WEED CONTROL IN FIELD GROWN TUBEROSES (Polianthes tuberosa, L.) CV. 'DOUBLE', IN THE WESTERN REGION ARID ZONE OF SAUDI ARABIA: A. WEED POPULATION DENSITY, GROWTH PERFORMANCES AND TUBEROSE CUT FLOWER YIELD, AS FUNCTIONS OF IRRIGATION FREQUENCIES, HAND WEEDING AND HERBICIDES

EL-Naggar, A. I* and S. H. Byari**

*Associate Professor of Floriculture, Faculty of Agric., Hort. Dept. (Floriculture), Assiut Univ., Assiut, Arab Republic of Egypt.

** Professor of Vegetables & Plant Breeding, Faculty of Meteorology Environ., & Arid Land Agric., Dept. of Arid Land Agric., KAAU, Jeddah, Kingdom of Saudi Arabia.

Abstract: Weeds represent a major confronting challenge. fieldgrown tuberoses. under furrow irrigation system, in the Western Region of Saudi Arabia, which hamper ameliorating tuberose cut flower yie!d and qualities as well as bulb production. Consequently, a Split-Split-Plot field experiment, in Complete Randomized Block Design, with four replicates, was performed, at Hada AL-Sham's Agricultural Experiment Station (Macca AL-Mokarama Area, KSA) during the 2001/02 and 2002/03 growing seasons, to resolve this problem; Irrigation frequencies (irrigation after 2, 4, 6 and 8 days) comprising the whole plots; manual hand weeding (unweeded control, weeding after 4, 8, and 12 weeks) sub-plots; represented the and Herbicidal treatments (control, Pendimethalin, glyphosate Pendimethalin plus glyphosate) in

the sub-sub-plots. The most predominant and highly prevalent weed species were Cvnodon dactylon and Cyperus rotendus. Nevertheless, Convolvulus arvensis. Malva svlvestris. Portulaca Amaranthus viridis oleracea. Solanum nigrum, and Amaranthus svlvestris exhibited relatively medium pervasiveness. Low weed prevalence and associations Anagalis arvensis. Chenopodium Chenopodium glaucum, murale. **Eclipla** Echinochola crusgalli, verticillata, prostrata. Setaria Cirisium arvense. Lolium multiflorum, Farsetia aegyptia, Brassica tournefortii, and Flavera trinervia were also observed.

High available soil moisture and frequent irrigations every two days, increased weed population density, fresh and dry weights, water use efficiency on dry weight basis, and weed control efficiency

considerably, in comparison with stress conditions and irrigation every eight days, in both seasons.

Manual hand weeding every 4 and 8 weeks immensely reduced weed density, fresh and dry weights, water use efficiencies, and greatly increased weed control efficiency, in comparison with the unweeded control, in the two growing seasons.

All herbicidal treatments significantly reduced weed parameters. Pendimethalin plus glyphosate reduced weed density, fresh and dry weights, weed water use efficiencies, and noticeably increased weed control efficiency, in

both seasons (86.9 and 93.68), respectively, in comparison to the untreated controls.

Tuberose cut flower vield production favored comprehensive frequent irrigations, as well frequent manual hand weeding. Pendimethalin plus glyphosate considerably improved cut flower vield production, in comparison with either the untreated control or each herbicide applied alone. Yield of tuberose cut flowers was negatively correlated with weed water use efficiencies and positively correlated with weed control efficiency, in both seasons.

Additional Index Words: Tuberose, Polianthes tuberosa, L. cv "Double", Weeds, Irrigation Frequency, Water Use Efficiency, Hand Weeding, Herbicides, Pendimethalin, Glyphosate, Weed Control, Weed Control Efficiency.

*Corresponding Author: Email Address: naggar2000@hotmail.com

Introduction: Tuberose orOmixochitl (Polianthes tuberosa, L.), Family Agavaceae, which was cherished and cultivated earlier in Mexico, even before the conquest in 1522, is one of many flowers which have come to us from the ancient culture of the Nahuatl-(Trueblood, speaking peoples 1973). The native Mexican white and luminous flowering spikes of tuberose, with its sweet lingering fragrance are in great demand and commercially produced as lovely summer blooming cut flowers in Bengal-India. metropolitan cities all over the World (Armitage and Laushman, 1990; and Singh, 1995). This

adorable cut flower crop was enthusiastically introduced into the Saudi Arabian Western Region, hoping establishment. acclimatization and aiming diversifying floricultural crops in the area. Successful adaptation and acclimatization were achieved and applied research programs were initiated for improvement and amelioration (El-Naggar and Byari, 1999 a, b, c, and d). However, Tuberose essentially required additional researches to overcome high productivity constrains and obstacles. Water deficiency depletion and of irrigation water may cause severe water stress and drought in arid

and semiarid zones in Saudi Arabia, in particular, where rainfall is minimal and does not surpass 100 nıl/annum average precipitation, according to Hussein and Bazuhair, 1992; and Al-Dubaikhi, 1999. Consequently, implementation of irrigation water conservation program(s) and water use rationalization were extremely vital and mandatory investigation, under the prevailing Irrigation frequency conditions. and water regime studies revealed very beneficial effects of irrigation and watering to numerous bulbous ornamentals (Papaneck, 1992; El-Naggar and Nassar, 1994; Dandria et al., 1996; and Halepyati et al., Nevertheless, 2002). many and investigations researches revealed that, increasing irrigation levels and/or irrigation frequencies only encouraged weed not population intensities and dry matter accumulations. but also extended the period of emergence, promoted regularity of. the developmental stages, and considerably hastened seed-weed dispersal in large number of weed species, in different crops including potatoes (Armellina and Zimdahl, 1989; and Mirabelli et 2005). Consequently, al., and/or agrochemical integrated weed control strategies, in field grown tuberoses were urgently required.

Weed infestation represents a major challenging problem in Saudi Arabia. Several attempts were conducted to control weeds

in different crops such as tomatoes, carrots, wheat, etc.. (Tag-El-Din et al., 1997; and Al-Turki and Abdul Ghafoor, 1996) in The Kingdom. However. The comprehensive definition of weed is the plant whose virtues have not been discovered so far (Abdul Ghaffoor. 2004). Weeds. according to Webster's New World Dictionary (Guralnik. 1978). defined are as undesired uncultivated plants. especially those growing profusion so as to crowed-out a desired cultivated crop. multiferous have ways competing and interfering with crop growth and crop culture. It compete with crops for one or more plant growth factors such as mineral nutrients, water, energy and space and they hinder crop cultivation operations. Moreover, it harbors insect pests and diseases, resulting in reducing crop yield and impairing the qualities (Derr, 2004; and Zimdahl, 2004).

Hand weeding and/or hoeing, as a weed contro! approach, was proven very efficient in controlling weed population and intensities. although it very costly. is laborious, exhausting and backbreaking. particularly in developing countries allover the Many researchers and World. investigators working with bulbous ornamentals reported that frequent hand weeding immensely reduced weed total population, intensity and weed dry weights, in field

grown tuberoses (Mohanty et al, 2002; and Panwar et al, 2005); gladioli (Chahal et al, 1994; Widaryanto et al, 1997; and Cheong et al, 2000); German Iris (Pennucci, 2000); Crocus (Bullitta et al., 1996); Santosa et al, 2006); as well as non flowering bulbs, such as Potatoes (Mirabelli et al., 2005).

weed

control

Herbicidal

strategy is considered as the most effective and efficient cultural practice, in many countries allover the world. due to easier applicability and being considerably cheaper costewise, in comparison weeding to hand tribulations (Mehmood et al., 2007). Preemergence as well as postemergence herbicides and/or their combinations have long been successfully and extensively, used, as alternative and supplementary approaches, for controlling weeds, numerous flowering bulb plantations, everywhere in the (N-(1-World. Pendimethalin ethylpropyl)-2,6-dinitro-3,4xvlidine) is considered as one of the most successful selective preemergence herbicide used to control most annual grasses and some broadleaf weeds, according to herbicidal handbook committee It is used as (WSSA, 1989). preemergence and early postemergence herbicide incorporated into the soil by cultivation or irrigation, within 7 days following application. strongly absorbs to soil organic matter and clay particles and it

does not leach through the soil to contaminate ground water. Pendimethalin herbicidal effects and mode of action are related to the inhibition of cell division and cell elongation through preventing tubulin from polymerizing into microtubules, resulting inhibiting mitosis (Hatzinikolaou et al., 2004). The plant root and shoots absorb it, easily. However, once it was absorbed into plant tissues translocations became limited and it breaks down via oxidation. Nevertheless, residues on crops at harvest are usually below the detectable levels (0.05 ppm) (WSSA, 1989). Nonetheless, Pendimethalin application at rates ranging from 0.50 to 4.50 kg a. i/ha, resulted in excellent weed control of broad leaves and grassy weeds, and greatly reduced weed population, intensity and weights, in many ornamental flowering bulbs and herbaceous perennials, including tuberose (Murthy and Gowda, 1993): Gladiolus (Kwon et al., 1996; Misra, 1997; Sunil-Kumar et al., 2001; Arora et al., 2002; and Richardson and Zandstra, 2006); Tulip (Al-Khatib, 1996): (Ivanova, 1999); and numerous herbaceous perennials (Calkins et al., 1996).

Glyphosate (N - (Phosphonomethyl) glycine) is also considered as one among the World's most widely used postemergence herbicides, in agriculture. It is a broad-spectrum, non-selective systemic herbicide

used for controlling annual and perennial plants, including grasses, sedges and broad-leaved weeds (Kidd and James. 1991). Glyphosate. mode ofaction. functions through inhibiting protein biosynthesis, via blocking the activity of a specific enzyme used by plants to make certain important amino acids. Without these amino acids, however, the plant cannot synthesizes proteins required for various life processes, resulting in the death of a plant (Eason et al., 2000; and Cox. 2004). This herbicide has been authorized for uses in ornamental bulbs, in the Netherlands, in the early seventies, according to Rooy and Kosler. 1978. recommended rate of 6 L/600 L water/ha, depending on weed sizes. It was found very effective in controlling wide spectrum of perennial weeds (Miller et al., 1981), particularly grasses, such as through Cvperus spp, the formation of one laver ofsclerenchymatic cells between roots and rhizome primordia and the cortical tissues, which perhaps could play an important role in the inhibition of rhizomes and roots emergence by the herbicides (Canal et al., 1989). Panwar et al., 2005, found that glyphosate at a rate of 2.0 a. i. % efficiently minimized weed intensity and population and greatly reduced weed dry weights, in field grown tuberoses. It also lowered weed count, dry weights and increased weed control efficiency in field

grown gladiolus, according to Chahal *et al.*, 1994; and Manuja *et al.*, 2005.

This investigation was initiated to investigate weed population growth, performances and tuberose cut flower yield as influenced by irrigation frequencies, hand weeding and Pendimethalin, Glyphosate and their combinations, as pre and post emergence weed control herbicides. field in grown tuberoses, under the Western Region Arid Zone conditions of Saudi Arabia

Materials and Methods

The concurrent investigation was conducted and executed at Hada AL-Sham's Agricultural Experimental Station. Ornamental Plants Researches and Indoor Plant Propagation, of King Abdul-Aziz University, geographically located in Hada AL-Sham's valley, North East the City of Jeddah (Makkah AL-Mokaramah vicinity), during the growing seasons of 2001/2002, 2002/2003.

Plant Materials

Tuberose bulbs (*Polianthes tuberosa*, *L*.) cv. "Double", or the pearl, were imported as clumps, from Abaadeia, Warak-Giza, Arab Republic of Egypt. Clumps were individually divided by hand to either bulbs or bulblets with all possible sizes and weights, using Varnier calipers and balances, screened, then grouped and

categorized together into different categories and ultimately counted.

Investigation Insight & Experimental Layout

A main outdoor investigation was initiated and launched, to evaluate the performances of weed population growth and intensity, in field grown tuberoses, under the Western Region Arid Zone conditions. in Horticultural a Agrotechniques Strategies Project (HASP) for ameliorating tuberose, through investigating the impacts of irrigation frequencies, manual weeding. and weed control treatments.

The experimental design and layout was set up as split-split-plot, in complete randomized block design, in four replicates, with a 1.5 x 2 meter experimental plot (experimental unit). The irrigation frequencies or watering intervals treatments (irrigation after two, four, six and eight days) were randomly assigned to the whole plots (48 m²). The sub-plots, however, were, indiscriminately, assigned to the manual weeding treatments (control (no weeding), every 2, 4 and 6 weeks) and the sub-sub-plots randomly were assigned to the weed control herbicidal (control. treatments Pendimethalin, glyphosate, Pendimethalin + glyphosate). Each experimental unit (sub-sub-plot) was planted with 24 tuberose bulbs (4 rows x 6 columns) of 3.5-4.5 cm in diameter, at distances of 25 x 30 cm.

Experimental Site Preparations and Bulb Planting

Soil was deeply ploughed, using tractors, in all directions, harrowed, cleaned from rocks, evenly mannured with compost as a basic dose at the rate of 10 then Ton/ha. irrigated. and subjected to solarization, for several days. These sequential operations were repeated several times, to initially, infertile the poor soil with a base organic matter, and to enhance its structure. The experimental site was planned and designed, according preplanned layout of the intended investigation, include to experimental plots of 1.5 x 2 meter each. All experimental plots were treated with Carpofuran granules against termites (the area colonialized with termite colonies), which dangerously attack any tender or succulent materials. in the area, such as roots, bulbs, tubers...etc.

Tuberose bulbs ranging sizes (3.5 - 4.5 cm) in diameter, and 38-55 g average weights, were subjected to planting on April 28th, 2001/2002, and April 30th in the 2002/2003. growing seasons, respectively. Bulbs were planted anticipated according to the statistical design and layout of the split-split-plot design. experimental plots were fertilized with the 5-10-5 complete fertilizer, at the rate of 200 kg/ha, in two split doses. The first dose was given 45 days after planting, while

the second one was applied after 90 days, in both seasons.

Experimental Site Soil Characterizations

Several laboratory and field tests and studies were conducted at the field experimental site, including soil mechanical, chemical analyses and determination of field capacity.

Soil Mechanical Analysis:

Three representative samples were collected from each soil depths (0-15 and 15-30 cm.) out of

thirty experimental site locations. at the experimental farm, characterize and determine soil texture of the field sites. These three samples per depth were pooled together for each location (thirty location). Samples/depth of these thirty locations were evenly pooled inclusively to yield homogeneous representative sample for each depth. Each depth texture. sample soil at experimental site, was found to be loamy sand, using the hydrometer method (Jackson, 1973).

Table (1): Soil Mechanical Analysis of Tuberose Experimental Site.

Depth	Coarse Sand(%)	Medium Sand (%)	Fine Sand(%)	Silt(%)	Clay (%)	Texture
0-15	56-70	00-14	06-10	1-11	8-40	Loamy Sand
15-30	00-53	10-41	15-45	13-90	7-24	Loamy Sand

Soil Chemical Analysis

Soil chemical analyses for tuberose experimental site were also conducted for cations and anions, nitrogen, phosphorus, potassium and organic matters (Table 2, and 3). Soil chemical analyses were performed following Jackson 1973.

Table (2): Soil Chemical Analyses for Tuberose Experimental Site (meq/l)

Dept		Cations	(meq/	1)		Anion	s (meq /l)		E.C mm/c m	pН
h(cm)	K	Na	Ca	Mg	SO ₄	Cl	HCO ₃	CO ₃	m	
0-15	0.72	6.14	1.82	0.67	2.71	70.56	16.11	0.20	2.77	8.25
15-30	0.72	8.22	2.6	0.93	2.91	77.7	15.41	0.00	3.12	7.80

Table(3): Nitrogen, Phosphorus and Potassium Concentration (mg/kg), and Organic Matter (%), at Tuberose Experimental Site

Depth (cm)	Nitrogen	Phosphorus	Potassium	Organic Matter (%)
0-15	0.32	0.13	2.50	0.479
15-30	0.30	0.11	2.50	0.883

Field Capacity at Tuberose Experimental Site

Field capacity was determined, in tuberose experimental site using a field plot, well irrigated through flood irrigation, covered with weed to eliminate evaporation, and left out for 48 hours. The percentage of moisture content were estimated in two experimental locations using three samples per location, to vield the field capacity in both 15.7 locations as and 16.32. respectively. Therefore, the field capacity in tuberose experimental site was estimated to be 16.00%. However. calculations were performed to estimate the amount of water required, each time for irrigation, to allow soil to reach the field capacity in the whole unit as 3.00 m³ in the experiment.

Experimental Procedures and Treatments Applications

Irrigation Frequencies and Watering Intervals

Four 10-ton capacity tanks were installed and devoted for the execution of this investigation, one tank per two replicates (the experiment included four

replicates). These four tanks were always maintained full of available water all times for the irrigation A - 4.5water treatments. horsepower water pump was also installed to deliver water in main, sub-main, and sub-sub-main pipes tubes. in six-par pressure, to the experimental plots, from these tanks. Irrigation treatments; after two, four, six and eight days were planned as to supply certain amount of water, through control points and gauges meters, calculated to reach the field capacity, for each specified experimental whole unit, assuming that the depth of the root zone distribution of tuberose plant is 30 depth. Each experimental whole plot in the experiment, included 16 experimental units (plots), which occupied an area of 48 m², required 3.00 m³ of irrigation water, supplied by the fiberglass tanks, and equivalent to 3000 liter/whole plot. Nevertheless. irrigation quantities and amount, supplied through the tank suppliers and according to the measuring meter readings, for weed population study, which took 180

days until harvesting weeds and recording data, consumed 11.25, 5.63, 3.75 and 2.81 cubic meter of water per whole plot, during the entire 180 days, respectively, in correspondence with irrigation after 2, 4, 6 and 8 days on sequence. However, irrigational treatments and watering intervals scheduling was started after two months from the initial bulb planting. Tuberose bulbs were. however, watered, during this period, through furrow irrigation from bulb planting until complete sprouting and plant establishment took place.

Weed Control Treatments

Manual hand weeding and hoeing

Several farm workers performed manual hand weeding and hoeing operations, according preplanned schedule and timetable, for the assigned subplots treatments; control or check (sub-plots left unweeded), subplots weeded every four weeks, sub-plots weeded every eight weeks, and sub-plots weeded every twelve weeks.

Pendimethalin

Pendimethalin, (N- (1-ethylpropyl)-3,4-dimethyl-2, 6-dinitro-benzeneamine (C₁₃ H₁₉ N₃ O₄)), is manufactured by BASF Corporation, Agricultural Products Group, P. O. Box 13528, 26 Davis drive, Research Triangle Park, NC 27709, USA. It was bought from an agricultural establishment in

Jeddah, Saudi Arabia with the trade name Pendulum® WDG (water dispersible granules), 60 % active ingredients. It was used at the rate of 2.0 kg a. i. /ha, as a dry flowable formulation (0.128 kg Pendimethalin/ 10 Liter water to cover area of 384 m² as specified labeled sub-sub-plots treatments), five days after bulb planting. Pendimethalin granules were properly mixed with about 5 00 liter of water and this diluted mixture was slowly added into a Ten-liter high-pressure hand sprayer tank. However, the remainder of the tank was carefully filled with water, with continuous agitation. Nonetheless, during Pendimethalin application, occasionally agitation was performed to ensure excellent thorough mixing. Moreover. agitation was also performed to resuspend the mixture before spraying is resumed, when the spray mixture was allowed to settle, during indicating the labeled specified sub-sub-plots, according to the experimental design and layout.

Glyphosate

Glyphosate, N-(Phosphonomethyl) glycine, C₃ H₈ NO₅ P, or Round up Ultra Max (60 % WSC) was used in this investigation. It is manufactured by Monsanto, Co., (800 N Lindbergh Blvd. St. Louis, Mo 63167, USA). It is used at the rate of 1.0 % a. i. /ha, in this experiment, and applied 60 days

from bulb planting, as post emergence treatment, to the assigned sub-sub plots. However, dry ammonium sulphate at the rate of 2.0 % (by weight) was added to the spray solution to improve water quality of Hada Al-Sham.

Pendimethalin + Glyphosate

According to experimental design and the layout, sub-sub-plots assigned for the combined treatments of Pendimethalin and glyphosate were treated with both herbicides as preemergence Pendimethalin, 2 kg a. i. /ha, (5 days from planting) and round up as postemergence, 1.0 a.i % /ha, (two months from planting).

Measurements and Data Collection

Weed Growth Population Parameters Measurements and Weed Control Efficiency

Data measurements were recorded for weeds in the different experimental sub-sub-plots in both seasons, 180 days after planting. Scale of Abundance: numerical abundance or frequency scale of the different infested weeds was performed according to (ZMSPS); The Zurich-Montpellier School of Phyto-Sosiology (Braun-Blanquet, 1964). This scale depends on actual field observation and visual rating of weed frequency of abundance and prevalence, in field grown tuberoses, particularly those of untreated sub-sub-plots; 20 % existence of a specific weed species was given the symbol *

(very low), ** (low) represent 40 %, *** (medium) represent 60 %. **** (high) represent 80 %, and ***** (very high) represent 100 % and/or abundance existence. Weed intensity (density) or weed count, with careful hand or manual pulling, was performed per subsub-plots (3.0)m⁻¹) for experimental units. Weeds of each experimental sub-sub-plots were freshly weighed in kg. Weed dry weights were also performed. Water use efficiencies were also calculated based on either number of weeds produced or unit dry weight per sub-sub-plot per cubic meter of water. Efficiency of weed control was determined according to the formula WCE (%)= 100 -(A/B * 100), where A= dry weight of weeds in a treated sub-sub-polt, and B= dry weight of weeds in the untreated controls, according to Balah et al., 2006. At the end of the flowering season, cut flower vield produced was surveyed and subjected to statistical analyses.

Statistical analyses

Statistical analyses were performed using the General linear Model (*GLM*) procedure, along with the regular analysis of variance, SAS computer package, and MSTAT computer Program (SAS, 1978; Steel and Torrey, 1980; and Freed *et al.*, 1985). Orthogonal polynomial regression analyses, for the equally spaced categories factor, using polynomial coefficients (Gomez and Gomez, 1984), were performed to describe

response curves (linear, quadratic and cubic) of weeds different traits, using the Sigma Plot Scientific Graphing System (SPSGS).

Results and Discussions

Weed Prevalence & Associated Weeds

Tuberose experimental field was infested mostly with broadleaves and some grassy weeds (Table 4). Numerical scale of abundance and frequency based upon actual field observation and visual rating revealed that, the predominant and prevalent weed species Cynodon dactylon and Cyperus rotendus. Nevertheless, Convolvulus arvensis. Malva sylvestris. Portulaca oleracea. Amaranthus viridis. Solanum nigrum, and Amaranthus sylvestris exhibited relatively medium pervasiveness. Low weed prevalence and association of Anagalis arvensis, Chenopodium murale, Chenopodium glaucum, Echinochola crusgalli, **Eclipla** Setaria verticillata. prostrata. Cirisium arvense. Lolium multiflorum, Farsetia aegyptia, Brassica tournefortii, and Flavera trinervia were also observed. However, some broadleaf weeds and some grassy ones such as Lolium rigidum, Phalaris minor, Avena fatua, Raphanus Spp, Melilotus indicus. Digera muricata, Sonchus oleracous, and Heliotropium supinum registered

the lowest prevalence and ubiquitousness.

Impacts of Irrigation Frequencies

Weed Population Density, Fresh and Dry Weights

Table (5) demonstrates emerged weed population density, and fresh drv weight's in performances. field grown tuberoses, influenced as irrigation frequency treatments. The different irrigation frequencies exhibited highly significant impacts on weed population density, fresh and dry weights, according to F-test of significance. Frequent irrigations every two days increased weed density, fresh and dry weights considerably, in comparison with irrigation every eight days, in both seasons, according to the least significant differences mean comparison and separation. However, it is worth notable that increasing watering intervals or reducing irrigation frequency resulted in noticeably immense reduction in population intensity as well as its fresh and dry biomass. Orthogonal polynomial regression analyses with one single degree of freedom (Table 5 & Fig. 1) also yielded either significant or highly significant linear and/or quadratic responses. It clearly described quadratic these trends and performances with high R^2 values. intensive Obviously, irrigation every two days may increase soil moisture content and

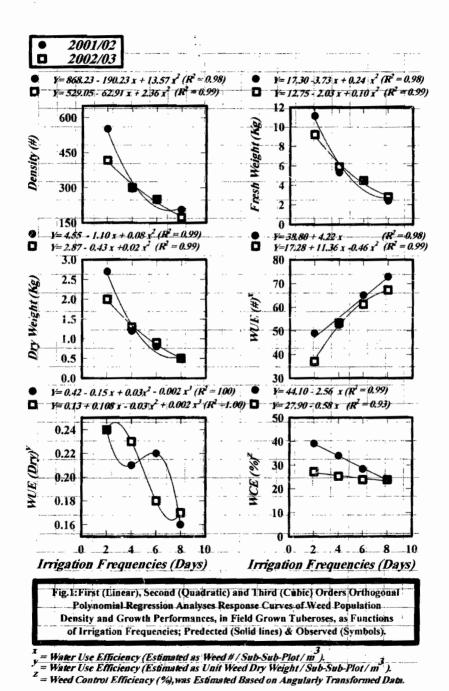
Table 4: Commonly Identified prevalent Weeds, infesting Field Grown Tuberoses, at Hada Al-Sham's Agriculture Experimental Station, Mecca Al-Mokaramah Area, in the Western Region of Saudi Arabia.

Numbe	Common Name	Scientific Name ^v	Family	Prevalence
1	Scarlet Primpernel	Anagalis arvensis**	Primulaceae	Low
2	Field Bindweed	Convolvulus arvensis ***	Convolvulaceae	Medium
3	Goose Foot	Chenopodium murale**	Chenopodiaceae	Low
4	Cheese Weed	Malva sylvestris***	Malvaceae	Medium
5	Rye Grasse	Lolium rigidum*	Poeceae	Very Low
6	Canary Grass	Plualaris minor*	Poeceae	Very Low
7	Spring Wild Oat	Avena fatua*	Poeceae	Very Low
8	Common Purslane	Portulaca oleracea***	Portulacacea	Medium
9	Slender Amaranth	Amaranthus viridis***	Amaranthacea	Medium
10	Bermuda Grass	Cynodon dactylon****	Poeceae	High
11	Barnyard Grass	Echinochola crusgalli**	Poeceae	Low
12	Goose feet, Oak leaf	Chenopodium glaucum**	Chenopodiaceae	Low
13	False daisy	Eclipla prostrata**	Compositae	Low
14	Hooked bristle grass	Seturia verticillata**	Poaceae	Low
15	Buil thistle	Cirisium arvense**	Compositae	Low
16	Purple Nutsedge	Cyperus rotendus****	Poeceae	High
17	Italian rye grass	Lolium multiflorum**	Poeceae	Low
18	Farsetia	Farsetia aegyptia**	Brassicaceae	Low
19	Wild radish	Raphanus spp*	Brassicaceae	Very Low
20	Asian mustard	Brassica tournefortii**	Brassicaceae	Low
21	Indian melilot	Melilotus indicus*	Leguminosae	Very Low
22	Black nightshade	Solanum nigrum***	Solanaceae	Medium
23	Pig weed	Amaranthus sylvestris***	Amaranthaceae	Medium
24	Digera	Digera muricata*	Amaranthaceae	Very Low
25	Molita, Sow thistle	Sonchus oleracous*	Compositae	Very Low
26	Creeping heliotrope	Heliotropium supinum*	Chenopodiaceae	Very Low
27	Sprenage	Fluvera trinervia**	Compositae	Low

Y Braun, Blanquet Scale of Abundance or Prevalence; * = Very Low (20 %), ** =Low (40 %),

^{*** =} Medium (60 %), **** = High (80 %), and **** = Very High (100 %) Prevalence.

Table 5: Impacts of Irrigation Frequencies, Haniz Weedings and Herbicides on Weed Population Density and Growth Performances, in Field Grown Tuberoses (*Pollanthes tuberosa*, *L cv "Double"*.), During the 2001/02 and 2002/03 Growing Seasons, at Hada AL-Sham's Agricultural Experiment Station (Macca AL-Mokarama Area, KSA).


Growth Parameters (Avg.) / Sub-Sub-Plot (3.0 m ²)	Weed De	ensity (#)	Fresh We	ight (Kg)	Dry Wei	ght (Kg)	WUE	(#) ^Y	WUE (Dr	y wt) ^Y	Weed Control Efficiency (%)	
Treatments	2001/02	2002/03	2001/02	2002/03	2001/02	2002/03	2001/02	2:002/03	2001/02	2002/03	2001/02	2002/03
·Irrigation Frequencies (Days)												
Two	551.7 a	417.5 a	11.1 a	9.2 a	2.7 a	2.0 a	49.0 c	37.1 6	0.24 a	0.24 n	39.1 a	27.2 s
Four	295.4 ь	300.8 ь	5.3 6	5.9 b	1.2 b	1.3 b	52.5 bc	53.4 c	0.21 ab	0.23 a	33.9 b	25.2 sb
Six	244.J b	252.i c	4.4 b	4.5 c	0.8 bc	0.9 c	65.1 ab	61.J b	0.22 m	0.18 Ь	28.J e	23.E b
Eight	205.1 b	172.2 d	2.4 c	2.8 d	0.5 c	0.5 d	72.9 a	67.3 a	0.16 b	0.17 Ь	23.9 d	23.8 b
F-Test		••	••	**	44	••	• • •	••	•	•••	••	•
LSD 0.05	100.6	23.24	1.57	0.55	0.49	0.11	12.75	3.99	0.0.5	0.02	1.21	2.16
0.01	144.5	33.39	2.26	0.79	0.71	0.16	16.37	5.73	0.08	0.03	1.73	3.11
Polynomial Regression	<u> </u>	1							1	1		l
Linear	••	••	**	••	••	••	***	••	. AS	RS	••	••
Ouagratic	••		••	••	••	••	2 25	••		••	RS	
Cubic	AS		ns .	•	P.5	P.5	81	••	••	••	ns.	N1
Manual Weeding (Weeks)				1						1		1
Control				66.	2.0 .	1.4 b	83.3	65.7 a	0,29 a	0.24	0.04	204
Four	480.6 a	336.4 a	8.5 a	4.5 c	9.7 d	0.9 c	40.7 d	41.1 d	0.13 d	0.24 a 0.15 d	48.5	39.4
Eight	201.7 d	224.9 c	3.6 €	5.1 b	1.0 c	1.16	50.7 c	51.5 c	0.15 0	0.19	41,0 b	29.5 6
Twelve	258.5 c	263.4 ь	4.3 c	6.2 a	1.5 b	1.3	65.1 b	60.8 b	0.10 c	0.17 C	29.0 c	23.9 c
f-Tes	355.7 b	317.7 a	6.6 b	••	**	74.4	4.		****		27.01	
LSD 0.05	34,49	20.46	0.62	0.41	0.14	1.09	5.35	3.58	0.02	0.01	1.82	1.27
0.01	46.25	27,44	0.02	0.54	0.18	0.12	7.18	4.79	0.03	0.02	2.44	1.71
Polynomial Regression	40.83	•"…	0.03									
Linear	**	:	**	••	**	J, •	••	••	4.0	••	••	**
Ouadratic				••	••	1	**		••		••	••
Cubic	RS			••	ns	1	RS	l	0.5	•••	05	
	HS .		RE					1		i .	•	
Herbicides	498.9 a	547.5 a	9.1.0	10.8 a	71.4	2.3	93.5 a	103.7 a	0.33 a	0.39 a	9.0 d	0.0 d
Control	385.9 b	314.6 b	6.8 b	6.1 b	1.6 b	1.36	69,6 b	58.9 6	0.24 b	0.22 b	56.0 c	60.68 c
Pendimethalin	244.7 €	172.0 c	4.2 c	3.4 c	0.9 c	0.7 c	46.0 c	32.9 c	0.16 c	0.12 €	72.6 b	\$2.58 b
Glyphosate	166.8 d	198.5 4	2.9 d	2.1 d	0.6 d	0.4 d	30.6 ₫	23.5 d	0.10 d	0.08 d	86.9 z	93.68 a
Pendimethalin + Glyphosate	.00.00	.00.50	2.7 4		1				•			
F-Test	••	••	44	••	••		••	••	• • •		••	**
LSD 0.05	38,25	16.06	0.43	0.3/,	0.14	6.07	5.03	2.67	0.02	0.01	1.14	1.50
0.01	50.52	21.22	0.57	0./15	0.19	0.10	6.65	3.53	0.02	0.01	2.56	1.98
Orthogonal Contrast	1						l	1				
Control vs Others	••	•••	••	••			••	**		::	••	••
Pendi. vs Pendi. + Glyphosate	••	••	••	••			••	••.		1 ::	••	
Gly. vs Pendi, + Glyphosate		••	••		••	ļ ··	••	•••	• • •	ł	••	

Significant, Highly significant and not significant w the 0.05 and 0.01 levels of Significance, According to the Least Significant Difference Test.

Weed Control Efficiencies (%), were Estimated as Angularly Transformed Data, According to Steel and Torrie, 1980.

Means with the Same Letters are not Significantly Different at the 0.05 Level of Significance, According to Fisher's Protected L.S.D Test of Significance.

Water Use Efficiencies, Based on Either Weed Number or Dry Weight, were Estimated as (Number of Weeds or Unit Dry Weight/Sub-Sub-Plat/m').

provide more nutrient availability in the root zone, in comparison frequent with relatively less These results are in irrigations. agreements with results obtained by Armellina and Zimdahl 1989; and Mirabelli et al., 2005, who reported that, increasing irrigation levels and/or irrigation frequencies encouraged only weed not population intensities and drv matter accumulations, but also extended the period of emergence, promoted the regularity developmental stages, and considerably hastened seed-weed dispersal in large number of weed species.

Water Use Efficiencies

efficiencies. Water use estimated either weed as population count or as unit dry weight per sub-sub-plot per cubic meter of water supplied are shown on table (5). Water use efficiency, based on weed count and number was considerably higher under relatively water high stress conditions, imposed by frequent irrigations every eight days, in comparison to irrigation every two days, in both seasons. In contrast, water use efficiency, estimated as unit dry weight per sub-sub-plot per cubic meter, of supplied water, was to a great extent lower under stress conditions, than that of high soil moisture contents imposed by high frequent irrigations, every two days. Orthogonal polynomial regression analyses (Table 5 and Fig. 1), broken into one degree of

freedom with curve best fitting also described these behaviors resulting in quadratic and cubic responses, with highly estimated R² values. Obviously, under nonconditions. frequent stress irrigation every two days, where high soil moisture content and abundance of available irrigation water, there was high consumption of water usage, and each cubic meter of supplied water was able to produce only 49.0 and 37.1 weeds. in both seasons respectively. Whereas, under water stress condition, irrigation every eight days, each cubic meter of water consumed was capable of producing of 72.9 and 67.3 weeds, in the two seasons, respectively. Low water use efficiency, based on weed count and number. emerged under high frequent irrigations of two days, produced by each cubic meter of water consumed was, at the same time, high in water use efficiency, based on unit dry weight, in comparison with water use efficiencies under stressful conditions and irrigation every eight days. This behavior, perhaps, may be attributed to the optimum efficiency of each single exploited cubic meter of water under stressful consumed. conditions, in producing more weeds, through urgent flowering signal(s) and dispersing seeds, under stress conditions, regardless of dry matter contents. On the other hand, each cubic meter of water consumed, under non-stress conditions. where

abundance of irrigation water, was facilitating and providing more nutrients and photosynthates and assimilates for weeds to build up and accumulate dry matters, rather than getting involved in producing more weeds. However, these results are similar to results obtained by Jana *et al.*, 1989; Saini and Chakor, 1994; and Domuta *et al.*, 2006.

Weed Control Efficiency

Weed control efficiency, under the different irrigation frequency treatments (Table 5), exhibited highly significant and significant responses, in both seasons, respectively. Data clearly shown that, weed control efficiency was high higher under frequent irrigations, every two days, than those of the other irrigation frequency treatments. It seems obvious that there was perceptible trend or tendency of plodding reduction in the efficiencies coincide with increasing watering intervals or reducing frequencies, in both This performance was seasons. well expressed by the highly significant linear response of the orthogonal polynomial regression analysis, broken down into one single degree of freedom and curve fitting (Fig. 1). This response might be due to efficient weed control mechanisms, under high soil moisture content; easy and effective manual hand weeding & as well as effective pulling. functioning and efficiencies of the

different herbicides, under such circumstances.

Impacts of Manual Hand Weeding

Weed Population Density, Fresh and Dry Weights

The performances of weed population density, fresh and dry weights, as influenced by manual hand weeding treatments; every 4, 8, and 12 weeks and an unweeded control, are depicted on Table (5). Clearly, data obtained revealed strong impacts of manual hand weeding on weed population and growth performances, in both It is obvious that, seasons. frequent manual hand weeding every 4 weeks, immensely reduced weed population intensity as well as its fresh and dry weights, in the unweeded comparison to control. or even other hand weeding treatments. Frequent hand weeding every 8 weeks also exhibited noticeable reduction in weed count, fresh and dry weights, when compared either to the unweeded control other weeding treatments. However, hand weeding every 12 weeks was effective, although also differences significant were noticed between this treatment and the unweeded controls, in some Orthogonal polynomial cases. regression analyses, broken down into one single degree of freedom, with best curve fitting (Fig. 2) well quadratic described these performances, with high R' values. Many researchers and investigators

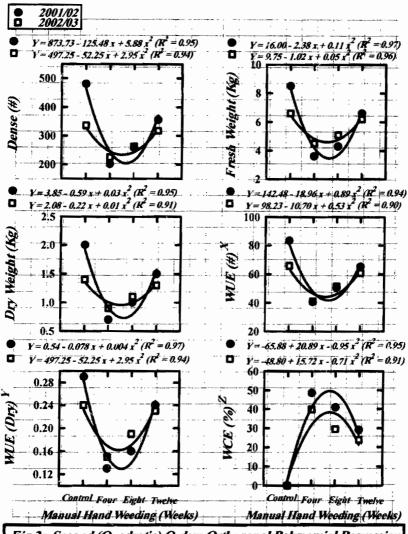


Fig.2: Second (Quadratic) Orders Orthogonal Polynomial Regression Analyses Response Curves of Weed Population Density and Growth Performances, in Field Grown Tuberoses, as Functions of Manual Hand Weeding; Predected (Solid Lines) & Observed (Symbols).

X = Water Use Efficiency (Estimated as Weed #/Sub-Sub-Plot / nt).

y = Water Use Efficiency (Estimated as Unit Weed Dry Weight/Sub-Sub-Plot/m²).

z = Weed Control Efficiency (%), was Estimated Based on Angularly Transformed Data.

working with bulbous ornamentals also reported that frequent hand weeding immensely reduced weed total population, intensity and weed dry weights, in field grown tuberoses (Mohanty et al, 2002; and Panwar et al, 2005); gladioli (Chahal et al. 1994; Widaryanto et al, 1997; and Cheong et al, 2000); German Iris (Pennucci, 2000); Crocus (Bullitta et al., 1996); Elephant Foot Yam (Bhaumik et al, 1988; and Santosa et al, 2006); as well as non flowering bulbs. such as Potatoes (Singh et al. 2002; and Mirabelli et al., 2005).

Water Use Efficiencies

Water efficiencies. use estimated as number of weeds emerged or unit dry weight produced by sub-sub-plots per cubic meter of water consumed, for weeds emerged in field grown tuberoses. revealed highly significant impacts, as influenced by manual hand weeding, in the two growing seasons (Table 5). Fach cubic meter of water consumed for irrigating unweeded sub-sub-plots was able efficiently to produce the highest number of weeds and the highest weed biomass. Manual hand weeding, particularly, frequent weeding every 4 weeks, however, immensely restricted and minimized this ability, reducing weed numbers and unit dry weights to the lowest values. Frequent weeding every 8 and/or 12 weeks manual hand weeding were also efficient in reducing

weed count and dry weight produced by sub-sub-plots per cubic meter of water. Orthogonal polynomial regression analyses. broken down into one single degree of freedom, with best curve fitting, demonstrated in Table (5), and illustrated in Figure (2), clearly behaviors. reflected these supporting the anticipated results. Interference of manual weeding, limiting and restricting growth of weeds, result evidently in considerable weed competition field-grown reduction. in tuberoses. This eventually would reflected on increases on tuberose productivities. Berger et al., 2007, reported that, water transpired by contending weeds could exacerbate crop drought stress, particularly in dry periods, through increasing soil moisture deficits, resulting in a decrease in crop water use efficiency. However, weed-crop competition for water is dynamic as water uptake depends on the relative growth stage of the crop versus the weed and plant stress status depends on the amount of solarradiation intercepted and degree of depletion of soil water reserves.

Weed Control Efficiency

Weed control efficiencies (%), calculated as angularly transformed data, for the two growing seasons, were represented in Table (5). Manual hand weeding approach, for controlling weeds, in field-grown tuberoses,

displayed noteworthy effects on emerging weeds. Hand weeding every 4, 8, and even 12 weeks efficiently controlled weeds, in comparison to the unweeded However, the highest control. weed control efficiency was due to frequent hand weeding every 4 weeks, followed by 8 and 12 weeding, weeks in sequence. Illustration of these performances shown **Figure** on orthogonal demonstrating polynomial regression analyses statistical results. expressing evidently *auadratic* responses. sustaining results. these Vidyadhar et al., 1998, reported that, hoeing twice + hand weeding twice at 30 and 45 DAS, recorded higher WCE (86.30 %) and lower NPK uptake by weeds compared to hoeing once + hand weeding once at 30 DAS (69.02 %). Manorama, (2004) also found that, manual hand weeding twice (30 and 45 DAP) was very effective in increasing weed control efficiency (79.10%).

Impacts of Herbicidal Treatments

Weed Population Density, Fresh and Dry Weights

population intensity, Weed weed fresh and dry weights parameters, as influenced by the herbicide pre emergence Pendimethalin, the post emergence glyphosate herbicide and combination of both herbicides, as well as untreated control. are presented on Table (5). The

different herbicide treatments revealed highly significant strong weed effects on parameters, according to the analyses variance and F test of significance. Unstructured selective orthogonal contrasts, with single degree of freedom also exhibited noticeable highly significant and strong effects, for these parameters. Plots treated by Pendimethalin plus glyphosate immensely reduced weed density count as well as fresh and dry weights, in both seasons, in comparison to the untreated control or even to Pendimethalin alone or glyphosate treated plots. However, plots treated by the preemergence herbicide or the post revealed emergence one also highly significant reduction, in comparison with the untreated the two control. growing Weed population density seasons. and growth performances, influenced the different by treatments herbicide are described also Figure (3). in Nevertheless. the immense reduction in weed population induced parameters Pendimethalin as a preemergence herbicide plus the postemergence glyphosate, may be attributed to the strong synergistic effects of both herbicides, as indicated by the non-structured orthogonal contrasts. Evidently, weed the killer glyphosate, as an effective postemergence herbicide, caught escaped whatever from Pendimethalin as preemergence herbicide. Pendimethalin was

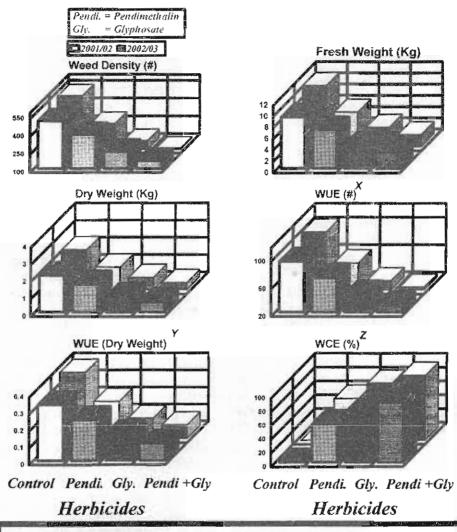


Fig. 3: Weed Population Density and Growth Performances as Influenced by the Different Herbicides, in Field Grown Tuberoses (Polianthes tuberosa, L. cv "Double"), at Hada AL-Sham's Agricultural Experiment Station (Macca AL-Mokarama Area), During the 2001/02 and 2002/03 Growing Seasons.

⁼Water Use Efficiency (Estimated as Weed # / Sub-Sub-Plat /nl).

⁻⁻ Water Use Efficiency (Estimated os Unit Dry Weight / Sub-Sub-Plot /m).

⁼Weed Control Efficiency (%), was Estimated Based on Angularly Transformed Data.

documented, through the literature, function through inhibiting mitosis. Pendimethalin herbicidal effects and mode of action are related to the inhibition of cell division and cell elongation via preventing tubulin polymerizing into microtubules. inhibiting resulting in mitosis (Hatzinikolaou et al. 2004). However, Glyphosate, mode of action, functions through inhibiting protein biosynthesis, via blocking the activity of a specific enzyme used by plants to make certain important amino acids. Without these amino acids, however, the plant cannot synthesizes proteins required for various life processes, resulting in the death of a plant (Eason et al., 2000; and Cox, Pendimethalin application at rates ranging from 0.50 to 4.50 kg a. i/ha, resulted in excellent weed control of broad leaves and grassy weeds, and greatly reduced weed population, intensity and dry weights, many ornamental in flowering bulbs and herbaceous perennials, including tuberose (Murthy and Gowda. 1993): Gladiolus (Kwon et al., 1996; Misra, 1997; Sunil-Kumar et al., 2001: Arora et al., 2002; and Richardson and Zandstra, 2006): Tulip (Al-Khatib, 1996): (Ivanova, 1999); and numerous herbaceous perennials (Calkins et Panwar et al., 2005, al., 1996). also found that glyphosate at a rate of 2.0 a. i. % efficiently minimized weed intensity and population and greatly reduced weed dry weights,

in field grown tuberoses. It also lowered weed count, dry weights and increased weed control efficiency in field grown gladiolus. according to Chahal et al., 1994; and Manuja et al., 2005. histological study conducted by Canal et al., 1989, on Cyperus esculentus, leaves and basal bulbs or rhizomes, they found that, the remarkable effect glyphosate was the appearance of one layer of sclerenchymatic cells between root and rhizome primordia and the cortical tissues. which, perhaps, could play an important role in the inhibition of rhizome and root emergence by the herbicide. Moreover, Seifert and Hott (1985) found that, 1.1 lb glyphosate + 2.0 lb Pendimethalin / acre, gave more than 90 % weed control, 45 days after treatment.

Water Use Efficiencies

Water use efficiencies. calculated for both weed population count and unit dry weight per sub-sub-plot per cubic meter of water, in both seasons, are Table shown on (5) demonstrated in Figure (3). Water efficiencies were greatly bv the presence reduced glyphosate Pendimethalin and together, minimizing weed count produced as well as its associated dry weights, in both seasons, in comparison the untreated to Great reductions were also found due to Pendimethalin or glyphosate alone, when compared with the untreated control. Strong synergistic impacts on water use efficiencies were due to the of combined effects the preemergence and postemergence herbicides, together. Minimum weed count produced as well weed dry weights due to the different herbicidal treatments. would evidently reduce or shorten water use by the controlled weeds, and eventually spare and increase water use efficiency, in the anticipated sub-sub-plots (crop), in field grown tuberoses. These results are in great agreements with results obtained by Tanji and Karrou (1992); and Anureet and Singh (2005).

Weed Control Efficiency

of weed control Data efficiencies. as percentages, Table and presented 5. in Illustrated in Figure 3, revealed strong impacts, for plus glyphosate Pendimethalin together, resulting in the highest weed control efficiencies, in botili seasons, in comparison to the untreated control or either the herbicide alone. Both herbicides also exhibited considerable weed control efficiencies, in comparison to the untreated control, or even to each other. It is worth notable that glyphosate was more efficient than Pendimethalin, in field grown tuberoses, in controlling weeds. These results are similar to results obtained by Panwar ct al., 2005, on tuberose; and Chahal et al., 1994; and Manuia et al., 2005, on Gladioli.

Tuberose Cut Flower Yield

Tuberose cut flower yield was immensely affected by the three major factors; irrigation frequencies, manual hand weeding and herbicides, in the two growing seasons (Fig. 4).

Impact of Irrigation Frequencies

Frequent irrigations considerably improved tuberose cut flower yield, in both seasons. Irrigation every 2 days, under the western region arid zone, produced the highest cut flower yield per sub-sub-plot, in comparison to irrigation frequency other treatments. Statistical analysis also revealed highly significant differences among other irrigation frequency treatments, in seasons. Irrigation every 2 days 152.69. 192.36 recorded 301.57 % increases, in cut flower yield production per sub-sub-plot, over irrigation every 4, 6 and 8 days, respectively, in the first growing season. However, in the second growing season, percent increases were 130.03. 177.45 and 284.42 %, respectively. The role of water in enhancing plant growth and productivity is well documented over the seasons. Several irrigation frequency and watering regime studies revealed very beneficial effects of irrigation and watering to numerous bulbous ornamentals (Papaneck, 1992, on El-Naggar and Nassar, 1994, on Narcissus; Dandria et al., 1996, on Gladioli; and Halepyati et al., 2002, on Tuberose).

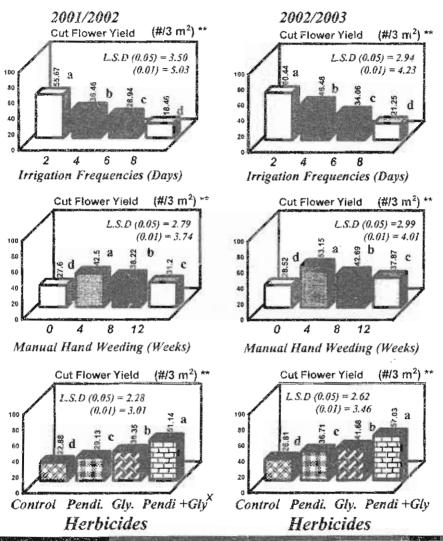


Fig. 4: Tuberose Cut Flower Yield as Influenced by Irrigation Frequencies, Manual Hand Weeding Treatments and Different Herbicides, in Field Grown Tuberoses (Polianthes tuberosa, L. cv "Double"), at Hada AL-Sham's Agricultural Experiment Station (Macca AL-Mokarama Area), During the 2001/02 and 2002/03 Growing Seasons.

^{*, **} and as Denote Significant (0.05), Highly Significant (0.01) and Non Significant, Respectively, According to Fisher's Protected L.S.D Test of Significance.

[&]quot; Means with the Same Letters are not Significantly Different at the 0.05 Level of Significance.

^{*}Abbreviations Denote the Following: Pendi = Pendimethalin, Gly = Glyphosate, and Pendi + gly = Pendimethalin + Glyphosate.

Impact of Manual Hand Weeding

Manual hand weeding greatly influenced tuberose cut flower vield. resulting in highly significant differences. in both seasons (Fig. 4). Frequent hand weeding every 4 weeks produced the highest yield of cut flowers, in comparison with either unweeded control or those weeded every 8 or 12 weeks. However. there significant were also differences detected between 8 and 12 week weeding treatments, in both seasons. Manual hand weeding every 4, 8 and 12 weeks registered 153.99. 138.48 113.04 % increases in tuberose cut flower yields, respectively, in the first growing season. However, in the second growing season, there were 186.36, 149.68 and 132.78 % respectively increases. comparison with the unweeded These performances controls. may perhaps be attributed to the strong influences of manual hand weeding in removing and eliminating weeds, reducing weed competitions for nutrients and available water soil moisture content, space and solar energy, which subsequently might have been reflected on tuberose cut flower yield enhancement. Many researchers also reported that, frequent hand weeding immensely reduced weed total population, intensity and weed dry weights, and greatly improved the major crop production, in field grown tuberoses (Mohanty et al, 2002;

and Panwar et al, 2005); Gladioli (Chahal et al, 1994; Widaryanto et al, 1997; and Cheong et al, 2000); German Iris (Pennucci, 2000); and Crocus (Bullitta et al., 1996); Santosa et al, 2006).

Impact of Herbicides

The different herbicidal profoundly affected treatments tuberose cut flower yield in the two growing seasons. Figure 4 illustrate the performance tuberose yield of cut flowers as influenced pendimethalin, by glyphosate and pendimethalin plus glyphosate versus the untreated control, in both seasons. Tuberose cut flower yield was remarkably increased due to the existence of pendimethalin, as preemergence, and glyphosate, as postemergence herbicides, in one single treatment, in comparison with the untreated control or either herbicide applied Nevertheless. separately. pendimethalin application alone or glyphosate were also effective in ameliorating tuberose cut flower vield, when compared to the untreated control, in both seasons. The application of pendimethalin, glyphosate and pendimethalin + recorded glyphosate 158.87 and 223.51 % increments in tuberose yield, respectively, in season. whereas the first recorded 136.93. 155.46 and 212.72 % increases, respectively, in the second growing season. noticeable performances might be accredited to strong and powerful effects of the

preemergence and postemergence herbicides and their favorable synergistic effects when thev existed together, in reducing weed population intensity, fresh and dry weights. weed water use efficiencies and the increased weed control efficiency minimizing. subsequently, weed competitions. This perhaps might be responsible for tuberose cut flower yield improvements. Numerous researches reported that. pendimethalin application at rates ranging from 0.50 to 4.50 kg a. i/ha, resulted in excellent weed control of broad leaves and grassy weeds, and greatly reduced weed population. intensity and weights. in many ornamental flowering bulbs and herbaceous perennials. including tuberose (Murthy and Gowda, 1993): Gladiolus (Kwon et al., 1996; Misra, 1997; Sunil-Kumar et al., 2001; Arora et al., 2002; and Richardson and Zandstra, 2006); Tulip (Al-Khatib, 1996); (Ivanova, 1999); and numerous herbaceous perennials (Calkins et al., 1996). Panwar et al., 2005, also found that glyphosate at a rate of 2.0 a. i. % efficiently minimized weed intensity and population and greatly reduced weed dry weights. field grown tuberoses. Harvana-India. It also lowered weed count, dry weights and increased weed control efficiency in field grown gladiolus, according to Chahal et al., 1994; and Manuja et al., 2005. Moreover, Seifert and Hott (1985) found that, 1.1 lb

glyphosate + 2.0 lb Pendimethalin / acre, gave more than 90 % weed control, 45 days after treatment.

Pearson Correlation Analyses

Pearson correlation analyses (Table 6) demonstrate the different correlation coefficients of the different weed parameters, traits and tuberose cut flower yield, in the two growing seasons. It describes the nature and behavior of tuberose vield in relation to weed population density growth performances. Tuberose cut flower yield was negatively correlated with weed population density only in the second growing However, the season. first growing season was not significant. This indicate negative reciprocal relationship between tuberose yield and the number of weed emerged (as the number of weed emerged decreases tuberose yield increases accordingly). Strong highly significant negative correlations were also detected between tuberose cut flower vield and water use efficiencies (estimated as number or unit dry weight / m² / m³ of water), in both seasons. This implies that as weed water use efficiencies decreased. cut flower yield of tuberose would increases subsequently. Moreover, highly significant positive relationships were also detected between flower yield and weed control efficiency in both seasons, indicating that, tuberose cut flower vield would increases

Table 6: Pearson Correlation Coefficients of Weed Population Density, Growth Performances Characteristics and Tuberose Cut Flower Yield as Influenced by Irrigation Frequencies, Manual Hand Weeding and Herbicides, in Field Grown Tuberoses (Polianthes tuberosa, L cv "Double".), During the 2001/02 and 2002/03 Growing Seasons, at Hada AL-Sham's Agricultural Experiment Station (Macca AL-Mokaramah Area, KSA).

Parameters	Weed Density (#)	Fresh Weight (Kg/3 m²)	Dry Weight (Kg/3 m²)	WUE (#/3 m²/m³)	WUE (Dry) (Unit Dry wt 3 m²/m ³)	WCE (%)	Cut Flower Yield (#)
Weed Density (#)		0.930 ** @ 0.989 **	0.940 ** 0.977 **	0.619 ** 0.672 **	0.856 ** 0.844 **	- 0.511 ** - 0.750 **	0.014 ns - 0.151 *
Fresh Weight (Kg/3 m²)			0.980 ** 0.995 **	0.455 ** 0.566 **	0.836 ** 0.769 **	- 0.476 ** - 0.690 **	0.108 ns - 0.070 ns
Dry Weight (Kg/3 m²)				0.420 ** 0.507 **	0.817 ** 0.737 **	- 0.425 ** - 0.653 **	0.152 * - 0.024 ns
WUE (#) (#/3 m²/m³)					0.796 ** 0.932 **	- 0.702 ** - 0.810 **	- 0.543 ** - 0.541 **
WUE (Dry) (Unit Dry wt/3 m²/m²)						- 0.674 ** - 0.830 **	- 0.252 ** - 0.392 **
WCE (%)							0.458 ** 0.390 **
Cut Flower Yield (#)							

us, *, ** Indicate Non Significant, Significant and Highly Significant at the 0.05 and 0.01 Levels of Significance.

[@] The Upper Coefficients Denote 2001/2002, and the Lower Ones indicate 2002/2003 Growing Seasons, Respectively.

simultaneously as the efficiency of weed control increases.

Conclusion & Recommendations

Conclusion and recommendations emerging after this investigation can be summarized in the following points:

- 1-Weed competition is a interaction biological between weeds and tuberose plants for limited resources, mainly light & solar energy, water, nutrients and resulting in reducing space. tuberose vield and quality, and eliminated should be and controlled by all means.
- 2- Frequent watering and irrigation is indispensable for tuberose plants, and weed control management must be performed, for higher yield and quality for tuberose plants.
- 3- Although manual hand weeding is very effective in controlling weeds, but it is laborious, costly, expensive and somehow inconvenient under the Saudi Arabian, Western Region harsh environmental conditions.
- 4- The use of herbicides was proven very effective, in controlling weeds, in field-grown tuberose, accordingly, weed control under such circumstances require compromising decision.
- 5- Combination of preemergence (Pendimethalin) and postemergence (glyphosate) herbicides, was found very

effective, in controlling weeds, which is consequently very beneficial to tuberose plants.

6- Further investigation should be performed on the economy and cost/benefit ratio of irrigation frequency, hand weeding and the use of herbicides, in controlling weeds, in field grown tuberoses and feasibility of tuberose production, under such circumstances.

Acknowledgements

This investigation is a part of a research project, for ameliorating tuberose, as a new floricultural crop, in the Western Region of Saudi Arabia. The authors' wishes to extend sincere thanks, appreciations, and gratitude to King Abdul-Aziz University Research Committee Counseling, for supporting this research project and funding these investigations.

References

Abdul Ghaffoor, 2004. Integrated weed management in different varieties of onion (*Allium cepa*, *L*.). Pak. Jour. Weed Sci. Res. Vol. 10 (1/2): 55-62.

AL-Dubaikhi, B. A. 1999.

Numerical for evaluation of the ground water reservoir in the agricultural experimental station in Hada Al-Sham. M. Sc. Thesis, Fac. Meteo. Environ. & Arid Land Agric. Kaau, Jeddah-K.S.A.

Al-Khatib, K. 1996. Tulip (*Tulipa* spp) and Iris Response to

- Preemergence Herbicides. Weed Tech. Vol. 10 (4): 710-715.
- Al-Turki, T. A.; and Abdul Ghafoor. 1996. The Genus Chenopodium L. in Saudi Arabia. Feddes Repetorium. Vol. 107 (3/4): 189-208.
- Anureet, K.; and V. P. Singh. 2005. Moisture extraction pattern, consumptive use of water and water use efficiency of hybrid pearl millet as influenced by planting methods, mulching and weed control under rainfed conditions. Res. on Crops. Vol. 6 (2): 199-201.
- Armellina, D. A. A.; and R. L. Zimdahl. 1989. Effect of watering frequency, drought and glyphosate on growth of field bindweed (*Convolvulus arvensis*). Weed Sci. Vol. 37 (3): 314-318.
- Armitage, A M.; and J. M. Laushman. 1990. Planting date and in-ground time affect cut flowers of *Liatris*, *Polianthes* and *Iris*. HortScience. Vol. 25 (10): 1239-1241.
- Arora, J. S.; Singh, K.; and H. C. Kundra. 2002. Effect of preemergence Herbicides in *Gladiolus* Planting. Flori. Res. Trend India. Proc. Nal. Symp. Indian Flori. In the New Millinn. Lal-Bagh. Bangalore, 25-27, Feb.: 122-125 (C.F. CAB Abst. An: 3170058).

- Balah, M. A: Zidan, Z. H.;
 Dahroug, A. S.; and A. G.
 Abdel-Rahman. 2006.
 Response of *Cyperus rotendus* weeds to glyphosate herbicide with some adjutants under greenhouse conditions. Jour. Agric. Sci. Mansoura Univ. Vol. 31 (3): 1653-1667.
- Berger, A.; McDonald, A.; and S. Riha. 2007. The Role of weed competition in crop water use efficiency. ASA-CSSA-SSSA, International Annual Meetings, Nov. 4-8. New Orleans, Louisiana-USA.
- Bhaumik, S. K.; Sen, H.; and S. P. Bhattadrarya. 1988. Effect of herbicides and planting methods on the yield of elephant foot yam (*Amorphophallus campanulatus*, Blume). Jour. Root Crops. Vol. 14 (1): 23-26.
- Braun-blanquet, J. Pflanzensoziologie. Wien, 1964. (C. F. Zareh, M. M., and K. A. Fargali. 1991. Vegetation of inland desert wadies in Egypt. Feddes repertorium. Vol. 102 (7/8): 647 656.
- Bullitta, P.; Milia, M.; Pinna, M. E.; Satta, M.; and G. M. Scarpa. 1996. Initial results of the effects of different agronomic treatments on *Crocus sativus*, L. in Sardinia. Rivista Italiana, EPPOS. Vol. 19: 131-137 (C.F. CAB Abst., An: 311819).
- Calkins, J. B.; Swanson, B. T.; and D. L. Newman. 1996. Weed Control Strategies for field

- grown herbaceous perennials. Jour. Environ. Hort. Vol. 14 (4): 221-227.
- Canal, M. J.; Albuerne, M.; Sanchez, T. R.; and B. Fernandez. 1989. Glyphosate injury on *Cyprus esculentus* leaves and basal bulbs: Histological Study. Weed Res. Oxford. Vol. 30 (2): 117-122.
- Chahal, D. S.; Sehgal, O. P.; and K. K. Singh. 1994. Effect of chemical and agronomic treatments on population and growth of weeds in *Gladiolus* Field. Annals of Biol. Vol. 10 (2): 245-249.
- Cheong, D. C.; Kim, J. M.; and H. B. Park. 2000. Effects of weeding time on growth and flowering of *Gladiolus* 'Spic and Span'. Jour. Korean Soc. Hort. Sci. Vol. 41 (2): 201-206.
- Cox, C. 2004. Herbicide fact sheet; Glyphosate. Jour. Pesticide Reform. Vol. 24 (4):10-15.
- Dandria, R.; Mori, M.; and G. Morelli. 1996. Effects of water regime on yield and water use efficiency in two gladiolus cultivars. Irrigazione e Drenaggio. Vol. 43 (3): 22-27. (C. F. CAB Abst. AN. 970301480).
- Derr, J. F. 2004. The Status of weed science at universities and experiment stations in the northeastern united states.

- Weed Tech. Vol. 18:1150-1156.
- Domuta, C.; Borza, I.; Bandici<G.; Sabau, N. C.; Sandor< M.; Samuel, A. Bucurean, E.; Stanciu, A.; Ardelean, I.; Carbunar, M.; and C. Domuta. 2006. Influence of the crop rotation, soil tillage, water supply and weeds on water use efficiency in maize. crop0 from cris plain. (C. F. CAB Abstr. An: 20073020261).
- Eason, J. R.; Johonson, J. W.; and De-Vre, L. 2000. Reversal of glyphosate inhibition of *Sandersonia aurantiaca* flower senescence with aromatic amino acids. Post harvest Biol. & Tech: 81-84.
- El-Naggar, A. I.; and I. N. Nassar.
 1994. Performance of
 Narcissus tazetta, L, as
 influenced by Soil Water Matric
 Potential (SWMP) under
 different soil textures. Assiut J.
 Agric. Sci. 25 (1): 149-170.
- El-Naggar, A. I.; and S. H. Byari. 1999 a. Improving performance of tuberose plants, as a new floricultural crop, in the western region of saudi arabia. i. vegetative growth, cut yield. flowering flower flower characteristics. and quality as functions of some horticultural agrotechniques. Egypt. Jour. Appl. Sci. Vol. 14 (10): 229-257.
- El-Naggar, A. I.; and S. H. Byari. 1999 b. Improving the

- performance of tuberose plants, as a new floricultural crop, in the western region of saudi arabia ii. bulb yield, clump growth parameters, and bulblet formation as functions of some horticultural agrotechniques. Egypt. Jour. Appl. Sci. Vol. 14 (10): 258--283.
- EL-Naggar, A. I. and S. H. Byari 1999 c. Ameliorating the performance of tuberose plants, as a new floricultural crop, in the western region of saudi arabia: a. influences of dates of planting, npk fertilization rates and application frequencies on vegetative growth, cut flower yield, flowering characteristics and flower qualities. Annals of Agric. Sci. Moshtohor. Vol. 37 (3): 1869-1891.
- EL-Naggar, A. I. and S. H. Byari 1999 d. Ameliorating the performance of tuberose plants, as a new floricultural crop, in the western region of saudi arabia: b. influences of dates of planting, npk fertilization rates and application frequencies on bulb yield, bulb growth and development and bulblet formation. Annals of Agric. Sci. Moshtohor. Vol. 37 (3): 1893-1914
- Freed, R. S.; Eisen Smith, P.; Goptz, S.; Reicosky, D.; Smail, V. W.; and P. Wolberg. 1985. "MSTAT 4.0", A software program for design, management and analysis of agricultural research

- experiments. Pub. By Michigan State University, USA.
- Gomez, K. A.; and A. A. Gomez. 1984. Statistical Procedure for agricultural research. 2nd Ed. John Wiley & Sons, Inc. New York, Chichester, Brisbane, Toronto, Singapore. An Int. Rice Res. Inst. Book.
- Guralnik, D. B. 1978. Webster's New World Dictionary of the American Language, Seond College Edition. William Collins & World Pub. Co. Inc.
- Halepyati, A. S.; K. Sujatha; and M. Prabhakar. 2002. Growth, yield, and water use of summer tuberose as influenced by irrigation regime and plant densities. Jour. Ornamental Hort. (New Series). Vol. 5 (1): 47-50.
- Hatzinikolaou, A. S.; I. G. Eleftherohorinos. and I. B. Vasilakoglou. 2004. Influence of formulation on the activity and persistence of pendimethalin. Weed Tech. Vol. 18: 397-403.
- Hussein, M. T.; and A. S. Bazuhair.

 1992. Ground Water in Hada
 Al-Sham Al-Bayada Area,
 Western Saudi Arabia. Fac. of
 Earth Sciences Rept., King
 Abdul-Aziz University. P.O.
 Box 1744- Jeddah 21441. Saudi
 Arabia.
- Ivanova, I. 1999. Investigation on preemergence herbicides against annual weeds in stands of

- bulbous *Iris*. Rasteniev. Dni-Nauki. Vol. 35 (2): 124-127. (C.F. CAB. Abst. An: 2300726).
- Jackson, M. L. 1973. Soil and Chemical Analysis. Prentice Hall, Inc. New-Delki-India.
- Jana, P. K.; Sounda, G.; Mukherjee, A.K.; Ahasan, A. K. M. M.; Ghatak, S.; and A. Barik. 1989. Effect of irrigation and weed control on growth, yield, consumptive use efficiency of summer groundnut. Indian Agriculturist. Vol. 33 (2): 87-94.
- Kidd, H.; and D. R. James. 1991. The Agrochemicals Handbook, 3 rd Ed., Royal Soc. Chem. Info. Serv., Cambridge, UK.
- Kwon, O. D.; Kim, H. J.; Kim, J. K.; and K. P. Han. 1996. Herbicide evaluation for preemergence weed control under various cropping patterns in *Gladiolus*. RDA Jour. Agric. Sci. Crop Protection. Vol. 38 (1): 495-500.
- Manorama, K. 2004. Weed management in potato in Nilgiris. Potato Jour. Vol. 31 (1/2): 91-93.
- Manuja, S.; Raja, R.; Singh, R. D.; and D. Mukherjee. 2005. Evaluation of different herbicides for protection of Gladiolus (*Gladiolus spp.*) crop from weeds. Crop Protection. Vol. 24: 921-926.

- Mehmood, T. Khokhar, K. M.; and M. Shakeel. 2007. Integrated weed management practices in garlic crop in Pakistan. Crop Protection. Vol. 26: 1031-1035.
- Miller, R. L.; Lockerman, R. H.; and C. R. Hunt. 1981. Glyphosate application. Proc. of the Western Soc. Weed Sci. Vol. 34: 95.
- Mirabelli, C.; Cola, G.; Fiorillo, A.; Cardarelli, M.; Rouphael, Y.; and R. Paolini. 2005. The effect of mechanical weed control technique and irrigation method on yield, tuber quality and weed suppression in organic potato. Acta Hort. 684:127-133.
- Misra, R. L. 1997. Stomp (Pendimethalin)- an effective weedicide in *Gladiolus* plantings. Progressive Hort. Vol. 29 (1/2): 74-76.
- Mohanty, C. R.; Mishra, M.; and A. Mohapatra. 2002. Effect of nitrogen and weeding on tuberose. Flori. Res. Trend. India. Proc. Nal. Symp. Indian Flori. In the New Mellinn. 25-27 Feb.: 340-342. (C. F. CAB Abst., An: 3176764).
- Murthy, G. M. A.; and J. V. N. Gowda. 1993. Evaluation of herbicides for weed control in tuberose (*Polianthes tuberosa*, *L.*) cv., "Double". Crop Research. Vol. 6 (1): 176-178.
- Panwar, R. D.; Sindhu, S. S.; Balyan, R. S.; and J. R. Sharma. 2005. Studies on weed control

- in tuberose cv. 'single' by pre and post-emergence herbicides. Haryana Jour. Hort. Sci. Vol. 34 (1/2): 87-89.
- Papanek, D. 1992. Rational irrigation of tulip bulbs. Zahradnictvi. Vol. 19 (3): 203-210 (C.F. CAB Abst. AN. 930322287).
- Pennucci, A. 2000. Influence of weed growth and herbicides on disease development and rhizome injury to German *Iris*. Proc. Fifty-Fourth Annual Meeting of the Northeastern Weed Sci. Soc. Baltimore, M. D. USA, 3-6 Jan.: 146-149.
- Richardson, R. J.; and B. H. Zandstra. 2006. Evaluation of Flumioxazin and other herbicides for weed control in gladiolus. Weed Tech. Vol. 20 (2): 394-398.
- Rooy, M. D.; and A. T. J. Koster. 1978. Control of perennial weeds in 2-year crops of narcissi. Bloembollenculture. Vol. 89 (8): 175 (C.F. CAB Abst., An: 369262).
- Saini, J. P.; and J. S. Chakor. 1994. Effect of soil moisture regimes and weed control treatments on water use, Water Use Efficiency (WUE) and yield of sugarcane in Himachal Pradesh. Indian Sugar. Vol. 44 (8): 639-642.
- Santosa, E.; Sugiyama, N.; Nakata, M.; Mine, Y.; Lee, O. N.; and D. Sopandie. 2006. Effect of weeding frequency on the

- growth and yield of elephant foot yams in agro forestry systems. Japanese Jour. Trop. Agric. Vol. 50 (1): 7-14.
- SAS. 1978. STAT User's Guide: Statistics, SAS Inst. Inc. SAS-Circle. P. O. Box 8000, Cary, NC 27512-USA.
- Seifert, J. R.; and H. A. Hott. 1985. Herbicide test on white ash, tulip poplar, and red oak. Proc. North Central Weed Control Conference. Vol. 40: 31.
- Singh, K. P. 1995. Improved production technologies for tuberose (*Polianthes tuberosa*, L.) – A review of research done in India. Agric. Rev., Vol. 16 (3): 141-166.
- Steel, R. C.; and J. H. Torrey. 1980.
 Principles and procedures of statistics. Mc-Grow Hill Book
 Co., Inc., New York, London.
- Sunil-Kumar, Gupta, A. K.; and J. N. Singh. 2001. Effect of herbicides on weed control in *Gladiolus grandiflorus*, *L. cv.*, Friendship. Haryana Jour. Hort. Sci. Vol. 30 (1/2): 50-51.
- Tag-El-Din, A. T. F.; Soliman, F. S.; and A. Al-Harbi. 1997. Effects of chemical weed control on root yield and quality of carrots (*Daucus carota*, *L.*). Jour. King Saudi Univ. Agric. Sci. Vol. 9: 163-175.
- Tanji, A.; and M. Karrou. 1592. Water use and water use efficiency of weeds and wheat in Semi-arid Morocco. AL-

- Awaqmia (78): 29-43 (C. F. CAB Abst. An: 19950702303).
- Trueblood, E. W. E. 1973. "Omixochitl" -The Tuberose (*Polianthes tuberosa*, *L*.). Economic Bot. Vol. 27 (2): 157-173.
- Vidyadhar, K.; Meli, S. Salakina-Koppa, S. R.; Pattar, P. S.: and T. S. Rudreshappa. 1998. Tuber yield and nutrient removal by crop and weeds as influenced by weed control methods in kharif potato tuberosum. (Solanum L.). World Weeds. Vol. 5 (1/2): 61-65.
- Widaryanto, E.; L. Soetopo and R. D. Andajani. 1997. Influence of weed control system on the growth and production of gladioli flowers (*Gladiolus hybridus*, L.). Agrivita, Vol. 18 (1): 14-20. (C. F. CAB Abst., An: 2300621).
- WSSA, 1989. erbicide Handbook of the Weed Science Society of America, 6 th Ed. WSSA, Champaign, IL., USA.
- Zimdahl, R. L. 2004. Weed-Crop Competition: A Review, 2nd Ed., Blackwell Pub. Co. 2121 State Ave. Ames, IA., 50014. USA., 220 p.

مقاومة الحشائش في الحقول المنزرعة بالصنف المجوز من نباتات التيوبروز تحت ظروف الأراضي الجافة بالمنطقة الغربية للمملكة العربية السعودية: أ. كثافة الحشائش ، سلوكيات النمو و المحصول الزهري للتيوبروز كدالة لتكرارت الرى ، المقاومة اليدوية و مبيدات الحشائش

- عبد الرازق ابراهيم السيد النجار * و صالح بن حسين بياري **
- * أستاذ نياتات الزينة المساعد كلية الزراعة -جاسعة أسيوط -قسم البسائين (زينة) جمهورية مصر العربية.
- ** أستاذ الخضر وتربية النبات كلية الأرصاد والبيئة وزراعة المناطق الجافة- قسم زراعة المناطق للجافة جامعة الملك عبد العزيز جدة المملكة العربية السعودية

تمثل الحشائش تحديا كبيرا في حقول التيوبروز وخاصة تحت نظام الرى بالغمر في المنطقة الغربية بالمملكة العربية السعودية مما يمثل عائقا كبيرا في تطوير وتحسين انتاجية زهور القطف والأبصال ، مما أدى إلى إجراء دراسة استقصائية لمجابهة هذة المشكلة. أجريت تجربة حقلية بمحطة البحوث الزراعية والتابعة لجامعة الملك عبد العزيز بوادي هدى الشام بمنطقة مكة المكرمة ، خلال عامي ٢٠٠١/ ٢٠٠١ و ٢٠٠٢/ ، ١٠ بهدف دراسة تأثير تكرار الرى (رى كل يومين ، أربعة ، ستة وكل ثماني أيام) ، المقاومة اليدوية للحشائش (الكنترول أو المقارنة ، مقاومة بدوية كل أربعة أسابيع، كل ثماني أسابيع، وكل اثنى عشر أسبوعا ، و مقاومة الحشائش باستخدام المبيدات (الكنترول ربدون استخدام أية مبيدات حشائش) ، بنديميثالين ، جلايفوسات ، و بنديميثالين + جلايفوسات) وذلك على كثافة الحشائش ونموها وسلوكياتها في حقول التيوبروز "الصنف المجوز".

صممت التجربة بنظام الوحدات الشقية -الشقية (المنشقة مرتين) في تصميم القطاعات كاملة العشوائية ذات أربعة مكررات وقد مثلت معاملات تكرار الرى القطع الشقية الكبرى ، معاملات مقاومة الحشائش يدويا فقد مثلت بالقطع التحت شقية. أما معاملات مقاومة الحشائش باستخدام المبيدات فقد مثلت بالقطع الشقية الصغرى (القطع التحت تحت شقية).

كانت أهم نتائج هذه الدراسة كالتالي:

- بينت هذه الدراسة الأستقصائية أن النجيل البلدي والسعد كان أكثر الحشائش انتشارا،
 بينما كانت حشائش العليق ، الخبيزة الشيطاني ، الرجلة ، الزربيح وعنب الديب متوسطة
 في انتشارها. اما عبن القط ، المنتنة ، الرمرام ، الدنيبة ، الإيكليبلا ، الدفرة ،
 الكيريزيم ، الهيبان ، الجرباء ، الكبر البلدي والفلافيرا فقد كانت أقلهم انتشارا.
- كان لكثرة تكرار عدد مرات الرى كل برمين وزيادة المحتوى الرطوبي بالتربة أثرا معنويا قويا في زيادة كثافة الحشائش عدديا وفي زيادة وزنها الغض والجاف وكفاءة المستخدمة بالنسبة لوحدة الوزن الجاف وأيضا زيادة معامل كفاءة مقاومة الخشائش تحت هذه انظروف وذلك بالمقارنة بظروف الجفاف النسبي والرى على فترات طوبلة نسب كل ثمانية أيام.
- ♦ أدت المقاومة اليدوية للحشائش كل أربعة أو ثماني أسابيع إلى أنخفاض معنوي وواضح في أعداد الحشائش النامية وكذلك وزنها الغض والجاف وكذلك كفاءة استخدام

مياه الرى مما أدى إلى زيادة معنوية وملحوظة في زيادة النسبة المئوية لكفاءة مقاومة الحشائش ، وذلك بالمقارنة بمعاملة الكنترول ، في كلا الموسمين.

- أدت كل معاملات مبيدات الحشائش إلى حدوث تأثير قوي وملحوظ في انخفاض أعداد الحشائش النامية بشدة وكذلك صغاتها المرتبطة بالمقارنة بالكنترول. ومن الجدير بالذكر أنه كان لتواجد البنديميثالين كمبيد ماقبل ظهور الحشائش والجليفوسات كمبيد مابعد ظهور الحشائش معا في معاملة واحدة تأثيرا قويا ايجابيا متلازما ومشجعا تبادليا في انخفاض أعداد الحشائش وأوزانها الغضة والجافة وكذلك كفاءة استخدام مياه الرى مما أدى إلى زيادة ملحوظة في النسبة المئوية لكفاءة مقاومة الحشائش وذلك بالمقارنة بمعاملة الكنترول.
- أدت معاملات الرى المتكرر ألى زيادة معنوية وملحوظه للمحصول الزهري للتيوبروز وكان أعلاها عند الرى المتكرر كل يومين .
- أدت المقاومة اليدوية للحشائش كل أربعة أو ثماني أسابيع أو حتى كل ١٢ أسبوع إلى زيادة معنوية في محصول الشماريخ الزهرية بالمقارنة بالكنترول ، وكان أعلى محصول عند استعمال المقاومة اليدوية كل أربعة أسابيع.
- أدت كل معاملات مبيدات الحشائش إلى حدوث تأثير قوي وملحوظ في زيادة عدد الشماريخ الزهرية الناتجة بالمقارنة بالكنترول. ومن الجدير بالذكر أنه كان لتواجد البنديميثالين كمبيد ماقبل ظهور الحشائش والجليفوسات كمبيد مابعد ظهور الحشائش معا في معاملة واحدة تأثيرا قويا ايجابيا مشجعا في الحصول على أعلى محصول زهري للتيوبروز.
- ◄ كان هذاك تلازم معنوي قوي وسالب بين المحصول الزهري للتيوبروز وكفاءة الحشائش لاستعمال مياه الرى ، وأيضا تلازم قوي وموجب مع كفاءة مقاومة الحشائش.