FACTORS AFFECTING WEANING AND POST-WEANING BODY MEASUREMENTS IN BAUSCAT AND BALADI RED RABBITS

¹Attalah, G.E.Y.; ²Farid, A.M.; ¹ and ² M.G. Gharib

¹Dept. of Anim. Prod, Fac. of Agric., Al-Azhar Univ., Nasr City, Egypt. ²Anim. Prod. Res. Institute, Ministry of Agric., Dokki, Cairo, Egypt.

ABSTRACT: A total of 726 weaned Bauscat (B) and 485 Baladi Red (BR) rabbits were used to evaluate their weaning and post-weaning body measurements (Body length, BL; Loin length, LL; Chest circumference, CC; chest width, CW and loin width, LW) from weaning (4 weeks) up to marketing age (14 weeks). This study was carried out at the Experimental Rabbit Farm, Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City Cairo, Egypt, for three consecutive years of production starting September 1998.

Performance of Bauscat was superior to Baladi Red for most traits studied. Year of birth effect on body measurements (cm.) was significant (P ≤ 0.05 , P ≤ 0.01 or P ≤ 0.001) at 4 and 14 weeks for BL; at 4 weeks for CC and at 14 weeks for CW in B rabbits, while at 4 and 14 weeks for BL; at 4, 8 and 14 weeks for CC; at 4, 8 and 12 weeks for CW and at 14 weeks for LW in BR rabbits. Season of birth had generally a significant (P \leq 0.01or P \leq 0.001) effect on body measurements (at 14 weeks for BL; at 8, 12 and 14 weeks for LL; at 8, 12 and 14 weeks for CC; at 4, 8, 12 and 14 weeks for WC and at 4, 8, 12 and 14 weeks for WL in B rabbits and at 4 and 8 weeks for BL, at 12 weeks for LL, at 4, 8 and 12 weeks for CC, at 4, 8, 12 and 14 weeks for WC and 4, 8 and 14 weeks for WL in BR. Body measurements were found to differ non-significantly with parity in most traits at most ages with no clear trend. Sex effects on BM of the two studied breeds were not significant at all ages studied. sire effect was significant (P ≤ 0.05 , P ≤ 0.01) at 4 and 14 weeks for BL, at 4 and 12 weeks for LL, at 4 weeks for CC, at 4, 8 and 14 for CW in B rabbits, at 4, 12 and 14 weeks for BL, at 4 and 12 weeks for LL, at 4, 8 12 and 14 weeks for CC, at 4, 12 and 14 weeks for CW and at 8, 12 and 14 weeks for WL in BR rabbits. Variance components due to sire effect were found to be higher for most traits studied in BR than in B rabbits.

Estimates of heritability in Baladi Red rabbits are higher than

those in Bauscat rabbits. The linear regression coefficients of body weight (BW) as covariant on body measurements studied were significant ($P \le 0.05$, $P \le 0.01$ or $P \le 0.001$) at 4, 12 and 14 weeks for BL; at 8 and 12 weeks for LL; at 4 and 14 weeks for CC; at 4 weeks for WC and at 4, 8, 12 and 14 weeks for WL in B rabbits and at 8 and 14 weeks for BL; at 14 weeks for LL; at 8 and 14 weeks for CC and at 8 and 14 weeks for CW in BR rabbits. The effect of litter size at birth (LSB) was non-significant except at 8 weeks for LL; at 12 weeks for CC and at 14 weeks for WL in B; at 8 weeks for CC and at 8 and 12 weeks for CW in BR t ($P \le 0.05$, $P \le 0.01$ or $P \le 0.001$).

INTRODUCTION

In developing countries, where the human population is still growing, land that was traditionally used for large animal production is giving way to enlarging communities. According to Vietmeyer (1985), "livestock for use in developing countries should, like computers, be getting smaller and become personal", production of animals becomes more intense with increased need of a protein source. This is where the prolific rabbit is finding increasing importance as a protein source (Cheeke. 1986; Khalil et al, 1986).

Live animal body length (from the atlas vertebra to the 7th lumber vertebra, i.e. dorsal length as cited by Ouhayon and Blasco ,1992) whereas, in farm animal meat would be deposited dorsal bonds. Chest circumference measure could play a role in the rabbit overall tidal air during breathing which turn to affect its healthiness; fitness; vigor and strength. Ayyat et al. (1995) reported that live body weight and thigh length index may be used for classification of rabbit for production to different grades both of marketing and breeding. The importance of these traits is easily recognized but no data were available in the literature on development of body measurements in rabbits (Bersenyi et al, 1998). Therefore, these traits may have a role in classic breeding programs (Abdel-Ghany et al, 2001 and Hassan et al, 2001).

The objective of the present study was to quantify effect of some non-genetic (year and season of birth, parity, sex, Litter size at birth) and the genetic factors (sire) on weaning and post-weaning body measurements in Bauscat and Baladi Red rabbits. Also, evaluation the relationship effect of body weight and litter size at birth on body measurements.

MATERIALS AND METHODS

This study was carried out on the Experimental Rabbit flock maintained by the Department of Animal Production. Faculty of Agriculture, Al-Azhar University in Nasr City, Cairo, Egypt during three consecutive years of production starting September1998 till October 2001. Local Egyptian breed of rabbits (Baladi Red, BR) and the exotic breed (Bauscat, B) were used. Does and bucks of the exotic breed used were descendents of the (Bauscat, B) rabbits raised under the Egyptian condition. According to the breeding plan, bucks were assigned at random to breed the does with a restriction to avoid full-sib, half-sib and parent offspring mating. The managerial processing, housing system and ration feeding were described by Farid et al, 2006.

Mixed Model Least Squares and Maximum Likelihood Computer Program PC version 2 (Harvey, 1990) was used for analyzing the data. In this study, effect of some non-genetic (year and season of birth, parity, sex and litter size at birth) and genetic factor (sire) on some body measurements, BM (Body length, BL; Loin length, LL; Chest circumference, CC; chest width, CW and loin width, LW) from weaning age (4 weeks), at 8, 12 and 14 weeks were investigated.

Data and models of analysis:

Data of body measurements (BM) were analyzed for each breed separately using the following mixed model:

 $Y_{klmnpq} = \mu + S_k + Y_1 + Se_m + P_n + Cx_p + b1x1 + b2x2 + e_{klmnpq}$

Where:

= overall mean, common element to observations; μ

= random effect of kth sire; S_k

 fixed effect of the lth year of kindling;
 fixed effect of the mth season of kindling; Y_1

 Se_{m}

= fixed effect of the nth parity; P_n = fixed effect of the pth sex; Cx_n

b1= the partial regressions coefficients of Y_{klmnopq} (dependent variable) on age-respective body weight of progeny (x1).

b2 = the partial regressions coefficients of $Y_{klmnopq}$ (dependent variable) on litter size at birth (x2),

 $e_{klmnopq}$ = random deviation of the qth individuals body measurements traits assumed to be independently randomly distributed, i.e. N.D (0, σ^2 e).

Heritability estimates of body measurements traits (BM) were computed for each breed separately using paternal half-sib relationship, as four times the intra-class correlation coefficient between sire groups (Harvey, 1990).

$$h_s^2 = 4 \sigma^2 s / (\sigma^2 s + \sigma^2 e)$$

The standard errors of heritability estimates were calculated according to Swiger et al. (1964) and Harvey, (1990) as follow:

S.E.
$$(h_s^2) = 4 \{ [2(n.-1)(1-t)^2[1+(k-1)t]^2 \} / \{k^2(n.-s)(s-1)] \}^{0.5}$$

Where:

n. = total number of observations.

t = interaclass correlation.

k = value sire weighing factor.

s = number of sires.

RESULTS AND DISCUSSION

Number of observation, means, standard deviations (SD), and coefficients of variations (CV%) of individual body measurements (body length, BL; loin length, LL; chest circumference, CC; chest width, CW and loin width, LW) from Weaning till 14 weeks of age for Bauscat and Baladi Red rabbits are given in (Table 1). Actual means of B rabbits were higher than those of BR rabbits reported by Abdel-Ghany et al, (2001) and Hassan et al, (2001) with NZW, BB, and BR rabbits.

Estimates of coefficient of variations (CV%) ranged from 3.1- 9.7, from 6.7-18.3, from 6.9-10.6, from 8.6-17.1 and from 9.1-13.6 for BL, LL, CC, CW and LW, respectively, for B rabbit; ranged from 5.6-9.4, 7.0 – 44.5, 4.0- 10.5, 4.6-16.2 and 7.4-16.2 for BL, LL, CC, CW and LW, respectively, for BR rabbit. These estimates be within the ranges, reported by Abdel-Ghany et al, (2001) and Hassan et al, (2001). The results showed a general trend indicating that percentages of variation of a certain breed group of rabbits decreased with advance of age. Results of Abdel-Ghany et al, (2001) and Hassan et al, (2001) indicated that BL and CC at weaning had higher phenotypic variations than at 12 weeks of age. However, the higher CV% for body measurements at weaning than those

at marketing (14 weeks) could probably be due to that these traits would become less sensitive to non-genetic factors especially those associated with maternal effects, which in general, diminishes with advance of progeny age. Also, it might be due to the consequence of the combination of non-genetic maternal environment and genetic factors (Falconer, 1989).

Table 1. Actual means, standard deviations (SD) as well as coefficients variation (CV%) of body measurements in Bauscat and Baladi Red rabbits.

Traits		Bauscat			Baladi Red	
	No	Means ± S.D.	CV %	No	Means ± S.D.	CV %
body length	at					
4 Weeks	726	16.8 ± 1.7	9.7	485	16.8 ± 1.6	9.4
8Weeks	595	23.3 ± 2.0	8.4	400	23.1 ± 2.0	8.7
12 Weeks	508	27.8 ± 1.4	4.8	346	27.0 ± 1.6	5.6
14 Weeks	506	31.3 ± 1.0	3.1	330	30.6 ± 2.0	6.5
Loin length	at					
4 Weeks	726	5.7 ± 0.9	16.3	485	5.5 ± 1.0	17.3
8Weeks	595	8.3± 1.6	18.3	400	8.4 ± 3.7	44.5
12 Weeks	508	9.8 ± 1.4	4.8	346	9.6 ± 1.2	13.0
14 Weeks	506	11.4 ± 0.9	7.9	330	11.3 ± 0.8	7.0
Chest circur	n feren	ce at			•	
4 Weeks	726	14.4 ± 1.6	10.6	485	14.6 ± 1.5	10.2
8Weeks	595	19.3 ± 1.9	9.1	400	19.4 ± 1.7	8.5
12 Weeks	508	22.7 ± 1.6	6.9	346	22.6 ± 1.4	8.1
14 Weeks	506	24.6 ± 1.7	4.9	330	24.4 ± 1.1	4.0
Chest width	at					
4 Weeks	726	5.0 ± 1.1	17.1	485	4.9 ± 1.0	16.2
8Weeks	595	9.2 ± 1.7	15.1	400	9.4 ± 1.5	4.6
12 Weeks	508	11.9 ± 1.3	4.8	346	11.0 ± 1.8	15.3
14 Weeks	506	13.3 ± 1.2	8.5	330	12.7 ± 1.3	9.7
Loin width						
4 Weeks	726	3.7 ± 0.6	13.6	485	3.6 ± 0.5	13.2
8Weeks	595	5.4 ± 0.7	10.9	400	5.1 ± 0.8	16.2
12 Weeks	508	6.2 ± 0.7	10.0	346	6.0 ± 0.5	9.8
14 Weeks	506	7.2 ± 0.7	9.1	330	6.8 ± 0.6	7.4

Non-genetic effects:

Year of birth:

Year of birth effect on body measurements was found to be significant ($P \le 0.05$, $P \le 0.01$ or $P \le 0.001$) at 4 and 14 weeks for BL, at 4

weeks for CC and at 14 weeks for CW in B rabbits, while at 4 and 14 weeks for BL, at 4, 8 and 14 weeks for CC, at 4, 8 and 12 weeks for CW and at 14 weeks for LW in BR rabbits (Tables 2, 3 and 4). Similar results were also, reported by Hassan (1988) with NZW, BB and BR rabbits.

Table 2. F-ratios of least-squares analysis of variance for body measurements (body length and loin length) at different ages studied in Bauscat and Baladi Red rabbits.

Source of variation			body l	length at	t		Loin	length at	
	d.f	4w	8w	12w	14w	4w	8w	12w	14w
Bauscat									
Sire	14	1.82*	0.94	0.94	1.81	2.03**	0.85	1.73*	0.68
Year of birth (YB)	2	6.38**	2.16	0.80	2.33*	2.83	0.85	0.49	0.22
Season of birth	3	1.72	2.34	6.80***	1.80	0.90	12.84	4.41**	7.11
(SE)							***		
Parity (P)	5	1.82	3.18**	1.45	2.33*	0.76	0.86	1.14	1.86
Sex	1	7.19**	0.36	1.57	4.06*	2.65	0.46	0.02	0.25
Regressions									
Body weight	i	13.00***	0.18	11.52***	53.92***	0.33	0.46	9.62**	12.29**
LSB	1	0.12	0.44	0.44	2.23	0.16	0.73**	1.60	0.05
Remainder, d.f		698	467	480	478	698	467	480	478
Remainder mean squares.		2.64	3.85	1.79	0.92	0.85	2.30		0.80
Baladi Red									
Sire	13	1.80*	1.05	1.91*	1.10	1.82*	1.50	1.93*	1.28
Year of birth (YB)	2	3.00°	0.12	2.42	5.34**	0.50	0.44	2.64	1.56
Season of birth	3	3.64*	2.79*	0.04	0.56	2.08	1.20	11.67***	0.60
(SE)	_				- 10 0				0.00
Parity (P)	5	1.65	0.68	0.23	0.67	1.01	0.91	1.24	0.79
Sex	ī	0.07	3.35	1.66	2.48	3.98*	0.66	1.85	0.01
Regressions	-					2	, 5.55		
Body weight	1	1.74	3.58°	5.91	9.66**	0.08	0.99	0.07	8.71*
LSB	i	0.76	1.08	0.20	0.19	0.02	0.43	1.68	1.71
Remainder. d.f	•	458	373	319	300	458	373	319	300
Remainder mean squares.		2.31	4.02	2.33	4.00	0.91	13.89	1.25	0.63

^{*=} significant at P \leq 0.05or **= significant at P \leq 0.01or ***= significant at P \leq 0.001.

Table 3: F-ratios of least-squares analysis of variance for body measurements (chest circumference and Chest width) at different ages studied in Bauscat and Baladi Red rabbits

Source of variation		Cl	iest circu	ımferen	ce		Chest	width	
	d.f	4w	8w	12w	14w	4w	8w	12w	14w
Bauscat								•	
Sire	14	1.80*	1.47	1,25	1.05	3.4***	1.86*	1.61	1.91*
Year of birth	2	7.07**	2.43	1.37	0.17	2.17	1.45	1.12	9.22***
(YB)									
Season of birth	3	2.17	10.43***	7.07***	3.47 [*]	88.19***	49.01***	26.55***	5.34***
(SE)	5	1.70	1.92	0.90	1.76	1.53	1.70	3.10	2.40*
Parity (P)	3 1	9.81**					1.69	2.10	2.68*
Sex	1	9.81	0.26	0.002	2.21	0.61	0.58	2.42	0.90
Regressions			0 - 6		4.60*	***	0.12*		
Body weight		12.77***	0.56	3.51	4.68*	10.41***		3.33	0.74
Litter size at birth	1	0.55	0.64	11.04	0.41	1.30	0.86	3.51	2.76
Remainder. d.f		698	467	480	478	698	467	480	478
Remainder mean squares.		2.45	3.10	2.43	2.70	0.74	1.92	1.31	1.30
Baladi Red									
Sire	13	1.75*	2.24**	2.54**	3.00***	4.84***	1.59	2.98***	1.90*
Year of birth (YB)	2	3.50°	5.60**	0.22	4.12*	4.23**	3.80 [*]	4.27**	1.29
Season of birth (SE)	3	3.35	4.46**	2.60 [*]	1.47	10.45***	15.08***	11.0***	5.93***
Parity (P)	5	0.85	2.15	3.99***	1.00	7.23***	5.95***	0.41	0.19
Sex	i	0.51	1.18	0.30	0.14	0.0004	3.50	0.33	0.001
Regressions	•	0.5.	0	0.50	0	0.000	5.50	0.55	0.001
Body weight	1	2.56	6.95**	0.06	5.13*	1.90	9.19**	0.38	6.08**
Litter size at birth	ì	1.11	4.58*	0.16	2.26	0.69	4.55*	9.25**	0.25
Remainder. d.f		458	373	319	300	458	373	319	300
Remainder mean squares.		2.2	1.85	1.77	0.97	0.63	1.85	2.41	1.5

^{*=} significant at P \leq 0.05or **= significant at P \leq 0.01or ***= significant at P \leq 0.001.

Least squares means listed in (Tables 5, 6, 7, 8 and 9) show that there was an inconsistent trend for the effect of year of birth on body measurements at different ages studied in both breeds. Similarly, (Hassan, 1988; Abdel-Ghany et al, 2001 and Hassan et al, 2001) with different breeds of rabbits.

Table 4: F-ratios of least-squares analysis of variance for body measurements (body length) at different ages studied in Bauscat and Baladi Red rabbits

Source of variation			body le	ngth at	
	d.f	4w	8w	12w	14w
Bauscat					
Sire	14	1.38	1.98	1.30	1.28
Year of birth (YB)	2 3	2.07	2.75	1.27	2.16
Season of birth (SE)		37.94***	61.67***	24.95***	4.02**
Parity (P)	5	2.43*	1.74	0.33	1.45
Sex	1	4.69°	1.72	1.71	0.85
Regressions					
Body weight	1	12.41***	5.97**	3.33	15.48***
Litter size at birth	1	1.26	0.97	0.01	5.68 [*]
Remainder. d.f		698	467	480	478
Remainder mean squares.		0.25	0.35	0.38	0.43
Baladi Red					
Sire	13	1.24	2.48**	4.16***	1.60
Year of birth (YB)	2	0.47	0.11	0.92	5.30**
Season of birth (SE)	3	4.04**	10.58***	0.60	11.43***
Parity (P)	5	1.19	1.75	4.24***	1.36
Sex	1	1.78	0.59	0.39	0.01
Regressions				-	
Body weight	i	0.02	2.95	3.31	1.24
Litter size at birth	ı	1.92	1.54	0.29	1.36
Remainder. d.f		458	373	319	300
Remainder mean squares.		0.41	0.67	0.23	0.25

^{*=} significant at P \leq 0.05or **= significant at P \leq 0.01or ***= significant at P \leq 0.001

Season of birth:

Results presented in (Table 2, 3 and 4), revealed that season of birth had generally a significant ($P \le 0.01$ or $P \le 0.001$) effect on body measurements of rabbits at 14 weeks for BL; at 8, 12 and 14 weeks for CC; at 4, 8, 12 and 14 weeks for CW and at 4, 8, 12 and 14 weeks for LW in B rabbits and at 4 and 8 weeks for BL; at 12 weeks for LL; at 4, 8 and 12 weeks for CC; at 4, 8, 12 and 14 weeks for CW and 4, 8 and 14 weeks for LW in BR rabbits. These results, are in agreement with those of Hassan (1988), Abdel-Ghany et al (2001) and Hassan et al (2001) who concluded that the effect of month of birth on most body measurements were significant at most ages studied.

Table 5: Least-squares means and standard errors (S.E) for factors affecting body measurements(Body length) in Bauscat and Baladi Red rabbits.

Independent variable				Body	leng	th at		
		4 weeks		8 weeks		12 weeks		14 weeks
Bauscat	No	Means ± S.E	No	Means ± S.E	No	Means ± S.E	No	Means ± S.E
Overall mean	726	16.8 ± 0.12	595	23.4 ± 0.09	508	27.7 ± 0.07	500	31.3 ± 0.08
Year of birth								
1st	244	16.1 ± 0.23	170	23.2 ± 0.29	148	27.5 ± 0.21	143	31.3 ± 0.16
2nd	199	17.0 ± 0.17	167	23.7 ± 0.19	150	27.9 ± 0.14	149	31.1 ± 0.12
3rd	283	17.3 ± 0.20	258	23.2 ± 0.23	210	27.9 ± 0.17	208	31.5 ± 0.14
Season of birth						,		**
Autumn	124	17.0 ± 0.21	87	23.2 ± 0.25	71	28.2 ± 0.19	69	31.2 ± 0.16
Winter	205	16.6 ± 0.16	161	23.3 ± 0.17	128	27.6 ± 0.13	124	31.4 ± 0.12
Spring	263	16.8 ± 0.15	225	23.2 ± 0.16	198	28.0 ± 0.12	198	31.4 ± 0.11
Summer	134	16.9 ± 0.20	122	23.9 ± 0.22	111	27.3 ± 0.16	109	31.1± 0.14
Parity								1.0
1st	111	16.9 ± 0.21	79	23.0 ± 0.27	63	27.5 ± 0.20	61	31.4 ± 0.16
2nd	159	16.7 ± 0.18	126	23.0 ± 0.27	104	27.8 ± 0.15	103	31.3 ± 0.13
3rd	153	17.2 ± 0.18	131	23.2 ± 0.20	111	27.6 ± 0.15	11	31.2 ± 0.13
4th	114	16.8 ± 0.20	94	24.0 ± 0.23	81	28.1 ± 0.17	79	31.5 ± 0.14
5 th	129	16.7 ± 0.19	108	23.7 ± 0.21	103	27.9 ± 0.15	100	31.4 ± 0.13
6 th	60	16.5 ± 0.24	57	23.2 ± 0.28	46	27.7 ± 0.21	46	30.9 ± 0.17
Sex				•				<i>4</i>
male	350	17.0 ± 0.13	303	23.3 ± 0.12	259	27.8 ± 0.09	251	31.4 ± 0.09
female	376	16.6 ± 0.13	292	23.4 ± 0.12	249	27.7± 0.09	249	31.2 ± 0.09
Regressions								
Body weight		$.003 \pm 0.001$		$001 \pm .001$		$.001 \pm .0003$		$.002 \pm .0003$
LSB		0.01 ± 0.03		0.05 ± 0.05		$0.08 \pm .0.04$		$0.04 \pm .0.03$
Baladi Red								
Overall mean	485	16.9 ± 0.14	400	23.1 ± 0.13	436	27.1 ± 0.18	327	30.7 ± 0.16
Year of birth								
1st		17.1 ± 0.29						
2nd	158	16.5 ± 0.21	130	23.2 ± 0.26	113	27.2 ± 0.26	113	30.8 ± 0.30
3rd	152	17.0± 0.26	128	23.0 ± 0.35	110	26.5 ± 0.32	99	29.6 ± 0.40
Season of birth								* A
Autumn		17.3 ± 0.24			78	27.0 ± 0.31	77	30.5 ± 0.39
Winter		17.2 ± 0.21						30.4 ± 0.32
Spring		16.4 ± 0.19						30.8 ± 0.24
Summer	87	16.4 ± 0.24	73	23.6 ± 0.31	58	27.2 ± 0.31	53	31.2 ± 0.40
Parity								25.5
lst		16.9 ± 0.22	82	23.6 ± 0.29	71	27.1 ± 0.28	69	30.3 ± 0.33
2nd		16.5 ± 0.19	92	23.0 ± 0.23	82	27.0 ± 0.24	79	30.5 ± 0.28
3rd		16.9 ± 0.19		23.3 ± 0.23	84	27.0 ± 0.24	78	30.4 ± 0.27
4th	92	16.8 ± 0.20	79	24.0 ± 0.23	69	28.1 ± 0.17	63	30.7 ± 0.30
5 th	41	16.7 ± 0.21	31	23.2 ± 0.27	26	26.9 ± 0.26	23	31.5 ± 0.64
6 th	23	16.8 ± 0.36	21	23.0 ± 0.48	15	27.2 ± 0.47	15	31.0 ± 0.56
Sex								
male		16.9 ± 0.16				27.1 ± 0.20		30.9 ± 0.19
female	238	16.8 ± 0.16	197	23.3 ± 0.17	165	27.1 ± 0.21	154	305 ± 0.20
Regressions								
Body weight		$.001 \pm 0.001$		$100. \pm 100.$		$.001 \pm .001$		$.002 \pm .001$
Litter size at birth		0.03 ± 0.04		$\cdot .58 \pm 0.06$		$-0.02 \pm .0.01$		$0.02 \pm .0.10$

Table 6: Least-squares means and standard errors (S.E) for factors affecting body measurements (Loin length) in Bauscat and Baladi Red rabbits.

A weeks	Independent variable				Loin	lengt	h at	·
No Means ± S.E No No No S.E No	VALIADIC		4 weeks		8 weeks		12 weeks	14 weeks
Verall mean 726 5.7 ± 0.07 595 8.3 ± 0.07 508 9.8 ± 0.11 500 11.3 ± 0.05 Year of birth 1st 244 5.5 ± 0.13 170 8.3 ± 0.22 148 9.8 ± 0.23 143 11.3 ±0.14 200 3rd 283 5.7 ± 0.12 258 8.2 ± 0.15 150 9.9 ± 0.17 149 11.4 ±0.09 3rd 283 5.7 ± 0.12 258 8.2 ± 0.18 210 9.7 ± 0.20 208 11.4 ±0.12 208 Season of birth Autumn 124 5.7 ± 0.12 271 9.9 ± 0.13 128 9.7 ± 0.15 198 11.6 ±0.08 207 Spring 263 5.7 ± 0.09 225 8.3 ± 0.12 198 9.7 ± 0.15 198 11.6 ±0.08 208 Summer 134 5.8 ± 0.11 122 9.2 ± 0.17 111 10.3 ± 0.19 109 11.4 ±0.11 21st 111 5.5 ± 0.12 79 8.6 ± 0.21 63 9.8 ± 0.22 61 11.4 ± 0.13 2nd 159 5.7 ± 0.10 126 8.3 ± 0.16 104 9.5 ± 0.18 103 11.5 ±0.10 3rd 153 5.8 ± 0.11 121 9.8 ± 0.16 104 9.5 ± 0.18 103 11.5 ±0.10 3rd 153 5.8 ± 0.11 131 8.3 ± 0.20 111 9.8 ± 0.17 11 11.3 ± 0.10 16h 17h 17h 17h 17h 17h 17h 17h 17h 17h 17	Ranscat	Nο		No		. No		
Year of birth lst								
1st	1	0	247 - 010	.,,	0.0 - 0.0	2.00).o = 0	200 11.0 - 0.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1							
Season of birth Autumn 124 5.7 ± 0.12 258 8.2 ± 0.18 210 9.7 ± 0.20 208 11.4 ± 0.12 208 11.4 ± 0.12 208 20				• • •				
Season of birth Autumn 124 5.7 ± 0.12 87 7.9 ± 0.20 71 9.3 ± 0.21 69 11.2 ± 0.13 Winter 205 5.6 ± 0.09 161 7.9 ± 0.13 128 9.7 ± 0.16 124 11.1 ± 0.09 Spring 263 5.7 ± 0.09 225 8.3 ± 0.12 198 9.7 ± 0.15 198 11.6 ± 0.08 Summer 134 5.8 ± 0.11 122 9.2 ± 0.17 111 10.3 ± 0.19 109 11.4 ± 0.11 Parity 1st 111 5.5 ± 0.12 79 8.6 ± 0.21 63 9.8 ± 0.22 61 11.4 ± 0.13 2nd 159 5.7 ± 0.10 126 8.3 ± 0.16 104 9.5 ± 0.18 103 11.5 ± 0.10 3rd 153 5.8 ± 0.11 131 8.3 ± 0.20 111 9.8 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.19 79 11.5 ± 0.12 5th 60 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 Sex male 376 5.6 ± 0.08 292 8.4 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 female Regressions Body weight LSB Double 175 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.25 115 11.0 ± 0.07 1.2 2nd 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.07 115 11.0 ± 0.17 115 11.0 ±	F							
Autumn	1.	283	5.7 ± 0.12	258	8.2 ± 0.18	210	9.7 ± 0.20	$208 11.4 \pm 0.12$
Winter 205 5.6 ± 0.09 161 7.9 ± 0.13 128 9.7 ± 0.46 124 11.1 ± 0.09 Spring 263 5.7 ± 0.09 225 8.3 ± 0.12 198 9.7 ± 0.15 198 11.6 ± 0.08 Summer 134 5.8 ± 0.11 122 9.2 ± 0.17 111 10.3 ± 0.19 109 11.4 ± 0.11 Parity 1st 111 5.5 ± 0.12 79 8.6 ± 0.21 63 9.8 ± 0.22 61 11.4 ± 0.13 2nd 159 5.7 ± 0.10 126 8.3 ± 0.16 104 9.5 ± 0.18 103 11.5 ± 0.10 3rd 153 5.8 ± 0.11 131 8.3 ± 0.20 111 9.8 ± 0.17 111 10.3 ± 0.19 79 11.5 ± 0.10 3th 154 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.17 17 11.3 ± 0.10 5th 129 5.7 ± 0.11 108 8.1 ± 0.16 103 10.0 ± 0.18 100 11.3 ± 0.10 6th 60 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 Sex male 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 249 11.3 ± 0.06 Regressions Body weight LSB 0.01 ± 0.003 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.07 115 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.14 327 11.3 ± 0.07 115 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.25 115 11.0 ± 0.17 2nd 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.13 3rd 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.13 2nd 155 5.4 ± 0.12 22 8.9 ± 0.47 29 9.9 ± 0.20 88 11.2 ± 0.13 3rd 115 5.4 ± 0.12 29 8.9 ± 0.49 82 9.5 ± 0.18 78 11.3 ± 0.19 115 5.4 ± 0.12 20 41.2 ± 0.15 154 41.3 ± 0.19 115 5.4 ± 0.12 20 41.2 ± 0.15								
Spring Summer 134 5.8 ± 0.11 122 9.2 ± 0.17 111 10.3 ± 0.19 109 11.4 ± 0.11 Parity 1st 111 5.5 ± 0.12 79 8.6 ± 0.21 63 9.8 ± 0.22 61 11.4 ± 0.13 2nd 159 5.7 ± 0.10 126 8.3 ± 0.16 104 9.5 ± 0.18 103 11.5 ± 0.10 3rd 153 5.8 ± 0.11 131 8.3 ± 0.20 111 9.8 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.19 79 11.5 ± 0.12 5th 60 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 Sex male 350 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 28 8.1 ± 0.16 103 10.0 ± 0.18 100 11.3 ± 0.10 11.3 ± 0.06 11.4 ± 0.003 11.5 ± 0.10 11								
Summer Parity Parity 134 5.8 ± 0.11 122 9.2 ± 0.17 111 10.3 ± 0.19 109 11.4 ± 0.11 2nd 159 5.7 ± 0.10 126 8.3 ± 0.16 104 9.5 ± 0.18 103 11.5 ± 0.10 3rd 153 5.8 ± 0.11 131 8.3 ± 0.20 111 9.8 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.17 11 11.3 ± 0.10 4th 114 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.17 11 11.3 ± 0.10 6th 129 5.7 ± 0.11 108 8.1 ± 0.16 103 10.0 ± 0.18 100 11.3 ± 0.10 6th 60 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 Sex male 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 Regressions Body weight LSB 0.01 ± 0.00 0.03 ± 0.003 0.001 ± 0.001 0.01 ± 0.003 0.01 ± 0.002 0.95 ± 0.04 0.10 ± 0.04 0.10 ± 0.02 0.95 ± 0.04 0.10 ± 0.04 0.10 ± 0.02 0.10 ± 0.02 0.95 ± 0.04 175 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.14 327 11.3 ± 0.07 201 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.13 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.24 88 11.2 ± 0.13 3rd 151 5.4 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.24 88 11.2 ± 0.13 151 5.4 ± 0.13 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Summer 87 5.4 ± 0.13 199 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 151 5.4 ± 0.13 169 8.2 ± 0.45 116 9.5 ± 0.16 169 11.2 ± 0.13 179 115 5.4 ± 0.13 171 115 5.4 ± 0.14 179 5.6 ± 0.15 179 11.2 ± 0.13 179 115 5.4 ± 0.13 179 115 5.4 ± 0.14 179 5.5 ± 0.16 179 115 5.4 ± 0.15 179 115 5.4 ± 0.16 179 115 5.5 ± 0.16 179 115 5.5 ± 0.16 170 115 115 11.3 ± 0.09 180 115 115 115 11.3 ± 0.09 180 115 115 115 115 115 115 115 1	L		-					
Parity lst								
1st 111 5.5 \(\) \(\) 2.79 8.6 \(\) \(\) 2.10 104 9.5 \(\) \(\) 1.8 1.59 5.7 \(\) \(\) 1.01 1.26 8.3 \(\) \(\) 1.04 9.5 \(\) \(\) 1.8 1.01 1.5 \(\) \(\) 1.55 5.8 \(\) \(\) 1.11 1.3 \(\) \(\) 1.14 \(\) 1.3 \(\) 1.14 \(\) 1.3 \(\) 1.15 1.15 1.10 1.3 \(\) 1.15 1.15 1.10 1.3 \(\) 1.15 1.15 1.15 1.10 1.3 \(\) 1.15 1.15 1.15 1.10 1.3 \(\) 1.15 1.1	II'	134	5.8 ± 0.11	122	9.2 ± 0.17	111	10.3 ± 0.19	109 11.4± 0.11
2nd	1. *							
3rd 4th 5.7 \pm 0.11 131 8.3 \pm 0.20 111 9.8 \pm 0.17 11 11.3 \pm 0.10 114 5.7 \pm 0.12 94 8.4 \pm 0.18 81 9.9 \pm 0.17 79 11.5 \pm 0.12 5th 129 5.7 \pm 0.11 108 8.1 \pm 0.16 103 10.0 \pm 0.18 100 11.3 \pm 0.10 6th 60 5.8 \pm 0.14 57 8.2 \pm 0.22 46 9.6 \pm 0.23 46 11.0 \pm 0.14 Sex male 75.6 \pm 0.08 292 8.4 \pm 0.09 9.8 \pm 0.13 251 11.3 \pm 0.06 Regressions Body weight LSB 0.00.3 \pm 0.003 \pm 0.001 \pm 0.001 0.01 \pm 0.003 0.01 \pm 0.002 0.95 \pm 0.04 0.10 \pm 0.02 0.10 \pm 0.02 0.10 \pm 0.02 0.10 \pm 0.07 0.10 \pm 0.10 \pm 0.17 158 5.4 \pm 0.13 130 8.1 \pm 0.54 113 9.3 \pm 0.19 113 11.3 \pm 0.13 152 5.5 \pm 0.16 128 8.1 \pm 0.68 110 9.9 \pm 0.24 99 11.5 \pm 0.16 Season of birth Autumn 19 5.6 \pm 0.15 90 7.7 \pm 0.64 78 10.3 \pm 0.23 77 11.4 \pm 0.16 Spring 151 5.4 \pm 0.15 73 9.2 \pm 0.61 58 8.5 \pm 0.23 51 11.3 \pm 0.17 Parity 1st 102 5.7 \pm 0.14 82 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.10 115 5.4 \pm 0.12 128 8.2 \pm 0.45 116 9.5 \pm 0.16 109 11.2 \pm 0.17 Parity 155 5.4 \pm 0.12 128 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.10 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.7 11 9.4 \pm 0.20 69 11.2 \pm 0.10 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.96 11.3 \pm 0.17 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.97 11.3 \pm 0.10 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.97 11.3 \pm 0.10 11.3 \pm 0.10 11.3 \pm 0.10 11.3 \pm 0.17 11.3 \pm 0.18 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.97 11.3 \pm 0.10 11.3 \pm 0.10 11.3 \pm 0.10 11.3 \pm 0.11 115 5.4 \pm 0.12 128 8.9 \pm 0.95 0.97 11.3 \pm 0.10 11.3	1							
4th 5.7 ± 0.12 94 8.4 ± 0.18 81 9.9 ± 0.19 79 11.5 ± 0.12 5th 129 5.7 ± 0.11 108 8.1 ± 0.16 103 10.0 ± 0.18 100 11.3 ± 0.10 60 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 500 5.8 ± 0.14 57 8.2 ± 0.22 46 9.6 ± 0.23 46 11.0 ± 0.14 500 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 10.00 11.	L							$103 \ 11.5 \pm 0.10$
Sex male 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 female 376 5.6 ± 0.08 292 8.4 ± 0.09 9.8 ± 0.13 249 11.3 ± 0.06 Regressions Body weight000.3 $\pm .0003$ $0001 \pm .0001$ 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0002$ D.95 ± 0.004 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 D.95 D.95 D.95 D.95 D.95 D.95 D.95	3rd							
Sex male 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 female 376 5.6 ± 0.08 292 8.4 ± 0.09 9.8 ± 0.13 249 11.3 ± 0.06 Regressions Body weight000.3 $\pm .0003$ $0001 \pm .0001$ 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0002$ D.95 ± 0.004 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 D.95 D.95 D.95 D.95 D.95 D.95 D.95	4th							
Sex male 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 female 376 5.6 ± 0.08 292 8.4 ± 0.09 9.8 ± 0.13 249 11.3 ± 0.06 Regressions Body weight000.3 $\pm .0003$ $0001 \pm .0001$ 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.04 10 ± 0.003 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0003$ 001 $\pm .0002$ D.95 ± 0.003 001 $\pm .0002$ D.95 ± 0.004 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 ± 0.002 D.95 ± 0.002 10 ± 0.002 D.95 D.95 D.95 D.95 D.95 D.95 D.95 D.95	5."							- 1
male female 350 5.8 ± 0.08 303 8.3 ± 0.09 9.8 ± 0.13 251 11.3 ± 0.06 female 376 5.6 ± 0.08 292 8.4 ± 0.09 9.8 ± 0.13 249 11.3 ± 0.06 Regressions Body weight LSB $0.00.3 \pm .0003$ $0.001 \pm .0001$ $0.01 \pm .0003$ $0.01 \pm .0002$ Baladi Red Overall mean Year of birth lst 175 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.25 115 11.0 ± 0.07 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.13 3rd 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.09 6emale 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 6emale 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09		60	5.8 ± 0.14	57	8.2 ± 0.22	46	9.6 ± 0.23	46 11.0 ± 0.14
female Regressions Regressions Body weight	1							
Regressions Body weight		,						
Body weight LSB		376	5.6 ± 0.08	292	8.4 ± 0.09		9.8 ± 0.13	249 11.3± 0.06
LSB 0.01 ± 0.02 0.95 ± 0.04 0.10 ± 0.04 0.10 ± 0.02 Baladi Red Overall mean Year of birth 1st 175 5.7 \pm 0.18 142 9.0 \pm 0.74 123 9.5 \pm 0.25 115 11.0 \pm 0.17 2nd 158 5.4 \pm 0.13 130 8.1 \pm 0.54 113 9.3 \pm 0.19 113 11.3 \pm 0.13 3rd 152 5.5 \pm 0.16 128 8.1 \pm 0.68 110 9.9 \pm 0.24 99 11.5 \pm 0.16 Season of birth Autumn 119 5.6 \pm 0.15 90 7.7 \pm 0.64 78 10.3 \pm 0.23 77 11.4 \pm 0.16 Winter 128 5.8 \pm 0.13 109 8.4 \pm 0.52 94 9.9 \pm 0.20 88 11.2 \pm 0.13 Spring 151 5.4 \pm 0.12 128 8.2 \pm 0.45 116 9.5 \pm 0.16 109 11.2 \pm 0.10 Summer 87 5.4 \pm 0.15 73 9.2 \pm 0.61 58 8.5 \pm 0.23 53 11.3 \pm 0.17 Parity 1st 102 5.7 \pm 0.14 82 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.14 2nd 115 5.4 \pm 0.12 92 8.9 \pm 0.49 82 9.5 \pm 0.78 79 11.2 \pm 0.12 3rd 112 5.5 \pm 0.12 96 7.9 \pm 0.49 84 9.7 \pm 0.18 78 11.4 \pm 0.11 4th 92 5.4 \pm 0.13 79 7.9 \pm 0.54 69 9.6 \pm 0.19 63 11.2 \pm 0.12 5th 41 5.6 \pm 0.21 31 8.3 \pm 0.95 26 10.1 \pm 0.33 23 11.3 \pm 0.23 Sex male 247 5.4 \pm 0.10 203 8.2 \pm 0.38 181 9.6 \pm 0.15 173 11.3 \pm 0.09 Regressions	1 0	,						S
Baladi Red Overall mean Year of birth 1st 175 5.7 \pm 0.18 142 9.0 \pm 0.74 123 9.5 \pm 0.25 115 11.0 \pm 0.17 2nd 158 5.4 \pm 0.13 130 8.1 \pm 0.54 113 9.3 \pm 0.19 113 11.3 \pm 0.13 3rd 152 5.5 \pm 0.16 128 8.1 \pm 0.68 110 9.9 \pm 0.24 99 11.5 \pm 0.16 Season of birth Autumn 119 5.6 \pm 0.15 90 7.7 \pm 0.64 78 10.3 \pm 0.23 77 11.4 \pm 0.16 Winter 128 5.8 \pm 0.13 109 8.4 \pm 0.52 94 9.9 \pm 0.20 88 11.2 \pm 0.13 Spring 151 5.4 \pm 0.12 128 8.2 \pm 0.45 116 9.5 \pm 0.16 109 11.2 \pm 0.10 Summer 87 5.4 \pm 0.15 73 9.2 \pm 0.61 58 8.5 \pm 0.23 53 11.3 \pm 0.17 Parity 1st 102 5.7 \pm 0.14 82 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.12 3rd 112 5.5 \pm 0.12 96 7.9 \pm 0.49 82 9.5 \pm 0.78 79 11.2 \pm 0.12 3rd 112 5.5 \pm 0.12 96 7.9 \pm 0.49 84 9.7 \pm 0.18 78 11.4 \pm 0.11 4th 92 5.4 \pm 0.13 79 7.9 \pm 0.54 69 9.6 \pm 0.19 63 11.2 \pm 0.12 5th 41 5.6 \pm 0.21 31 8.3 \pm 0.95 26 10.1 \pm 0.33 23 11.3 \pm 0.26 6th 23 5.6 \pm 0.20 20 8.2 \pm 0.38 181 9.6 \pm 0.15 173 11.3 \pm 0.09 female 247 5.4 \pm 0.10 197 8.5 \pm 0.38 165 9.5 \pm 0.15 154 11.3 \pm 0.09 Regressions	, , ,			3.		1		$.001 \pm .0002$
Overall mean Year of birth 175 5.5 ± 0.10 400 8.4 ± 0.33 436 9.5 ± 0.14 327 11.3 ± 0.07 Year of birth 18t 175 5.7 ± 0.18 142 9.0 ± 0.74 123 9.5 ± 0.25 115 11.0 ± 0.17 2nd 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.13 3rd 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 6emale 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions			0.01 ± 0.02		0.95 ± 0.04		0.10 ± 0.04	0.10 ± 0.02
Year of birth lst								
lst 175 5.7 \pm 0.18 142 9.0 \pm 0.74 123 9.5 \pm 0.25 115 11.0 \pm 0.17 2nd 158 5.4 \pm 0.13 130 8.1 \pm 0.54 113 9.3 \pm 0.19 113 11.3 \pm 0.13 3rd 152 5.5 \pm 0.16 128 8.1 \pm 0.68 110 9.9 \pm 0.24 99 11.5 \pm 0.16 Season of birth Autumn 119 5.6 \pm 0.15 90 7.7 \pm 0.64 78 10.3 \pm 0.23 77 11.4 \pm 0.16 Winter 128 5.8 \pm 0.13 109 8.4 \pm 0.52 94 9.9 \pm 0.20 88 11.2 \pm 0.13 Spring 151 5.4 \pm 0.12 128 8.2 \pm 0.45 116 9.5 \pm 0.16 109 11.2 \pm 0.10 Summer 87 5.4 \pm 0.15 73 9.2 \pm 0.61 58 8.5 \pm 0.23 53 11.3 \pm 0.17 Parity 1st 102 5.7 \pm 0.14 82 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.12 3rd 115 5.4 \pm 0.12 92 8.9 \pm 0.49 82 9.5 \pm 0.78 79 11.2 \pm 0.12 3rd 112 5.5 \pm 0.12 96 7.9 \pm 0.49 84 9.7 \pm 0.18 78 11.4 \pm 0.11 4th 92 5.4 \pm 0.13 79 7.9 \pm 0.54 69 9.6 \pm 0.19 63 11.2 \pm 0.12 5th 41 5.6 \pm 0.21 31 8.3 \pm 0.95 26 10.1 \pm 0.33 23 11.3 \pm 0.26 6th 23 5.6 \pm 0.23 21 8.2 \pm 0.92 15 9.2 \pm 0.34 15 11.3 \pm 0.09 female 247 5.4 \pm 0.10 203 8.2 \pm 0.38 181 9.6 \pm 0.15 173 11.3 \pm 0.09 Regressions		485	5.5 ± 0.10	400	8.4 ± 0.33	436	9.5 ± 0.14	327 11.3 ± 0.07
2nd 158 5.4 ± 0.13 130 8.1 ± 0.54 113 9.3 ± 0.19 113 11.3 ± 0.13 3rd 152 5.5 ± 0.16 128 8.1 ± 0.68 110 9.9 ± 0.24 99 11.5 ± 0.16 Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 female 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions								
3rd	1st					123	9.5 ± 0.25	115 11.0± 0.17
Season of birth Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 Regressions	2nd	158	5.4 ± 0.13	130	8.1 ± 0.54	113	9.3 ± 0.19	113 11.3 \pm 0.13
Autumn 119 5.6 ± 0.15 90 7.7 ± 0.64 78 10.3 ± 0.23 77 11.4 ± 0.16 Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 female Regressions	3rd Table 1	152	5.5 ± 0.16	128	8.1 ± 0.68	110	9.9 ± 0.24	99 11.5 ± 0.16
Winter 128 5.8 ± 0.13 109 8.4 ± 0.52 94 9.9 ± 0.20 88 11.2 ± 0.13 Spring 151 5.4 ± 0.12 128 8.2 ± 0.45 116 9.5 ± 0.16 109 11.2 ± 0.10 Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 Regressions	Season of birth							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Autumn	119	5.6 ± 0.15	90	7.7 ± 0.64	78	10.3 ± 0.23	77 11.4 ± 0.16
Summer 87 5.4 ± 0.15 73 9.2 ± 0.61 58 8.5 ± 0.23 53 11.3 ± 0.17 Parity 1st 102 5.7 ± 0.14 82 8.9 ± 0.57 71 9.4 ± 0.20 69 11.2 ± 0.14 2nd 115 5.4 ± 0.12 92 8.9 ± 0.49 82 9.5 ± 0.78 79 11.2 ± 0.12 3rd 112 5.5 ± 0.12 96 7.9 ± 0.49 84 9.7 ± 0.18 78 11.4 ± 0.11 4th 92 5.4 ± 0.13 79 7.9 ± 0.54 69 9.6 ± 0.19 63 11.2 ± 0.12 5th 41 5.6 ± 0.21 31 8.3 ± 0.95 26 10.1 ± 0.33 23 11.3 ± 0.26 6th 23 5.6 ± 0.23 21 8.2 ± 0.92 15 9.2 ± 0.34 15 11.3 ± 0.23 Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 female 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions	Winter	128	5.8 ± 0.13	109	8.4 ± 0.52	94	9.9 ± 0.20	88 11.2 ± 0.13
Parity 1st 102 5.7 \pm 0.14 82 8.9 \pm 0.57 71 9.4 \pm 0.20 69 11.2 \pm 0.14 2nd 115 5.4 \pm 0.12 92 8.9 \pm 0.49 82 9.5 \pm 0.78 79 11.2 \pm 0.12 3rd 112 5.5 \pm 0.12 96 7.9 \pm 0.49 84 9.7 \pm 0.18 78 11.4 \pm 0.11 4th 92 5.4 \pm 0.13 79 7.9 \pm 0.54 69 9.6 \pm 0.19 63 11.2 \pm 0.12 5th 41 5.6 \pm 0.21 31 8.3 \pm 0.95 26 10.1 \pm 0.33 23 11.3 \pm 0.26 6th 23 5.6 \pm 0.23 21 8.2 \pm 0.92 15 9.2 \pm 0.34 15 11.3 \pm 0.23 Sex male 247 5.4 \pm 0.10 203 8.2 \pm 0.38 181 9.6 \pm 0.15 173 11.3 \pm 0.09 female 238 5.6 \pm 0.10 197 8.5 \pm 0.38 165 9.5 \pm 0.15 154 11.3 \pm 0.09 Regressions	Spring	151	5.4 ± 0.12	128	8.2 ± 0.45	116	9.5 ± 0.16	109 11.2± 0.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Summer	87	5.4 ± 0.15	73	9.2 ± 0.61	58	8.5 ± 0.23	53 11.3 ± 0.17
2nd	Parity							
3rd	1st .	102	5.7 ± 0.14	82	8.9 ± 0.57	71	9.4 ± 0.20	69 11.2 ± 0.14
4th 92 5.4 \pm 0.13 79 7.9 \pm 0.54 69 9.6 \pm 0.19 63 11.2 \pm 0.12 5th 41 5.6 \pm 0.21 31 8.3 \pm 0.95 26 10.1 \pm 0.33 23 11.3 \pm 0.26 6th 23 5.6 \pm 0.23 21 8.2 \pm 0.92 15 9.2 \pm 0.34 15 11.3 \pm 0.23 Sex male 247 5.4 \pm 0.10 203 8.2 \pm 0.38 181 9.6 \pm 0.15 173 11.3 \pm 0.09 female 238 5.6 \pm 0.10 197 8.5 \pm 0.38 165 9.5 \pm 0.15 154 11.3 \pm 0.09 Regressions	2nd	115	5.4 ± 0.12	92	8.9 ± 0.49	82	9.5 ± 0.78	79 11.2 ± 0.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3rd ·	112	5.5 ± 0.12	96	7.9 ± 0.49	84	9.7 ± 0.18	78 11.4 ± 0.11
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	4th	92	5.4 ± 0.13	79	7.9 ± 0.54	69	9.6 ± 0.19	63 11.2 ± 0.12
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5 th	41	5.6 ± 0.21	31	8.3 ± 0.95	26	10.1 ± 0.33	23 11.3 ± 0.26
Sex male 247 5.4 ± 0.10 203 8.2 ± 0.38 181 9.6 ± 0.15 173 11.3 ± 0.09 female 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions	6 th	23	5.6 ± 0.23	21	8.2 ± 0.92	15		15 11.3 ± 0.23
female 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions	Sex						Ť	
female 238 5.6 ± 0.10 197 8.5 ± 0.38 165 9.5 ± 0.15 154 11.3 ± 0.09 Regressions	male	247	5.4 ± 0.10	203	8.2 ± 0.38	181	9.6 ± 0.15	173 11.3 ± 0.09
Regressions	female	238	5.6 ± 0.10	197				
_ •	Regressions							
LIMI EUM. EUUU. IUU. TIUV. → 1001 - 1001 E IUM.	Body weight		$0002 \pm .001$		$001 \pm .001$		$0001 \pm .0003$.001 ± .0002
	Litter size at birth		0.003 ± 0.02		0.10 ± 0.10			

Table 7: Least-squares means and standard errors (S.E) for factors affecting body measurements (Chest circumference) in Bauscat and Baladi Red rabbits.

Independent variable		Chest circ	cumference at	
VALIADIC	4 weeks	8 weeks	12 weeks	14 weeks
Bauscat		Means ± S.E	No Means ± S.E No	
Overall mean	$726 14.8 \pm 0.11 595$	19.4 ± 0.12	508 22.7 ± 0.12 500	24.7 ± 0.09
Ī	, 20 1 100			
Year of birth	244 141 0 22 170	19.5 ± 0.27	148 22.7 ± 0.26 143	3 24 7 + 0 26
1st	244 14.1± 0.22 170 199 15.1 ± 0.17 167		$150 \ 22.7 \pm 0.20 \ 14.$	
2nd	$199 15.1 \pm 0.17 167$ $283 15.1 \pm 0.19 258$			
3rd	283 15.1 ± 0.19 256	19.1 = 0.23	210 22.9 ± 0.22 200	3 24.7 ± U.22
Season of birth	$124 \ 15.0 \pm 0.20 \ 87$	19.2 ± 0.24	$71 23.3 \pm 0.24 69$	246+024
Winter	205 14.6 ± 0.15 161		$128 \ 22.4 \pm 0.18 \ 124$	
Spring	263 14.5± 0.15 225			
Summer	$134 \ 14.9 \pm 0.19 \ 122$		$111 \ 22.2 \pm 0.21 \ 10$	
Parity	134 14.7 = 0.17 122	20.5 - 0.22	111 22.2 = 0.21 10	24.4 - 0.20
1st	111 14.7 ± 0.20 79	18.8 ± 0.25	$63 22.2 \pm 0.25 61$	24.9 ± 0.25
2nd	$159 \ 14.9 \pm 0.17 \ 126$		$104 \ 23.0 \pm 0.20 \ 103$	
3rd	153 15.1 ± 0.17 131			24.5 ± 0.18
4th	$114 \ 14.7 \pm 0.19 \ 94$			25.0 ± 0.22
i_th	129 14.8 ± 0.18 108		•• ••	
6 th	$60 14.5 \pm 0.23 57$	19.5 ± 0.26	$46 22.7 \pm 0.26 46$	
Sex	00 14.5 = 0.25 5.	1710 - 0120	10 1217 - 0120 10	
male	350 15.0 ± 0.13 303	19.4 ± 0.14	259 22.7 ± 0.14 25	$1.24.8 \pm 0.12$
female	$376\ 14.6 \pm 0.13\ 292$		$249 \ 22.7 \pm 0.14 \ 249$	
Regressions	5.0 14.0 = 0.10 222	1710 - 011 1		
Body weight	$.003 \pm .001$	$0001 \pm .0001$	$1.001 \pm .0003$	$.001 \pm .0004$
LSB	$0.03 \pm 0.0.03$	0.03 ± 0.04	-0.1 ± 0.04	0.03 ± 0.04
Baladi Red	0.00		***	
Overall mean	$485\ 14.6 \pm 0.13\ 400$	19.3 ± 0.19	$436 22.7 \pm 0.19 32$	724.4 ± 0.16
Year of birth				·
1st	$175 \ 14.8 \pm 0.28 \ 142$	18.4 ± 0.35	$123 \ 22.5 \pm 0.31 \ 113$	5 24.5 ± 0.25
2nd	$158\ 14.2 \pm 0.20\ 130$	19.4 ± 0.27	$113 \ 22.8 \pm 0.25 \ 11.$	324.7 ± 0.21
3rd	$152 \ 14.9 \pm 0.25 \ 128$	20.2 ± 0.32	110 22.7 \pm 0.30 99	24.0± 0.24
Season of birth				
Autumn	$119 \ 15.1 \pm 0.23 \ 90$	20.1 ± 0.31	$78 \ 22.9 \pm 0.29 \ 77$	24.6 ± 0.24
Winter	$128 \ 14.9 \pm 0.20 \ 109$	19.2 ± 0.26	$94 \ 22.8 \pm 0.26 \ 88$	24.7 ± 0.21
Spring	$151\ 14.4 \pm 0.18\ 128$	19.0 ± 0.24	$116 \ 22.3 \pm 0.22 \ 109$	
Summer	$87 14.1 \pm 0.28 73$	19.0 ± 0.30	$58 \ 22.7 \pm 0.29 \ 53$	24.1 ± 0.25
Parity				
1st	$102\ 14.6 \pm 0.21\ 82$	19.8 ± 0.28	$71 \ 22.9 \pm 0.26 \ 69$	
2nd	$115 \ 14.4 \pm 0.18 \ 92$	19.4 ± 0.25	82 22.7 ± 0.24 79	
3rd	$112\ 14.9 \pm 0.19\ 96$	19.2 ± 0.25	$84 \ 22.8 \pm 0.24 \ 78$	
4th	92 14.6 ± 0.20 79	19.6 ± 0.27	$69 22.0 \pm 0.25 63$	
5 th 6 th	41 15.0 ± 0.33 31	19.4 ± 0.44		24.4 ± 0.35
	23 14.5 ± 0.35 21	18.5 ± 0.42	$15 23.5 \pm 0.42 15$	24.8 ± 0.31
Sex			404 404 404 45	
male	$247 14.6 \pm 0.25 203$		$181 \ 22.6 \pm 0.21 \ 17.$	
female	$238\ 14.7 \pm 0.15\ 197$	19.4 ± 0.21	$165 \ 22.7 \pm 0.21 \ 15$	424.4 ± 0.17
Regressions	004 : 004	004 : 005	0001 : 0001	004 / 0005
Body weight	$.001 \pm .001$	$.001 \pm .001$	$.0001 \pm .0004$	$.001 \pm .0003$
Litter size at	0.04 ± 0.04	0.05 ± 0.10	-0.02 ± 0.04	-0.10 ± 0.03
birth				

Table 8: Least-squares means and standard errors (S.E) for factors affecting body measurements (Chest width) in Bauscat and Baladi Red rabbits.

Independent variable	<u> </u>		Chest	width at	
variable	4 weeks		8 weeks	12 weeks	14 weeks
Bauscat	No Means ±	No	Means ± S.E	No Means ±	No Means ± S.E
Overall mean	$\frac{\text{S.E}}{726 \ 5.0 \pm 0.09}$	595	8.9 ± 0.11	S.E 508 11.9 ± 0.09	500 13.2 ± 0.10
Year of birth					
1st	$244 + 4.8 \pm 0.13$	170	8.9 ± 0.22	$148.12.0 \pm 0.19$	$143 \ 13.1 \pm 0.20$
2nd	$199 \ 4.9 \pm 0.11$		9.0 ± 0.16		$149 \ 12.8 \pm 0.15$
3rd	$283 \ 5.1 \pm 0.12$		9.0 ± 0.19		208 13.6± 0.17
Season of birth					
Autumn	$124 \ 3.7 \pm 0.13$	87	7.2 ± 0.20		69 13.2 ± 0.19
Winter	$205 \ 5.0 \pm 0.10$		9.8 ± 0.15		$124 \ 13.5 \pm 0.14$
Spring	$263 \ 5.1 \pm 0.10$		9.4 ± 0.14		198 13.2 ± 0.13
Summer	$134 6.0 \pm 0.12$	122	9.0 ± 0.18	$111\ 12.0 \pm 0.16$	109 12.8 \pm 0.16
Parity	111 50 1012	70	07 (0.31	/2 11 0 1 A 1A	(1 (2 7) 0 (0
lst	$111 \ 5.0 \pm 0.13$ $159 \ 5.1 \pm 0.11$	79	8.6 ± 0.21		$61 13.3 \pm 0.19$
2nd 3rd	$159 \ 5.1 \pm 0.11$ $153 \ 4.9 \pm 0.11$		9.0 ± 0.17 9.2 ± 0.17		103 12.9 \pm 0.15 11 13.2 \pm 0.15
144	114 4.9 ± 0.12	94	8.9 ± 0.19		79 13.3 ± 0.17
Z.tp	$129 5.0 \pm 0.12$		8.8 ± 0.18		$100 \ 13.4 \pm 016$
4th 5 th 6 th	$60 4.8 \pm 0.14$	57	8.8 ± 0.22	46 11.7 ± 0.19	
Sex	00 4.0 - 0.14	57	0.0 - 0.22	40 11.7 = 0.17	70 12.0 2 0.20
male	$350 \ 5.0 \pm 0.09$	303	8.9 ± 0.13	$259\ 11.9 \pm 0.10$	$251 \ 13.2 \pm 0.12$
female	$376 \ 4.9 \pm 0.09$		8.8 ± 0.13		249 13.1 ± 0.12
Regressions				100 Page 100	
Body weight	.000 ± .0004	•	00004± .0001	$.001 \pm .0003$.0003 ± .0003
LSB	0.02 ± 0.02		0.03 ± 0.03	0.10 ± 0.03	
Baladi Red					
Overall mean	$485 \ 4.9 \pm 0.13$	400	9.2 ± 0.12	$436\ 11.1 \pm 0.25$	$327 \ 12.7 \pm 0.15$
Year of birth					
lst	$175 \ 4.7 \pm 9.16$		9.1 ± 0.27		$115 \ 12.3 \pm 0.28$
2nd	$158 \ 5.1 \pm 0.15$		9.6 ± 0.20		113 12.9 \pm 0.22
Brd	$152 \ 4.7 \pm 0.17$	128	8.9 ± 0.25	110 11.7 \pm 0.36	99 12.9 \pm 0.28
Season of birth	110 51 1017	00	04.034	70 13 4 : 0 37	77 13 4 . 0 27
Autumn	$119 5.1 \pm 0.17$ $128 4.5 \pm 0.15$	90	9.4 ± 0.24 8.5 ± 0.19	$78 12.4 \pm 0.36$	
Winter	$128 4.3 \pm 0.15$ $151 4.8 \pm 0.15$		8.9 ± 0.17	$94\ 10.9 \pm 0.31$	88 13.0 ± 0.23 109 12.2 ± 0.19
Spring Summer	87 5.0 ± 0.16	73	10.5 ± 0.23	$58 \ 10.0 \pm 0.35$	
Parity	07 5.0 = 0.10	, 5	10.5 - 0.25	30 10.0 2 0.33	33 12.3± 0.20
lst	$102 \ 4.7 \pm 0.16$	82	9.8 ± 0.21	$71 \ 11.1 \pm 0.32$	69 12.7 ± 0.23
2nd	$115 \ 5.2 \pm 0.15$	92	9.7 ± 0.18	82 11.0 ± 0.30	-, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3rd	$112 \ 4.9 \pm 0.15$	96	9.6 ± 0.18	84 11.3 ± 0.29	
4th	92 5.2 ± 0.15	79	9.6 ± 0.20	$69 11.0 \pm 0.31$	63 12.7 \pm 0.22
4th 5 th 6 th	$41 + 4.9 \pm 0.21$	31	7.7 ± 0.35	$26\ 10.8 \pm 0.49$	
6	$23 ext{ } 4.3 \pm 0.22$	21	9.0 ± 0.34	$15 \ 11.2 \pm 0.50$	15 13. \pm 0.37
Sex	345 40 . 0 . 1	207	04.041	404 44 4 . 0 **	153 105 015
male	$247 + 4.9 \pm 0.14$		9.4 ± 0.14		$173 \ 12.7 \pm 0.17$
female	$238 \ \ 4.9 \pm 0.14$	197	9.1 ± 0.14	105 11.0± 0.27	154 12.7 \pm 0.17
Regressions Body weight	.001 ± .0004	ı	001 ± .0004	0002 ±	$.001 \pm .0004$
Litter size at birth	-0.02 ± 0.02	<u>; </u>	-0.10 ± 0.04	.0004 .0003 ± .001	-0.02 ± 0.02

Table 9: Least-squares means and standard errors (S.E) for factors affecting body measurements (Loin width) in Bauscat and Baladi Red rabbits.

Independent variable		7 7 7 7 1		Loin	wid	lth		
Variable		4 weeks		8 weeks		12 weeks		14 weeks
Bauscat	No.		No	Means ± S.E	No	Means ±	No	Means ± S.E
Overall mean	726	3.7 ± 0.03	595	5.5 ± 0.05	508		500	
Year of birth								and the same
1st	244	3.6 ± 0.07	170			6.4 ± 0.10		
2nd	199	3.7 ± 0.05	167	5.6 ± 0.07	150			7.1 ± 0.07
3rd	283	3.8 ± 0.06	258	6.2 ± 0.08	210	6.2 ± 0.13	208	7.3 ± 0.09
Season of birth	124	35.000	07	50.000		(5,000	۷۵	50.010
Autumn	124	3.5 ± 0.06	87	5.9 ± 0.09	71	6.7 ± 0.09	69	7.0 ± 0.10
Winter	205	3.4 ± 0.04	161	5.0 ± 0.07	128			
Spring	263	3.7 ± 0.04	225	5.2 ± 0.06	198		198	
Summer	134	4.1 ± 0.06	122	5.9 ± 0.08	111	0.2 ± 0.08	109	7.4 ± 0.09
Parity	111	20 + 0.04	79	E E 1.0.00	42	63 + 0.10	41	72 : 0.10
1st 2nd	159	3.8 ± 0.06 3.6 ± 0.05	126	5.5 ± 0.09 5.6 ± 0.07	63	6.2 ± 0.10 6.3 ± 0.07	61	7.3 ± 0.10
3rd	153	3.8 ± 0.05	131	5.6 ± 0.07	111		11	7.1 ± 0.08 7.2 ± 0.08
4th	114	3.7 ± 0.03	94	5.0 ± 0.07 5.4 ± 0.08	81	6.3 ± 0.07 6.3 ± 0.08	79	7.1 ± 0.08
4th 5 th 6 th Sex	129	3.7 ± 0.05	108	5.5 ± 0.08	103			
K th	60	3.6 ± 0.07	57	5.4 ± 0.09	46	6.3 ± 0.10	46	7.2 ± 0.03
Sex	00	J.0 2 0.07	31	J.4 - 0.07	70	0.5 - 0.10	40	1.2 - 0.11
male	350	3.7 ± 0.04	303	5.5 ± 0.06	259	6.3 ± 0.05	251	7.2 ± 0.05
female	376	3.6 ± 0.03	292	5.5 ± 0.06	249			
Regressions	570	3.0 2 0.03	2/2	5.5 2 0.00	44)	0.2 - 0.05	24)	7.2 - 0.03
Body weight		$.001 \pm .0002$.0001 ± .00001		.0003± .0001		$.001 \pm .0002$
LSB		0.01 ± 0.14		0.01 ± 0.01		0.001 ± -0.20		0.04 ± 0.02
Baladi Red						-0.20		
Overall mean Year of birth	485	3.6 ± 0.03	400	5.0 ± 0.10	436	6.0 ± 0.10	327	6.8 ± 0.05
lst	175	3.6 ± 0.08	142	5.0 ± 0.18	123	5.6 ± 0.13	115	6.5 ± 0.11
2nd	158	3.7 ± 0.06	130	5.1 ± 0.14	113	6.0 ± 0.11	113	7.0 ± 0.08
3rd	152	3.7 ± 0.08	128	5.0 ± 0.16	110		99	6.9 ± 0.11
Season of birth								
Autumn	119	3.8 ± 0.10	90	5.4 ± 0.16	78	5.9 ± 0.12	77	6.8 ± 0.11
Winter	128	3.6 ± 0.06	109	4.7 ± 0.14	94	5.9 ± 0.11	88	6.9 ± 0.09
Spring	151	3.5 ± 0.05	128	4.8 ± 0.12			109	
Summer Parity	87	3.5 ± 0.07	73	5.3 ± 0.15	58	6.1 ± 0.12	53	6.9± 0.11
1st	102	3.6 ± 0.06	82	5.1 ± 0.15	71	6.2 ± 0.11	69	7.0 ± 0.09
2nd	115	3.7 ± 0.05	92	5.1 ± 0.13	82	6.1 ± 0.11	79	6.9 ± 0.08
3rd	112	3.7 ± 0.06	96	5.1 ± 0.13	84	5.8 ± 0.11	78	6.8 ± 0.08
4th 5 th	92	3.7 ± 0.06	79	5.3 ± 0.14	69	5.9 ± 0.11	63	6.8 ± 0.08
5 th	41	3.6 ± 0.06	31	5.0 ± 0.22	26	5.8 ± 0.16	23	6.6 ± 0.17
6 th	23	3.5 ± 0.11	21	4.6 ± 0.21	15	5.9 ± 0.16	15	6.6 ± 0.15
Sex		2						
male	247	3.6 ± 0.04	203	5.0 ± 0.11		6.0 ± 0.10	173	6.8 ± 0.06
female December	238	3.7 ± 0.04	197	5.1 ± 0.11	165	5.9 ± 0.10	154	6.8 ± 0.06
Regressions Body weight		.00004 ±		.0001 ± .0003	}	.0003 ±		.0002 ±
Litter size at birth		$.0002$ -0.02 ± 0.01		0.03 ± 0.02	· .	0.001 0.01 ± 0.01		$.0002$ -0.02 ± 0.02

Results in (Tables 5, 6, 7, 8 and 9) revealed that, no clear trend could be observed for the effect of season of birth on body measurements (BL, LL, CC, WC and WL) measured at different ages from weaning up to 14 weeks of age in both breeds. Similarly, Hassan, (1988); Abdel-Ghany et al, (2001) and Hassan et al, (2001) reported the same result with different breeds of rabbits. Ahmed (1997) reported that the effect of season of birth on body weight might be a reflection of the changes in temperature. feed quality and differences in milk production of doe from one season to another.

Parity:

No significant (P \leq 0.05) effect (Table 2, 3 and 4) was detected for parity on most body measurements traits at most ages studied in both breeds, except, at 8 and 14 weeks for BL, at 4 weeks for LL, at 14 weeks for WC and at 4 weeks for WL in B rabbits and at 12 weeks for CC, at 4 weeks for WC and 12 weeks for WL in BR rabbits. was found to be significant (P \leq 0.05, P \leq 0.01 or P \leq 0.001). The same findings were observed by (Hassan, 1988); Abdel-Ghany et al, 2001 and Hassan et al, 2001)

In the present study, no clear trend could be observed for the effect of parity on body measurements traits (BL, LL, CC, CW and LW) recorded at different ages from weaning up to 14 weeks of age in both breeds studied (Table 5, 6, 7, 8 and 9). On the contrary Hassan, (1988) with different breeds of rabbits showed that rabbits born in the third parity had slightly longer than these born in the first and second parity on (BL, LL, CC, WC and WL) at all ages studied.

Abdel-Ghany et al (2001) and Hassan et al (2001) with different breeds of rabbits reported that a general trend indicating that BL and CC at different ages increased with advance of parity and as a consequence it is virtually greatest at the 3rd parity.

Sex:

Results in Tables (2, 3 and 4) revealed that the effect of sex was not significant at all ages studied except at 4 and 14 weeks for BL, at 4 weeks for CC and at 4 and 14 weeks for WL in B rabbits and at 14 weeks for BL and at 4 weeks for LL in BR rabbits. The same findings were observed by Hassan (1988), Abdel-Ghany et al (2001) and Hassan et al (2001) on BL and CC. Also, Luzi et al (2000) found no significant

differences according to sex amongst body measurements (body length; rump length; abdomen circumference; thigh circumference and chest circumference) of live animals till 120 days of age using commercial crossbred rabbits.

Lest squares means of body measurements in Tables (5, 6, 7, 8 and 9), show that males scored somewhat greater body measurements than females at most ages studied. The same trend were observed by Hassan (1988) and Abdel-Ghany et al (2001). Also, Luzi et al (2000) couldn't detect any sex consistent trend on live animals BL from weaning till 120 days of age. Hassan et al. (2001) couldn't detect any sex consistent trend on CC from weaning till 12 weeks of age.

Genetic Aspects:

Sire effect:

Results in Table (2.3 and 4) revealed that the sire effect was significant ($P \le 0.05$, $P \le 0.01$ or $P \le 0.001$) on body measurements at 4 and 14 weeks for BL; at 4 and 12 weeks for LL; at 4 weeks for CC; at 4, 8 and 14 for CW in B rabbits; at 4, 12 and 14 weeks for BL; at 4 and 12 weeks for LL; at 4, 8 12 and 14 weeks for CC; at 4, 12 and 14 weeks for CW and at 8, 12 and 14 weeks for LW in BR rabbits. Estimates of percentage of variance components due to the sire effect in B and BR rabbits, ranged from 0.19 to 5.0% in B rabbits and from 0.22 to 14.3% in BR rabbits (Table 10). Variance components due to sire effect were somewhat low in both breeds. Similarly, EI-Deghadi, (1996) and Ahmed. (1997) using Henderson III method with different breed groups observed low to moderate estimates of sire variance components for growth traits.

Heritability effect (h²_s):

Estimates of heritability for body measurements ranged from 0.01 to 0.21 in B rabbits and from 0.04 to 0.58 in BR rabbits (Table 10). Estimates of heritability in Baladi Red rabbits are higher than those in Bauscat rabbits, in most cases. In Practice, these high estimates of h_S^2 may be used by rabbit breeders in Egypt to improve body measurements of Baladi Red rabbits through selection.

Khalil et al. (1987) indicated that sire heritability estimates of body weights for the local breed (Giza White) were higher than those estimated for the exotic breed (Bauscat), was attributed to that local breeds were not subjected to any intensive program of selection. as that

experienced in exotic ones.

Table 10: Heritability estimates (h,²) and their standard errors and percentages of variance (V%) for body measurements recorded at different ages in Bauscat and Baladi Red rabbits.

Traits		Bauscat			Baladi Red	
	d.f	h'± S.E.	V %	d.f	$h^2 \pm S.E.$	V %
body length at						
4 Weeks	14	0.10 ± 0.10	2.1	13	0.13 ± 0.10	3,4
8Weeks	14	a	а	13	0.01 ± 0.09	0.22
12 Weeks	14	·a	а	13	0.19 ± 0.13	4.6
14 Weeks	14	0.12 ± 0.10	3.1	13	0.02 ± 0.01	5.3
Loin length at		• .				
4 Weeks	14	0.10 ± 0.07	2.6	13	0.12 ± 0.10	2.5
8Weeks	14	a	а	13	0.09 ± 0.9	2.3
12 Weeks	14	0.11 ± 0.09	2.7	13	0.19 ± 0.13	4.7
14 Weeks	14	a	а	13	0.10 ± 0.10	1.6
Chest circumferen	ce at					
4 Weeks	14	0.08 ± 0.06	2.0	13	0.11 ± 0.09	3.0
8Weeks	14	0.11 ± 0.08	2.7	13	0.22 ± 0.13	5.4
12 Weeks	14	0.08 ± 0.08	2.5	13	0.31 ± 0.17	7.6
14 Weeks	14	0.01 ± 0.06	0.19	13	0.41 ± 0.20	10.3
Chest width at						
4 Weeks	14	0.04 ± 0.05	1.0	13	0.51 ± 0.20	10.1
8Weeks	14	0.11 ± 0.08	2.7	13	0.11 ± 0.10	2.6
12 Weeks	14	0.09 ± 0.08	1.0	13	0.39 ± 0.19	9.6
14 Weeks	14	0.14 ± 0.09	3.4	13	0.19 ± 0.13	4.9
Loin width						
4 Weeks	14	0.21 ± 0.10	5.0	13	0.04 ± 0.07	1.1
8Weeks	14	0.12 ± 0.08	3.1	13	0.26 ± 0.14	6.9
12 Weeks	14	0.05 ± 0.7	1.0	13	0.58 ± 0.23	14.3
14 Weeks	14	0.04 ± 0.08	1.1	13	0.13 ± 0.12	3.8

a = Negative estimate of sire component of variance were set to be zero.

Regression coefficients:

The linear regression coefficients of body measurements as covariant on body weight (Table 2, 3 and 4) were significant ($P \le 0.05$. $P \le 0.01$ or $P \le 0.001$) at 4, 12 and 14 weeks for BL; at 8 and 12 weeks for LL; at 4 and 14 weeks for CC; at 4 weeks for CW and at 4. 8. 12 and 14 weeks for LW in B rabbits and at 8 and 14 weeks for BL: at 14 weeks for LL; at 8 and 14 weeks for CC and at 8 and 14 weeks for CW in BR rabbits. These results, are in agreement with those of Abdel-Ghany et al (2001) and Hassan et al (2001) on most body measurements at most ages studiedFor LSB on the same traits there were non-significant regression except at 8 weeks for LL, at 12 weeks for CC and at 14 weeks for LW in B, at 8 weeks for CC and at 8 and 12 weeks for CW in BR were significant ($P \le 0.05$, $P \le 0.01$ or $P \le 0.001$). Abdel-Ghany et al (2001) and

Hassan et al (2001) reported that LSB was a significant (P<0.05. P<0.01 or P<0.001) for BL and CC at most ages studies in different breeds. Estimates of the regression of body measurements on body weight and litter size at birth (Table 3) were generally low and did not show any consistent trend in both breeds.

REFERENCES

- Abdel-Ghany, A.M.; Hassan, N.S.; Ahmed, E.G. and Youssef, Y.M.K. (2001): Post-weaning body length genetic effects of tow Egyptian Native breeds Account of crossing New Zealand White rabbits. The 2nd inter. Conf. On Anim. Prod. & Health in Semi-Arid Areas. 4-6 Sept. 2001, El-Arish, North Sinai, Egypt, 421-433.
- Ayyat, M.S.; Marai, I.F.M. and El-Sayed Gh.A. (1995): A trial to grade New Zealand white rabbits for broiler production at marketing and breeding. World rabbit science, 3(2): 75-84.
- Bersenyi, A.; Fodor Kinga; Feket, S.; Eszes, F.; Gaspardy, A. and Zoldag, L. (1998): Influence of feeding intensity on growth of different body measurements. The 6th World Rabbit Con. Touulouse, France, (Vol. 2): 8-17.
- Blasco, A.; Ouhayon, J. and Masoero, C. (1992): Study of rabbit meat and carcass criteria and terminology. J. Appl. Rabbit Res., 15:775-786.
- Cheeke, P.R. (1986): Potentials of rabbit Production in tropical and subtropical agricultural systems. J. Anim. Sci. 63: 1581.
- **El-Mahdy, M.R.M.** (1998): Evaluation of live body and carcass of broiler rabbits at marketing. Egyptian J. of Rabbit Sci. 8(1) 69-81, (1998):
- Farid, A.M.; G.E.Y. Attalah and M.G. Gharib (2006): Genetic and non-genetic factors affecting weaning and post-weaning growth traits in Bauscat and Baladi red rabbits and their cresses. J. Agric. Sci. Mansoura Univ., 31 (11): 6957-6969. 2006
- Harvey, W.R. (1990): Users guide for LSMLMW. Mixed model least squares and maximum likelihood computer program. PC. Version 2. Ohio Slate Univ., Columbus, USA (mimeograph):
- **Hassan, N.S.** (1988): Reproduction of New Zealand White rabbits. M.Sc. Thesis, Fac. of Agric., Cairo Univ., Egypt.
- Hassan, N.S.; Ahmed, E.G. Abdel-Ghany, A.M.; and Farid, A.

- (2001): Genetic effects of chest circumference of Egyptian Native breeds Account on crossing New Zealand White rabbits. The 2nd inter. Conf. On Anim. prod. & Health in Semi-Arid Areas. 4-6 Sept. 2001, El-Arish, North Sinai, Egypt,
- Khalil, M.H.; J.B. Owen and Affi, E.A. (1986): A review of phenotypic and genetic parameters associated with meat production traits in rabbits. An. Breed. Abst. 54: 725-733.
- Ouhayon, J. and Blasco, A. (1992): Harmonization of criteria and terminology in rabbit meat research. J. Appl. Res., 15: 64-71.
- Paci, G.; Marzoni, M.; Xing, J. and Bennati, L. (1997): Misur *in vivo* per la stimo delle carcasse cunicole. Atti XII Congresso Nazionale A. S. P. A. Pisa, Italia, 391-392.
- Vietmeyer, N.D. (1985): Potential of micro livestock in developing countries. J. Appl. Rabbit Res., 8-10.
- Ahmed. E.G.A. (1997): Productive performance of different exotic strains of rabbits. Ph.D. Fac. of Agric., Suez Canal Univ., Ismailia, Egypt.
- **El-Deghadi, A.S. (1996):** Genetic and phenotypic analysis for four traits in rabbits. M. Sc. Thesis, Fac. of Agric., Moshtohor. Zagazig Univ., Banha Branch, Egypt.
- Falconer, D.S. (1989): Introduction to quantitative genetics. Second Edition. Longman, London, UK.
- Khalil, M.H.; Owen, J.B. and Afifi, E.A. (1987): A genetic analysis of litter traits in Bauscat and Giza White rabbits. Anim. Prod., 45:123-1345.No. 6507.
- Swiger, L.A.; Harvey, W.R.; Everson, D.O. and Gregory, K.E. (1964): The variance of interaclass correlation involving groups with one observation. Biometrics, 20: 818-826.

العوامل المؤثرة على مقاييس الجسم عند الفطام و بعد الفطام في أرانب البوسكات والبلدي الأحمر

جمال الدين يوسف عطا الله و' احمد فريد محمود و' محمود غريب غريب محمد.

' قسم الإنتاج الحيواني -كلية الزراعة -جامعة الأزهر -القاهرة. معهد بحوث الإنتاج الحيواني -مركز البحوث الزراعية -وزارة الزراعة -الجيزة.

الملخص العربي

أجريت هذه الدراسة في مزرعة الأرانب البحثية بكلية الزراعة - جامعة الأزهر بمدينة نصر - مصر خلال ثلاث سنوات إنتاجية متتالية بدأت في سبتمبر ١٩٩٨م حتى اكتوبر ٢٠٠١م وقد استخدمت بيانات ٢٢٦ أرنب مفطوم من البوسكات و ٤٨٥ من البلدي الأحمر وذلك لتقييم أداء هاتين السلالتين لبعض مقاييس الجسم (طول الجسم طول القطن - محيط الصدر - عرض الصدر و عرض القطن):

- أظهرت أرانب البوسكات تفوقا نسبيا على أرانب البلدي الأحمر في معظم الصفات المدروسة.
- انخفض معامل الاختلاف بتقدم العمر في صفات مقاييس الجسم (طول الجسم-طول القطن - محيط الصدر - عرض الصدر و عرض القطن):
- أظهرت سنة الميلاد تأثير معنوي عند ٤ و ١٤ أسبوع لصفة طول الجسم، عند ١٤ أسبوع لصفة محيط الصدر و عند ٤، ٨، ١٢ و ١٤ أسبوع لصفة عرض الصدر و عند ١٤ أسبوع لصفة عرض القطن في سلالة البوسكات وعند ٤ و ٨ أسبوع لصفة طول الجسم و عند ٤، ٨ و ١٤ أسبوع لصفة محيط الصدر و عند ٤، ٨ و ١٢ أسبوع لصفة عرض القطن في سلالة البلدي الأحمر.
- كان لموسم الميلاد تأثير معنوي عند ١٤ أسبوع لصفة طول الجسم وعند ١٢ أسبوع لصفة محيط الصدر في سلالة أسبوع لصفة محيط الصدر في سلالة البوسكات وعند ٤و ١٤ أسبوع لصفة طول الجسم و عند ٨، ١٢ و ١٤ أسبوع لصفة طول القطن و عند ٤، ٨ و ١٢ أسبوع لصفة محيط الصدر و عند ٤، ٨ ، ١٢ و ١٤ أسبوع لصفة عرض القطن في سلالة أسبوع لصفة عرض القطن في سلالة البلدي الحمراء.
- كان لترتيب الولادة تأثيرا غير معنوي على معظم الصفات المدروسة ولا يوجد اتجاه محدد لتأثير ترتيب الولادة على معظم الصفات في كلا النوعين.
- لم يكن للجنس أي تأثير معنوي على صفات مقاييس الجسم و لوحظ تفوق الذكور إلى حد ما عن الإناث في كلتا السلالتين.

- كان تأثير الأب معنوي عند ٤ و ١٤ أسبوع لصفة طول الجسم و عند ٤ و ١٢ أسبوع لصفة محيط الصدر وعند ٤، ٨ و ١٤ أسبوع لصفة محيط الصدر وعند ٤، ٨ و ١٤ أسبوع لصفة عرض الصدر في سلالة البوسكات وعند ٤، ٢ او ١٤ أسبوع لصفة طول الجسم و عند ٤، ٨، ١٢ و ١٤ أسبوع لصفة محيط الصدر و عند ٤، ٢ او ١٤ أسبوع لصفة محيط الصدر و عند ٤، ٢ او ١٤ أسبوع لصفة عرض الصدر و عند ٨، ٢ او ١٤ أسبوع لصفة عرض الصدر و عند ٨، ٢ او ١٤ أسبوع لصفة عرض العمر.
- تراوحت قيم النسبة المنوية لمكونات التباين الوراثي الراجع للأب المقدرة بطريقة هند رسون(٣) في كلتا السلالتين بين القيم المنخفضة والمتوسطة وان كانت قيم هذه النسبة في سلالة البلدي الأحمر أعلى منها في سلالة البوسكات لمعظم الصفات.
- ◄ كانت تقديرات المكافئ الوراثي لمعظم صفات مقاييس الجسم المختلفة في سلالة البلدى الأحمر أعلى منها في سلالة البوسكات.
- كان لتقديرات معامل انحدار تلك الصفات على وزن الجسم عند نفس العمر تأثيرا معنويا عند يَ، ١٢ و ١٤ أسبوع لصفة طول الجسم و عند ٨ و ١٢ أسبوع لصفة طول القطن و عند ٤ و ١٤ أسبوع لصفة محيط الصدر و عند ١٤ أسبوع لصفة عرض الصدر و عند ٤ ، ٨، ١٢ و ١٤ أسبوع لصفة عرض القطن في سلالة البوسكات و عند ٨ و ١٤ أسبوع لصفة طول القطن و عند ٨ و ١٤ أسبوع لصفة طول القطن و عند ٨ و ١٤ أسبوع لصفة عرض الصدر في سلالة البلدى ألأحمر.
- كان لتقديرات معامل انحدار تلك الصفات على حجم البطن عند الولادة تأثيرا غير معنوي عند معظم الصفات محل الدراسة.
- وعلى ضوء نتانج تقديرات المكافئ الوراثي يمكن التوصية. بإمكانية تحسين هذه الصفات في الأرنب البلدي الأحمر لدى مربى الأرانب في مصر عن طريق الانتخاب.