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ABSTRACT

Many attempts have been made to determine the wetting pattern under trickle irrigation using sophisticated
mathematical and numerical models. These models required detailed information concerning soil physical properties that
are too complicated for routine use. For this reason, an alternative methodology is proposed, which combines artificial
neural networks (ANNs), laboratory and field experiments. The model's input paramelers were saturated hydraulic
conductivity, emitter application rate, volume of water applied and average change of moisture content. The model outputs
were surface wetted radius and vertical advance of wetting front. A total of 280 and 100 vectors were used to irain the ANNs
model for surface wetted radius and vertical advance of wetting front estimations, respectively. To test the ANNs model, a
total of 132 and 76 vectors were selected in case of surface wetted radius and vertical advance of wetting front estimations,
respectively. Results of the test showed that the surface wetted radius and vertical advance of wetting front can be predicted
with determination coefficients (R°) of 0.80 and 0.81 for the surface weited radius and vertical advance of wetting front,
respectively. Additionally, the ANNs approach was found to produce equally or more accurate descriptions of wetting patiern

for point source trickle irrigation as compared to other analytical and empirical models.
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INTRODUCTION

’I‘rickle irrigation is based on the principle of low

quantity of water application at frequently close
intervals. Water is supplied to only those parts of the
soil where water uptake by the root sysiem is ihe most
efficient. Water trickling from a point source enters the
soil and moves downwards and sideways. This
reduced evaporation and minimal weed growth which
result in considerable savings in the amount of water
applied to a given field. There has been much
speculation on the shape of the wetted soil volume.
Based on this, it is then possible to determine the
number of emitters required per plant in order to wet a
prescribed portion of the plants root zone. This is quite
important in design, operation and management of a
trickle irrigation system. There are many attempts to
determine the wetting pattern under trickle irrigation
using sophisticated mathematical and numerical
models. These models required detailed information
concerning soil physical properties which are too
complicated, due to the highly nonlinear complexity of
the flow system, for routine use (Brandet et al., 1971;
Taghavi et al., 1984; Zazueta et al., 1995; Vellidis et
al., 1990; Li et al., 2003 and Li et al., 2004). Artificial
neural networks (ANNSs) have proven to be effective
tools for modeling nonlinear systems. ANNs
methodology has been used in applications where the
characteristics of the processes are difficult to describe
using simple physical equations. There are a number
of studies (Elizondo et al., 1994 Schultz ef al., 1995;
Francl and Panigrahi, 1997; and Arca et al., 1998) in
which some environmental phenomena are described
by mathematical models based on ANNs systems,
composed of many simple processing elements
(neurons), store experimental knowledge provided in
the form of examples, which enable them to compute
complex and non-linear problems. ANNs, however, do
not provide analytical information about the

relationship between input and output. The current
study was designed to utilize the input—output
mapping capabilities of the ANNs to estimate the
wetting pattern developed from a surface point source
trickle irrigation based on data obtained from
laboratory and field experiments.

MATERIALS AND METHODS

Artificial neural networks development

The multilayer networks using the feed-forward
neural network backpropagation algorithm were used in
this study. Four parameters were selected based on
previous studies to represent the input layer in the neural
(Ks), average moisture content (A68/2), volume of water
applied (V) and emitter application rate (q). These
parameters have shown good correlation with the
component of the wetting pattern (Schwartzman and Zur,
1986; Ben-Asher er al, 1986 and Amin and Ekhmaj,
2006). The hidden layer started with a small number of
neurons and increased progressively until the optimum
structure was reached. Using optimum network
architecture, the ANNs model was trained for given
inputs and output sets. Due to the lack of the available
data it was suggested to develop two ANNs models. The
first model was designed to determine the surface wetted
radius while the second was considered to determine the
vertical advance of wetting front. Thus, there was only
one output from each ANNs model which is surface
wetted radius and vertical advance of the wetting front.
used for the training purpose. Sigmoid transfer function is
commonly used in multilayer networks that are trained
using the backpropagation algorithm; the Log-sigmoid
transfer function was used in the hidden layer while
Hard-limit transfer function was used in the output layer.
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To build up and evaluate the ANNs model,
independent datasets were acquired from available
published data by Taghavi et al, 1984; Risse and
Chesness., 1989 Anglelakis ef al.,1993; Yitayew et al.,
1998; Hammami et al., 2002; Palomo et al., 2002; Li
et al., 2003; Li et al., 2004; and Amin and Ekhmaj,
2006. The choice of theses data were based on their
convenient data. The procedures of these experiments
are available in their original papers. A total of 180,
100 and 132 records were used to train, validate and
test the ANNs model for surface wetted radius
determinations. To perform the ANNs model for the
vertical advance of wetting front determinations the
total numbers of the available data, .i.e. 208 data
records were classified as, 70 for training phase, 62 for
validating phase and 76 for testing phase. The results
obtained from ANNs models were also compared
thoroughly with some available analytical and
empirical models (Schwartzman and Zur.1986, Ben-
Asher et al,. 1986 and Amin and Ekhmaj 2006). All of
data were processed and loaded into the neural
modeling application Matlab® (2001) version 7.0 of
Neural Network Toolbox (Graphical User Interface).

Statistical Criteria

The performance of ANNs models were
evaluated by several statistical measures, such as root
mean square error (RMSE), mean absolute error
(MAE), correlation coefficient (r) , determination
coefficient (R?), and the linear regression equation
with intercept equals zero. These statistical criteria can
be calculated as follows:

RMSE = fli(a-o,f )
n

MAE = -i-z IP,- 0, @
i=]
X cov(vp,v,) G)
var(v, )var(v, )

where Pi is the predicted value from the ANNs model,
Oi is the observed value and n is the number of
records,. cov (vp, Vp) is the covariance of predicted
(vp) and observed (vo) data, respectively, and var (vp,
Vo) is the variance. R is in the range [-1, 1] (Hongli
and Wiliam, 2004). The closer the value is to 1 or -1,
the more positively or negatively correlated the two
variables. The accuracy of the predictions in the
correlation analysis is indicated by the determination
(R%). The RMSE, MAE statistics have as lower limit
the value of zero, which is the optimum value for them
(Naylor, 1970 and Hossein et al., 2004). The general
form of the linear regression equation with intercept
equals zero is expressed as:

y=0ox @

where y is the predicted value, a is the slope of the
regression line, and x is the measured value.

RESULTS AND DISCUSSIONS

Because there are no standard rules to construct
the network structure, the optimum network was
defined using trail and error process. Multilayer
networks using the backpropagation algorithm were
used to construct the network. The input layer
composed of 4 neurons and the output layer has only
one neuron. The hidden layer was started with small
number of neurons and increased progressively until
the optimum structure was reached. Too few neurons
led to underfitting and difficulty in mapping and too
many neurons led to overfitting and increase the
training time. The optimum model structure was
accomplished through trial and error operations to
determine the number of hidden layers and the number
of neurons in each layer. It was found that a network
of four neurons in the input layer, one hidden layer
with 4 neurons and only one neuron in the output layer
is the optimum network structure to simulate both the
surface wetted radius and vertical advance of wetting
front. In other words, the optimum structure is (4-4-1)
as illustrated through Fig. (1).

Input layer Hidden layer

Fig. (1): typical architecture of a backpropagation
neural networks

The results of comparison between observed
surface wetted radius and vertical advance of wetting
front with those predicted by the ANNs for all trials
are plotted against a 1:1 line as shown in Fig. (2). In
this figure, for a perfect model prediction all of the
points would fall on the line across the graph
signifying a slope of one (observed= predicted). It is
clear that the observed—predicted data pairs lie very
close to the 1:1 line, which represents an excellent
agreement. The correlation coefficients (r) between
observed and predicted values were 0.97 and 0.98 for
surface wetted radius and vertical advance of wetting
front, respectively. These results were accepted with
high accuracy considering the complex mechanisms of
water movement in soil under the complicated
boundary and initial conditions from a surface point
source.
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Fig. (2): The correlation between observed and predicted values of the training phase for (a) surface
wetted radius and (b) vertical advance of wetting front.

The performance of the model was further
evaluated using the independent data which did not
included during training phase. If the results of
comparisons between the observed and predicted data
indicated high coincidence, it could then be reliably
recommended in practice. Fig.(3) plot of model
estimated for surface wetted radius (Fig.3a) and
vertical advance of wetting front (Fig.3b), using the
test data versus laboratory and field measurements
shows a good fit, with r = 0.89 and r = 0.90 for surface
wetted radius and vertical advance of wetting front,
respectively.

The results obtained from ANNs models
during training phase and test phase were also
compared thoroughly with those obtained from
available  analytical and empirical models
(Schwartzman and Zur, 1986; Ben-Asher et al., 1986

“and Amin and Ekhmaj, 2006). Fig. 5 shows the

comparisons between the surface wetted radius as
obtained during the training phase (Fig.5a) and at test
phase (Fig.5b) and those which predicted from
Schwartzman and Zur 1986, Ben-Asher er al., 1986
and Amin and Ekhmaj 2006. These figures show that
ANNs model captured precisely the observed data

compared to the other models.
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Figure (3): The correlation between observed predicted values of test phase for (a) surface wetted radius

and (b) vertical advance of wetting front.
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values of R? and a indicated that ANNs model has the
capability to precisely simulate the surface wetted
radius and vertical advance of wetting front under
point source trickle irrigation.

The statistical criteria used to evaluate the
performance of the ANNs model compared to the
other models are summarized in Tables 1.and 2. The
values of MAE and RMSE are smaller in the case of
ANNs models compared to the others. In addition, the

Table (1): Values of the statistical parameters used in comparison for surface wetted radius and

vertical advance of wetting front during training phase.

Model Surface wetted radius Vertical advance of wetting front
MAE RMSE a B MAE RMSE a R®
ANN 0.02 0.01 099 095 0.02 0.03 0.99 0.96
Amin & Ekhmaj 0.02 0.02 0.99 0.88 0.06 0.07 0.96 0.69
Schwartzman& Zur 0.05 0.05 0.77 0.72 0.16 0.23 1.2 0.25
Ben-Asher 0.02 0.04 1.05 0.82 0.06 0.08 0.81 0.44
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Figure (4): Comparison of ANNs model to other equations, and observed surface wetted radius at (a)
training phase and (b) test phase.
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Table (2): Values of the statistical parameters used in comparison for surface wetted radius and vertical
advance of wetting front during test phase.

Model Surface wetted radius " Vertical advance of wetting ﬁ-ontz

MAE RMSE o R MAE RMSE a R
© . ANN 0.03 0.04 0.92 0.80 0.03 0.04 0.98 0.81
Amin and Ekhmaj 0.02 0.03 098 088 0.1 0.12 1.02 -0.09
Schwartzman and Zur 0.05 0.06 0.82 0.69 0.14 0.20 1.57 0.56
Ben-Asher 0.03 0.04 1.05 0.82 0.03 0.04 0.92 0.80
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. Figure (5) Comparison of ANNs model to other equations, and observed vertical advance of wetting front
at (a) train phase and (b) test phase.

CONCLUSIONS :

This study describes an efficient method was found to produce equally or more accurate
using ANNs technique to determine the wetting descriptions of wetting pattern as compared to several
pattern under point source trickle irrigation. The analytical and empirical models which suggested and
method was verified with high agreement for both recommended to be used for point source trickle
training and testing data of surface wetted radius and irrigation design.
vertical advance of wetting front. The ANNs approach
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