement (block factor), did not seem to exhibit apparent problems
in both years. Based on the residuals associated with only subplots (SP), in Year
1, the variations in residuals within Cultivars 2 and 4 were more pronounced
compared to those within Cultivars 1 and 3. In Year 2, a relatively more spread
exists within Cultivars 4. Coefficients of determination were about 9.0 and 25.0
% for WP and SP in Year 1, and were quite improved in Year 2 to become 39.0
and 58.0 %, respectively. For the WP sub designs in both year, the extremely low
coefficient values indicate that a small proportion of the variability in the data is
contributed by the WP nitrogen fertilizer factor included in the model, whereas
these values were relatively higher for SP sub designs. The WP N factor should
not be replaced, but this warrants more attention be paid when applying nitrogen
fertilizer rates to main plots. Nearly all non significant effects had extremely
small (<1.0) F ratios. These <1.0 values, however, may indicate violations of one
or more of ANOVA assumptions. Both error variance equality and normatity
assumptions seemed not to be violated in both years.
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INTRODUCTION

The analysis of variance, ANOVA, requires certain assumptions be
fulfilled for the validity of both significance testing and inference(s) making.
Ways of assessing aptness of the ANOVA model assumptions have become a
necessary step to be implemented by researchers and data analysts.

In agricultural research, these assumptions are very often assumed
satisfied in the data being analyzed and rarely checked for. "The data analyst is
responsible for checking that the principal assumptions seem reasonably well
satisfied in the data being analyzed" (Snedecor and Cochran, 1980, p. 274). These
assumptions are often either mentioned briefly or even entirely overlooked in
introductory statistical literature. In the 1947 Biometrics Journal, different, but
related, topics concerning these assumptions were fully discussed in three
classical consecutive articles written by Cochran, Bartlett and Eisenhart. In these
three papers, Eisenhart discussed the ANOVA assumptions, Cochran addressed
consequences when assumptions are not met, and finally Bartlett dealt with
transformation as a remedial tool.

The assumptions needed in the analysis of variance are mainly: i) both
the effects of treatments and environment must be additive; and the experimental
errors must be ii) independent; iii) of equal variance and mutually uncorrelated;
and iv) normally distributed (Cochran, 1947; Wiesberg, 1980, p. 119; Draper and
Smith, 1981, p. 22).

In his article, Eisenhart (1947, p. 2) argued why statistics books, of his
time, had failed concerning this issue since they did not "state explicitly the
several assumptions underlying the analysis of variance, and to indicate the
importance of each from. a practical viewpoint.” He also added that books "have
not generally indicated in sufficient detail the actual functions of the respective
assumptions—1) which can be dispensed with for certain purposes; 2) which are
absolutely necessary, and what are likely to be the consequences if these are not
fulfilled; and 3) what can be done "to bring into line," for purposes of the
analysis, data which in their original form are not amenable to analysis of
variance".

This implies that all these ANOVA assumptions, in real-life data, are not
quite equal in their negative impact on analysis of variance and significance tests,
and possible remedies should be thought of for problematic data sets. Minor
departures from the underlying assumptions do not disturb the conclusions or
significance tests to any important degree, but major violations are most likely to
invalidate conclusions and must be avoided (Damon and Harvey, 1987, p. 75).

Cochran (1947) emphasized mainly various violation effects. Non
additivity causes error variances be heterogeneous. Non independence leads to
biases in estimating standard errors. Heterogeneous error variances, as well as
non normality cause a loss in the efficiency of estimating treatment effects, and
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the latter causes a drop in power in both F and student's t tests. In addition, in t
tests, estimated pooled error variance which is based on heterogeneous errors and
non normality lead to serious distortion of significance levels. The tabular
probability, in non normal distributions, is an underestimate, that is by using F or
t tables we intend to err in the direction of announcing too many significant
results. ANOVA, however, is robust to non normality, but not quite so robust
with respect to heterogeneous error variance (Milliken and Johnson, 1984, p.17).
In many recent studies the impacts of failure of one/more of the assumptions on
the validity of significance tests have extensively been considered (see Bathke,
2003; Maas and Hox, 2003; Chiarotti, 2004, Zimmerman, 2005; and Meek,
Ozgur, and Dunning, 2007).

Generally in practice several assumptions may fail' to hold
simultaneously. In non normal distributions there is usually a correlation between
the variance and the means, so that failure of Assumption 4, normality, is likely to
be accompanied by failure of Assumption 3, homogeneous error. variance
(Cochran, 1947). The assumptions altogether are needed to get an unbiased
estimate of error variance and exact tests of significance. For the latter, both
independence and normality are especially required. If additivity, common
variance are fulfilled, but neither independence nor normality, this results in
getting different estimates of error variance in the expected mean squares in a
two-way ANOVA, which are complex weighted averages of variances and
covariances of the random variable at hand (Eisenhart, 1947).

The likely disruption(s) of model assumptions —in real-life situations--
that might be caused by one or more of these violations, though quite crucial to be
familiar with their possible effect on the validity of significance testing, yet
gaining knowledge of various diagnostic tools is rather equally important. In
Neter, Wasserman, and Kutner (1985, pp 602-635) they generally discussed some
of these diagnostic tools especially residual analyses. In regression models,
Draper and Smith (1981) also emphasized residual diagnostic tools relatively
more deeply.

For one-way ANOVA model, Dean and Voss (1999) have set out a
sequential strategy for checking model assumptions; however, it can be extended
to any other statistical models. First, the fit of the model is checked by plotting
the standardized residuals versus the levels of each of the independent variable
(treatment factor, block factor) included in the model. Second, outliers — any
unusual observations. Outliers are easy to detect from a plot of the standardized
residuals versus the levels of the treatment factors. Third, do the error
variables gijk appear to be independent? It is checked for by plotting the
standardized residuals against any temporal order (time) or spatial arrangement
(blocks) by which the corresponding observations were handled. Fourth, does the
error variable £;; have similar variances for each treatment? In this case the
standardized residuals are plotted against the fitted values y, i - Fifth, does the
error variable £;;z appear to be a random sample from a normal distribution? It
can be checked {7y applying the normal probability plot procedure (Draper and
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Smith, 1981, p.117; and Dean and Voss, 1999, p.119). It is a plot of the
standardized residuals against their normal scores. Recently Almimi, Kulahci, and
Montgomery (2007) have argued that the property of designs having more than
one error term should be taken into consideration when oomputingmeviuresff
adequacy of model fit They proposed the computation of R”,R”-
Adjusted, prediction Error Sums of Squares (PRESS), and R“ -Prediction
statistics to measure the adequacy of fit for the whole and the subplot sub-models
in a split-plot design. This is complemented with the graphical analysis of the two
types of errors to check for any violation of the underlying assumptions.

Assessing these tools in models having more than one error term needs
to be addressed, since most literature have mainly focused on one—way models
only. This paper, therefore, aims merely at presenting some essential diagnostic
statistical tools that have been applied to check up for model assumption
disruptions in a split plot design. Suggesting ways of fixing any violation(s), if
present, is beyond the scope of this work.

MATERIALS AND METHODS

Experimental data

Data used in the analyses came from a two-year maize ficld trial that was
initially laid out in 2002 in a split plot design. Nitrogen fertilizer was the main
factor in a four randomized complete blocks, and maize cultivars were four splits
on three nitrogen rates. For more details of the materials, refer back to Tageldin
(2005).

Checking model assumptions

A split-plot linear additive model is represented by
Yig =p+p, +a;+yy +B;+(ap)y +s; )
1Y, ik reffresents the observation in the kfh block of a randomized

complete block design on the ifk whole-unit treatment with jth subunit treatment.
Let k=1,....., r blocks, i=1,.....a whole-unit treatment, and j=1,... ... , b subunit
treatments. Let 7j; gud &;;; be normally and independently distributed with
zero mean with 0"y as tile comon variance of the ¥ 's, the whole-unit
random components, and with 0“5 as the common variance of & 's, the subunit
random components. Here, the o, is assumed random, and both @; and /3 ; are the
fixed components of the model.

Examination of Residuals :

The assumptions on the model involves the error variable,
€k = Yyx — E(Lyx ), and can be checked by examination of the sesiduals.
Thie ijk th'residual €jy "is defined as, the observed valye of V., — ¥ where

Then, the residuals are transformed into standardized residuals, since
standardization facilitates the identification of outliers (Dean and Voss, 1999).
The standardization is achieved by dividing the residuals by their standard
deviation that is by the square root of mean square error estimate O “¢. The
standardized residuals have variance equals 1.0, and calculated by
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Residual plots

A residual plot is a plot of the standardized residuals Z;;; against the

levels of anether variable. The choice of a particular factor deépends on the
assumption being checked (Dean and Voss, 1999, p105).

Sequence of checking model assumptions

Dean and Voss (1999) suggested a strategy for checking any violations

in model assumptions. They are:

i)

if)

Model adequacy -- it deals with exploring the form of the chosen model - are
the mean response for the treatments adequately described by
EX)=p+p, +a;+yy +P; +(@h)y 3)
The fit of the ffiodel is checked by plotting the standardized residuals versus
the levels of each of the independent variable (treatment factor, block factor)
included in the model. :
Outliers — any unusual observations. An outlier is an observation that is
much larger or much smaller than expected. This is indicated by a residual
that has an unusually large or negative value, Outliers are easy to detect from
a plot of the standardized residuals versus the levels of the treatment factors.
Independence - do the error variables £;;; appear to be independent? It is
checked for by plotting the standardized residuals against any temporal order
(time) or spatial arrangement (blocks) by which the corresponding
observations were handled. '
Constant variance — do the error variables £;;; have similar variances, i.e.
homoscedastic? In this case the standardized residuals are plotted against the
fitted values J;;z . ‘
Normality — do the error variable £;;;, appear to be a random sample from a
normal distribution? It can be checked by applying the normal probability
plot procedure (Draper and Smith, 1981, p.117; and Dean and Voss, 1999,
p.119; and Almimi, Kulahci, and Montgomery, 2007). It is a plot of the
standardized residuals against their normal scores. Normal scores are
percentiles of the standard normal distribution. These normal scores are
calculated by using Blom's g th normal score technique(Dean and Voss,
1999, p.119). It is the value q for which

P(Z <£4)=(q-0.375)/(n+0.25) @
where Z is alstandard normal random variable. Blom's gth normal score is
£ q= ¢ [(g—-0.375) /(n+0.25)] (&)

Where ¢ is the cumulative distribution function (cdf) of the standard normal

distribution. The normal scores possess a symmetry about zero mean that is the j
th smallest and the ; th largest scores are always equal in magnitude but opposite
in sign. -
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- Calculations of the whole (WP) and the subplot (SP) residuals
Almimi, Kulahci, and Montgomery (2007) outlined the procedure to
calculate the WP and the SP residuals. Once the model is fitted, obtain the
~ residual values. The WP residuals are calculated by averaging the residuals
corresponded to the replications of each WP. All the replications within a WP
have the same residuals. The SP residuals, on the other hand, are obtained by
subtracting the WP residuals from the whole-model residuals.

In addition, to calculate R for both the WP and the SP sub designs, the
values of the all-model sum of squares are divided into two groups: the first has
the sums of squares for the WP and the second has the sums of squares for the SP
_effects. The values of R for both the WP and the SP sub designs are calculated as
follows:

SS Ss
Model(WP) and R2 Model(SP)

2
R —_— ©)
ssTotaI(WP) SP = SSTotal(SP)
RESULTS AND DISCUSSION

The fit of the chosen model is generally checked by plotting the
standardized residuals versus the levels of each independent variable (Figs 1-3) in
both years of the study. Figures la&b show the pattern of the standardized
residuals in relation to the three N fertilizer levels in 2002 and 2003. In Fig. la,
the three N levels exhibited a similar residual pattern around mean zero. They did
not exhibit a non random pattern, i.e. too often positive values for some levels and
too often negative for others. However, in Level 2 the residuals were nearly
clustered around zero compared to the other two levels.

In 2003, the pattern was entirely different (Fig. 1b). The pattern among
the three N levels resembled a funnel-like shape; this implies that the variance
was increasing towards the lower N level. This inconsistency in variance among -
N levels indicates a 'red sign’ in the data. It, therefore, tells'a problem does exist
(Draper and Smith, 1981, p. 147). Moreover, at N level 1 there appears to be an
unusual observation at -2.72078, which is nearly about 1.4 standard units away
from the nearest point at -1.33809 (Fig. 1b). This does not indicate that it is an
outlier, since an outlier, according to Draper and Smith (1981, p. 152) is one that
is far greater than the rest of the residuals in absolute value and perhaps lies three
or four standard deviations or further from the mean of the residuals. Points of
this kind, yet warrant further investigation. This might reveal a likely error in
recording the data, or the error variable not being normally distributed, or having
different variances, or incorrect specification of the model (Dean and Voss, 1999,
p.107).

By plotting the overall standardized residuals against the maize cultivar
factor in both years (Figs. 2a&b), a relatively more spread of the residuals of
three cultivars, especially those of Cultivar 4, compared to those of Cultivar 3 in
2002 (Fig. 2a). This might indicate heterogeneous error variances. In 2003,
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initially there is, however, no obvious problematic pattern of the residuals except
for the extreme value at -2.72078 associated with Cultivar 2 (Fig. 2b). The pattern
appears to take the ‘band' shapewhnchmdncatesaneaﬂyoonstantvananee
(DraperandSnuth, 1981).

Based on the residuals associated with only subplots (SP) (Almimi ef al.,
2007), the pattern of the residual plot vs. maize cultivars has become more
indicative in both years (Figs. 3a&b). In 2002, the variations in residuals within
Cultivars 2 and 4 were more pronounced compared to those within Cultivars 1
and 3 (Fig. 3a). In 2003, a relatively more spread exists within Cultivars 4 (Fig.
3b). Within relatively small plot area that contains few rows, any unusual-
induced influence, of the random variation due to collection of factors not
included in the model, may exhibit high variability within these particular plot(s).
For example, any missing within-row plants at harvesting may particularly cause
residuals to inflate, and any uncareful management practices as well.

Regarding the dependence issue, the residual spatial pattern, represented
here by spatial arrangement (block factor), did not seem to exhibit apparent
problems (Figs. 4a&b) in both years. Except for the extreme point at -2.72078 in
2003 that lies within Block 2 (Fig. 4b). It is the very same point associated with
both N Level 1 (Fig. 1b) and Cultivar 2 (Fig. 2b), as we mentioned earlier. This
relatively extreme point is not too far from the rest of the points in standard
deviation units to be considered an outlier as Draper and. Smith (1981) have
defined the term ‘outlier’, This point does not, however, fit in with the remaining
ones. o

Experiment wise, it is not unlikely to obtain one or more cases of
observation values that fail to conform to the rest of the observed data. Weisberg
(1980, p. 113) has stated several possibilities. First, an improbable but perfectly
compliant observation was made. This means that the observed value satisfies the
fitted linear model, but the associated ¢; happens to be large. A case like this
should not be right away discarded from the estimation process. Second,
following careful checking of the conditions and circumstances under which the
data were collected, the case was found to correspond to exceptional yet
explainable circumstances, such as failure of a measuring scale used in recording
data in the field, or switching between technicians. In this case, one is probably
justified in eliminating the case from the data set and estimating the model
without it.

Third, an exceptional event happened as in the second case, but no
specific reason for it can be detected. Here again, one would probably delete the
case from the analysis. Fourth, the case is perfectly satisfactory since neither
exceptional nor improbable event had occurred. However, the model was
inappropriate choice. This extreme point may be the most important in a study, as
it could represent new and unexpected information. The researcher may wish to
study the conditions of this point separately. A linear model may still be
appropriate for the rest of the data. Draper and Smith (1981) have called such
point “influential”.
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Another perspecnve of model adequacy of it is achieved by calculating

R? values for the full model as well as for both WP and SP sub gesigns in 2002

(Tables 1&2) and in 2003 (Tables 3&4). The full-model small R values in 2002

(Table 1) has relatively improved in 2003 (Table 3) indicating that a little

proportion of the variability in mean seed yield is explained by the factors

included in the ANOVA model regardless of the way these factors had been
. arranged in split plot layout.

Table (1): ANOVA of 3 nitrogen rates x 4 maize cultivars in a four
randomized complete blocks for maize seed vield in 2002,

___ S8 MS
45994200.24 2299710.012
47329880.22 1752958.527
93324080.46

C.V.=19.879%

Table (2): ANOVA partitioned by both whole (WP) and subplots (SP) for
maize seed yield in 2002,
ANQVA for the WP Sub ANOVA for the SP Sub

Source | DF SS MS F | p | Source |DF SS MS Fi{p
Model | 5 | 2690483.76 e | — { Model | 9 | 15720886.67 — — —
Block
N

3 { 222980754 | 743269.18 {0.42]0.73] Cv 3 | 735598026 )2451993.421.40)0.26;
2 | 46067622 | 230388.11 [0.05]095| NxCv | 6 | 836490639 |1394151.06|0.80(0.

BxN | 6 | 27582829.80 | 459713830 | 2.62 | 0.08 | Residual | 27 | 47329088022 | 175205852 — | —
Toml | 11]30273313.57) 275211941 | — | — | Tomt | 35 | 63050766.89 | 180145048 — | —

R*wp=8.88 % _ R*ss=24.93%

Table (3): ANOVA of 3 nitrogen rates x 4 maize cultivars in a four
randomized complete blocks for maize seed yield in 2003,

Source DF SS MS . F P
Model 20 80766886.00 4038344.30 2.93 0.005
Error 27 | 37172625.00 1376763.88
Total 47 117939511.00

R'=68.48% C.V.=1530%

Table (4): ANOVA partitioned by both whole (WP) and subplots (SP) for
maize seed yield in 2003.

ANOVA for the WP Sub n : ANQVA for the SP Sub n
Source | DF ss MS F | p | Source |DF ss MS F |l p
Model | 5 |11150508.57 | — ] Model | 9 [52347499.12] — - | -
Block | 3 | 5772911.47 | 1924303.82{1.40]0.26] Cv | 3 [27426044.42[9142014.80] 6.640.001
N |2 |5377597.09 | 2688798.54]0.93{0.44] NxCv | 6 |24921454.70] 4153575.78]3.02| 0.02
BxN | 6 [17268878.312878146.38|2.09]0.08 | Residual | 27 {37172625.00{ 1376763.88] —~ | -
Total | 11 | 28419386.8812583580.62} —| — | Totat |35 }89520124.12]2557717.83| -~ | ~

Rwp=39.23 % _ R’y =58.47%
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2FortheWPsub&signsinbothyears(’l‘ablesZ&4),theextxemely
ow R* values assure that a small proportion of the variability in the data is
contributed by the WP nitrogen fertilizer factor included in the model, whereas
these values were relatively higher for SP sub design. The latter high values
indicate that a larger proportion of the variability in the mean seed yield was
explained by the SP effects: Cv and N x Cv in the ANOVA model. Neither effect
was significant in 2002; yet both were significant in 2003 (p < 0.05). Almimi et
al. (2007) indicated that the low values for the WP sub design do not necessarily
mean that the WP plot factor should be replaced with another factor. This is due
to —they argued-- the presence of any significant SP interaction effects which
include the WP factor since these effects contribute to explaining the variability
in the data. In the present study, the 2002 N x Cv interaction effect was highly
non effective (p=0.58), in 2003, however, it was quite significant (p=0.02). Based
upon Almimi ef al.'s (2007) argument the N factor should not be replaced, but this
warrants more attention be paid when applying nitrogen fertilizer rates to main
plots.

In the above ANOVA tables, nearly all non significant effects had
extremely small (<1.0) F ratios. Each of block, N, and N x Cv effects in 2002,
and N effect in 2003 had F-ratios less than one (Tables 2&4). All of the F-ratios
in fixed-effect linear models are constructed as the mean square (MS) for the
effect of interest divided by an estimate of the error variance. If the null
hypothesis is true and all assumptions are satisfied then the F-ratio is expected
to=1.0 . If the null hypothesis is false and all assumptions satisfied then the mean
square for the effect of interest contains both an estimate of the error variance and
a sum of squared terms attributable to the effect of interest (Meek et al., 2007).
They pointed out that small (<1) F-ratios should not be overlooked since they
. may indicate a miss-specified model, or in other words, lack of fit, and violation
of the normality or homogeneity of variance assumptions.

If a factor should have initially been included in the model, the sums of
the squares (SS) for this factor and its interaction with the other factors already in
the model will be included in the error term. If the missing factor(s) has/have
significant effect(s) then the error mean square can be greatly inflated, resulting in
significantly small F-ratios (Meek et al., 2007). In addition, any covariate factors
that may have been omitted from the model may conceal differences among
factor levels so as to inflate error variance leading also to small F-ratios. In case
of crops that depend on individual plants per unit area as in maize, any fluctuation
in plant population at harvest is one of the most crucial covariate factors that
should be adjusted for in the model had it been a problem. Away from results of
the same model fit to historical data under similar conditions, any omitted
factor(s) are practically hard to find out in real experimental situations unless
statistical analyses are carried out, and reveal suspicions of model fit adequacy.

Another point worth considering in the above ANOVA tables is the little
p values—= 0.03 in 2002 and =0.08 in 2003~ of the error mean square (Block x
N) interaction effect of the WP part in both years (Tables 2& 4). In addition to the
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usual assumptions underlying the ANOVA procedures, Mecek et al. (2007) hold
that the assumption of no interaction is necessary for constructing the test
staﬁsﬁcsforevaluaﬁngbothWPandblockeﬁeaswhentheeﬁ'ectsareﬁxed

According to Eq. 1, the mean nanassocnatedthhWPﬁctor MSA,
has an expected mean square 0'2¢+bo' y +rb(a-1" 2, 2i while the term
used for the mean square ‘error’, MSAR,hasanexpectedvalueofaze+bo'2,
only if the interaction term is zero. On the other hand, if the assumption of no
interaction is violated the WP sub model is givenby: x+p +a; +(ap)y +7y -
TheexpectedvalueformeMS(AR)muﬁommbe.
o2 +(r-a-D" Ly (ar)y -

If error (a), i.c. the Block x WP factor interaction in a split plot design
turns out to be significant, this means that an interaction likely exists since there
are remarkable differences among the whole plots within the same block.
Unfortunately, this interaction can not be estimated from a split plot design in
which the whole-plot factor laid out in randomized block design; yet, it can be
evaluated if it had been arranged in a generalized complete block design (GCBD).
In the latter, there are repeat runs for each level of WP factor within each block.
In designing experiments ~especially in case of suspicion of the presence of such
kind of interaction~ it is advisable to allow for repeat runs, so model lack of fit
can be estimated by estimating both pure error and lack of fit components (Draper
and Smith, 1981).

Following checking for the dependence problem, diagnosis for
error £ unequal variances is applied to data as Dean and Voss (1999)
suggested. The most common pattern of nonconstant variances as the mean
response increases. This situation is presented when the plot of the standardized
residuals versus the fitted values resembles a megaphone in shape. In Fig. 5a, the
plots resulted in a 'band' shape which implies the absence of any apparent
heterogeneity problem (Weisberg, 1981) in the 2002 data. In 2003 data, by
including the extreme point of -2.72078 standard units the band-like shape
occurs; however, excluding this point from the data has changed the plot shape to
'‘parabolic' one (Fig. 5b). This latter unsatisfactory residual behavior would
indicate that model was inadequate and needs for extra terms in the model (e.g.,
square or cross-product terms), or needs for a transformation on the observations
of the dependent variable before analysis (Draper and Smith, 1980, p. 147). On
the other hand, the presence of this extreme point in the data indicates how this
point seems very .influential in the current data set and discarding it without
careful scrutiny of the circumstances that had entailed its occurrence would
certainly lead to loss of important information,
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-Cochran (1947) warned of the possibility of several assumptions to fail
simultaneously. In non normal distributions the problem of heterogeneous errors
is likely to arise. Normal probability plots of the WP and the SB residuals, for
both years, are presented in Figs. 6&7. Split-plot designs most often contain a
little number of whole-plots; this certainly causes a difficuity in deriving
conclusions concerning normality checking of whole plots. Almimi et al. (2007)
faced the same problem since they used four levels of the WP factor, and in the
present study there are three levels. This difficulty appears by checking Figs. 6a
& 7a of main-plot normal probability plots in both years. In both figures, it is not
clear enough to interpret the plots as if a non normality problem exists in whole
plots especially in Fig. 7a where two WP residuals have the same coordinates.
This situation, therefore, recommends that using enough main plots in split-plot
designs is urgently needed so that interpreting and concluding from such figures
becomes easier for readers. For the SP residuals, on the other hand, normality
appears satisfactory in both years of the study (Figs. 6b&7b). Almost all points fit
to a straight line (Draper and Smith, 1981; and Dean and Voss, 1999) in both

figures.
CONCLUSION

Considering that ANOVA assumptions are always robust to any
violations is a strategy of data analysts that should be abandoned, and checking
for any violations should become a required step whether data suspicion arises or
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not. Checking for these assumptions of a split-plot design needs calculating both
whole- and sub-plot residuals since there exist two error terms in the model. To
check for whole-plot normality, a difficulty with this technique often comes out
as a result of the limited number of the whole—plot factor levels. This limitation
does not give too many residual points to effectively interpret the whole-plot
residual behavior during checking the normality assumption. Therefore;
researcher should adopt using as enough whole-plot levels as possible. Small F-
rations (<1), in addition, usually lead to failing to reject the null hypothesis and
generally are not investigated any further. These values may, however, indicate a
miss specification of the model, and/or violations of normality or homogeneity of
variance assumptions. .
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