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- ABSTRACT |

The fruit flyv Bactrocera zonata (Dacus zonata) is a serious pest of fruits in many parts of the
world. B. zonata larvae feed exclusively on fruits, causing severe damage to crops. B.zonata was
recorded for the first time in Egvpt in 1999, where it caused a severe damage to a wide range of
Sruits such as guava, peach and apricot. This work includes the isolation and molecular
characterization of the fruit fly B. zonata sex-lethal (Bz SxL) gene homologs to the C. capitata SxL
(CeSxl) gene. Investigation of the effect of Gamma radiation on the expression of B. zonata SxL gene
had been performed. Mature pupae 2 davs before eclosion, were irradiated at 100, 120, 150 GY
gamma irradiation. Total RNA has been isolated from every irradiated dose. Fragments of the Bz
SxL were recoverd with RT-PCR and sequenced. Irradiated and non-irradiated B. zonata SxL gene
(Bz SxL) express the same pattern of transcripts, which encode for a single common polypeptide in
both male and female flies. The sequenced fragment of irvadiated female with 150 GY dose revealed
some sequence mutations. The gene shares a high degree of similarity in sequence compared to C.
capitata orthologous and does not appear to play a key regulatory role in the sex determining
cascade.

Keywords: Sex determination, homology, sex- specific splicing, ionizing radiation; Tephritidae.

inability of insecticides to penetrate infested
fruits to kill larval population pest. It is

( INTRODUCTION |

he fruit fly Bactrocera zonata is a

I serious pest of fruits and vegetables in
many parts of the world. Four hundred
species belonging to the genus Bactrocera are
widely distributed in tropical Asia, South
pacific and Australia, with very few species in
Africa and Europe (Drew, 1989). B. zonata
was recorded for the first time in Egypt in
1999, where it caused a scvere damage to a
wide range of fruits including guava, peach,
apricot and mango (El-Minshawy et al., 1999).
Traditional methods of pest control using
chemical insecticides experienced disadva-
ntages such as residual problems and the

therefore, imperative to seek alternative and
more effective methods of pest control using
advanced gene technologies.

Sex determination shares some general
features in all dipteran species. An initial
signal governing the choice of sex is trans-
mitted through a regulatory cascade to activate
the genes ultimately required to produce the
particular physiological and behavioural
phenoltypes of the two sexes. In different
dipteran species, the initial signal at the top of
the regulatory hicrarchy varies considerably.
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In Drosophila melanogaster, the primary
sex-determining signal proteins are based on
the number of X chromosomes in relation to
the sets of autosomes (Cline, 1993; Schiitt and
Nothiger, 2000). In dipteran species, such as
Ceratitis  capitata (Family: Tephritidae),
lucilia cuprina (Family: Calliphoridae), Musca
domestica (Family: Calliphoridae) and Sciara
ocellaris (Family : Sciardae), it has been
shown genetically that the presence of a
dominant male determiner protein, often
carried on the Y-chromosome, conirol male
sex _apperance (Nothiger and Steinmann-—
Zwicky, 1985; Lifschitz and Cladero, 1989;
Duebendorfer et al., 1992; Wilhoeftu and
Franz, 1996, Ruiz et al, 2003). The
chromosomal structure and inheritance are
similar in both the Queensland fruit fly B.
tryoni (Family: Tephritidae) and C. capitata
(Zhao et al, 1998). Male sex in B. tryoni
appears also to be determined by the presence
of Y chromosome (Meats et al., 2002). This
mechanism of sex determination operates in
other members of the Bactrocera genus,
namely B. cucurbitae (McCombs et al., 1993),
B. dorsalis (McCombs and Saul, 1995) and 5.
oleae (Lagos et al., 2005). This suggests that
the sex determination pathway in dipteran
species,other than D. melangaster, is different
in the initial signal and / or the key master
switch. Sex determination in D. melanogaster
is controlled by a cascade of enhanced genes in
a specific pathway switched on primarly by the
master regulatory gene sex lethal (SxL) (Bopp
et al,, 1996). Dm SxL controls the alternative
splicing of a downstream gene, transformer
(Tra) which acts with Tra 2 to control
alternative splicing of doublesex (dsx)
(Hoshijima et al., 1991). Dm SxL also controls
its own splicing, creating an autoregulatory
feedback loop that ensures expression of SxL
in females, but not males (Bell et al, 1991).
Ceratitis capitata tra gene (Cctra) is regulated
by alternative splicing and apparently controls

the alternative splicing of Ccdsx. However,
Cetra is not regulated by CcSxl. Instead, it
appears to autoregulate in a manner similar to
the autoregulation that has been seen with
DmSx1 gene.

Ionizing radiation technology is used to
induce dominant lethal genes causing
reduction of offspring which introduce a new
technique for insect control called sterile insect
technique (SIT) (Bushland and Hopkins,1951}.
It acts as a direct mutagen with minimal
latency time of action. It can be used as
reference to infer some kinetic parameters of
chemical mutagens (Morales-Ramirez et al.,
1997). For the successful application of SIT, it
is imperative to determine a radiation dose
developing sterility in flies but otherwise
remain healthy and vigorous in their mating
behaviour (Qureshi and Bughio, 1969; Ashraf
et al., 1974).

Kattyar (1962) reported that pupae of
fruit-flies Ceratitis capitata, when exposed to
100-130 GY from a Cs-137 source, develops
sterility in adult stages without showing any
deleterious effect on longevity and mating
behaviour of the flies. Steiner et al. (1962)
found that 100-120 GY from (415¢c-60Co) was
used as the minimum dose to prevent egg
laying as well as to avoid the production of
sperms during the life cycle of the three
species of fruit flies Dacus dorsalis, C.
capitata and Dacus cucurbitae. Melis and
Baccetti  (1960) however, reported that
exposure of 80-120 GY of gamma-rays caused
sterilization in Dacus oleae. Huque and
Ahmad (1966) have reported that Dacus
cucurbitae and Dacus zonatus (Bactrocera
zonata) can be sterilized at a dose of 70-90Gy;,
and the minimum dose required to render the
males of Dacus ciliatus fruit fly incapable of
fertilizing females was 80.5-100GY when
radiated in the late pupal stage.

No work has been done up to date on the
effect of radiation on sex- lethal (5xI) gene of
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B. zonata. An understanding of the sex
determination mechanisms in insects that are
of agricultural or public health importance may
help in the development of improved methods
for their control using the SIT.

The objectives of this work are to: isolate
the SxL gene of B. zonata and to compare its
homology with C. capitata SxL and other
dipteran species and to characterize the impact
of ionizing radiation on SxL gene of B. zonata
and investigate its behaviour as sex determ-
inant gene in dipteran insects. Comparative
analysis between sequenced fragments of SxL.
gene of B. zonata and irradiated genes, which
induced sterility in flies, will be studied.
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The invested guava fruits were collected
from Giza Governorate. The full grown larvae
naturally jump to the sand where they pupate.
Two days before eclosion, pupae of B. zonata
were irradiated using gamma cell (60Co
source), model 220,
Department of Nuclear Physics of Atomic
Energy Authority, ARE. Pupae for each
radiation dose are exposed to 100, 120 and -150
GY of gamma radiation.

RNA isolation and RT-PCR analysis

Total RNA was extracted from both male
and female adults using Gentra Purescript
RNA Kit (Life Trade Company). One ug of
total RNA was reverse transcribed with AMV
(Promega) according to the manufacturer's
directions and about 1/20th of the reaction was
used for PCR reaction in 25 ul total volume
with the following forward and reverse primers
which were designed from the sequence of C
.capitata Sex-lethal (CcSxl) at 126 bp and 422
bp and at 423 bp and 917 bp (Fig. la)
according to Saccone et al. (1998).
SxL1-FICATACGGATACAATGGTTAT), SxL2-
R(TCGCGATCTGTCATATCCTG) and SxL3-F
(CAGGATATGACAGATCGCGA) &  SxL4-

instailled at the .

R(CCGAGCTGAGACATATAGTC) The thermal
cycle program was set to 40 cycles of 94°C
denaturation, 58°C annealing and 72°C
elongation for 40 seconds each step (Perkin
Elmer Gene Amp 9600). PCR products were
recovered, and sequenced by automated DNA
sequencing reactions, which were performed
using sequencing ready reaction kit (Applied
Biosystems, USA) in conjunction with ABI-
PRISM and ABI-PRISM big dye terminator
cycler.
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B. zonata SXL. gene produces the same
transcripts in xx and xy animals. Similar to
Ceratitis, though no sex-specific size classes
were detected. To confirm that transcripts in
males and females are strucurally identical as
in C. capitata, RT-PCR analysis was perfo-
rmed on total RNA extracted from non-
irradiated B. zorata adult flies. Two pairs of
specific primers were used for amplification.
[n both cases, the amplified products were
found to be of the same length in males and
females 296 bp by using primers 126+/422-
J(SxL1/SxL2) and 496 bp by using primers
423+/917-(SxL3/SxL4) (Fig. la &b), and
subs-equent sequencing of the amplified
fragments did not reveal any sex-specific
differences.

A 296 bp DNA fragment of the BzSxL
and CcSxL was isolated by RT-PCR from total
RNA of adult non-irradiated and irradiated
male and female using the primers SxL1 and
SxL2 (Figs. 2 and 3). Also, 496 bp DNA
fragment of the BzSxL and CcSxL was
1solated by RT-PCR from total RNA of adult
male and female using the primers SxL3 and
SxL4 (Figs. 2 and 3). The sequences of these
fragments showed a 89%, 99% and 84%
similanity at the nucleottde level to the
corresponding fragment of CcSxL, BoSxL,
DmSxL genes, respectively (Fig. 4b).
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TTTATTTAGGACAATCGGTCCTATARACACTTGCAGAATAATGAGAGATTATAAGACTGG
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ABRRAGCTTAAACGGCATTACAGTGCGCAATAAGCGTTTARASGTTTCATATGCTCGTCCT
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GGCGGTGAATCGATTAAGGATACCAATTTGTATGTTACGARTCTACCACGTACAATAACC
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GGTGATCAATTGGATACCATATTCGGTARRTATCGCTTGATTGTACAGARGRATATTCTA
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AGAGACARATTGACGGGECARAACCGCGTGGUGTTGCATTTGTCAGATTCAATARACGUGAA
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GAAGUGCAAGAGGCAATTTCCGCTCTGAACAATGTCATACCCGAGGGTOCATCTCAGLCG
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CTCACCGTGCGCTTAGCCGAGGAGCATGGCAAAGCGAAAGCGCAGCAATACATGTCACAG
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Fig.( 4a): Alignment of the nuclectide sequence of the non-irradiated (N) and irradiated (I) of B. onata female Sex-lethal
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Bzsxl
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(Bzsxl) fragment. The bold letters indicate the substitution mutations.

TTTATTTAGGACAATCUGGTCCTATARACA
CACAGGATATGACAGATCGUGAACTCTATGUCTTTATT TCGGACAATTGGCCCCATUAACA
CACAGGATATGACAGATCGUGAACTCTATGCTTTATTTAGGACAATUGGTCCTATAANTA
CCCAGGACATGACTGATCGCGAGCTGTACGCCCTATTCAGAGCCATTGGACCCATCAACA
CTTGCAGAATRATGAGAGAT TATAAGACTGGC TACAGTTIT -GG TTACGCTITTGTTCATT
CATGCAGAATAATGAGAGATTATAAGACTGGCTACAGTTTTGGTTATGCTTTTGTTGATT
CTTGCAGAATAATGAGAGAT TATRAAGACTGGCTACAGTTTIGGTTACGCTTTTGTTGATT
CGETGCAGAATCATGCCAGACTATAAGAC TGECTACAGTI I TCETTATGCTITCETEGACT

TCGCTTCCGARACGGATTCACAACGAGCGATAAAAA-GUTTAAARCGGCATTACAGTSCGC,

TCCCTGCCGAAACGGATTCACAACGAGCGAT - AAAGASCTTARACGGAATAACGGTCCGE
TCECTTCCGAAACGEATTCACAACGAGCGATAAAARL - GCTTARACGGCATTACAGTGCGC
TCACATCGGAAATGGACTCGCAGCGTGCTATTAAAGTGCTGAAT-GGCATCACACSTCCGEL

AATAAGCGTTTAAAGGTTTCATATGCTCGTCCTGGCGGETCAATCGATTAAGGATACCAAT
AACAKRAGCGTTTAAAGGTTTCATATCCTCGGCCTGOCCGOTGAATCGATCAAGGATACARAT
AATAAGCGTTTAAAGGTTTCATATGCTCGTCCTGGUGGETGAATUGATTARGGATACCAAT
AACAAGCGGCTTAAGGTTTCCTATGCACGTCCCGGCGGAGAATCGATCAAGGACACCAAT

TTGTATGTTACGAATCTACCACGTACAATARCCGGTGATCARTTGGATACCATATTCGGT
TTGTATGTCACGAATCTACCACGTACTATAACCCATGATCAATTGEACACCATATTCCGT
TTGTATGTTACGAATCTACCACGTACAATAACCGATGATCAATTGGATACCATATTCGGET
CTGTATGTGACCAATCTGCCGCGTACCATAACCGACGATCACCTGGACACGATCTTCGGC
ARRTATGGCTTGATTCTACAGRACAATATTCTAAGAGACARATTCACGGGCAAACCGLGT
AAATACGGCATGATTGTACAAAAGAATATACTCAGAGACAAATTGACGGGCAAACCACGT
BAATATOGCATCGAT TCTACAGAAGAATATTCTAAGAGACAAAT TCACGGGLAAACCOLGT
AAGTAUGCTICCATTGTGCAGAAGAACATCTTGCGTGACAAGCTCACACETCGTCCTUGT
GECGTTGCATTTGTCAGATTCAATARACGCGAAGAAGCGUAAGAGGCAATTTCUGCTCTG
GGTGTTIGCCTTTGTAAGAT TCAATAAACGCGAAGAGGCGCAAGAAGCAATTTCCGCACTA
GGCGTTGCATTTGTCAGATTCAATAAACGCGAAGAAGCGTAAGAGGCAATTTCCGCTCTG
GGTGTGGCCTTTGTTCGGTACAARCAAGUGTGAGGAGGCCCAGGAGGCCATTTCGGCGCYG
AACAATGTCATACCCGAGGGTGGATCTCAGCCGCTCACCGTGUGCTTAGCCGAGGAGCAT
ARCAATGTCATACCAGAGGGTGCGTCCCAACCGCTCACCGTACGACTGECCGAGGACCAT
AACAATGTCATACCUGAGGGTGEATCTCAGCCGCTCACUGTGUGCTTAGCCGAGGAGCAT
ARCHACGTAATACCCCGAGGGCGGATCACAGCCGOTGTCCGTC UGG T TGGCTGAGGAGCAT

GGCAAAGCGAAAGCGCAGCAATACATGTCACAGCTGGGATTGA

GGCAAGCCGAAAGUGCAACACTATATGTCTCAGCTCGECTTGATTGGTGGAGGTGGETGET

GGCAARAGCGARAGUGCAGCAATACATGTCACAGCTGGGATTGATTGGTG--———-—— —=GT
GGUAAGGCGAAGGCGGCCCACTTTATSTCGCAGATGGGC-~———-— GIG——---— --=G
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Fig.(4b): Multiple alignment of Sex-lethal gene sequences of B.zonata (Busxl) ,C.eapitata (Coesxl), B. oleve (Bosxi),D.

melanogasier (Dmsxl), female.
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Hence, SxL. gene does not appear to play
the key discriminative role in controlling sex
determination in B. zonata as it plays in
Drosophila. 1t is worth mentioning that sex
- determination in B. zonata appears to be
regulated in a similar way to Ceratitis capitata,
but different than in Drosophila. In C. capitata,
the gender does not depend on the chromosome
consititution number of X chromosomes and
autosomes as in Drosophila, but on the
presence of a male-determining factor in the Y
chromosome; females are XX and males are
XY (Willhoeft and Franz, 1996). The male
determining factor (M) holds the place of the
primary signal in the sex-determination
pathways in some species of the Bactrocera
genus, namely B. cucurbitae and B. drosalis
(Nothiger and Steinmann-Zwicky, 1985,
Diibendorfer ef al., 1992; Marin and Baker,
1998, Shearman, 2002). :

Ceratitis and Bactrocera belong to the
Acalyptratae group, as Drosophila does, and
are the most closely related in phylogenesis to
Drosophila species. In Ceratitis, the SXL gene
functional divergence must have occurred quite
recently during dipteran evolution within the
Acalyptratae group (Saccone et al, 2002).
Consistent with their closer phylogenetic
relationship, the B.oleae SxL protein revealed a
high degree of conservation to that of C.
capitata and D. melanogaster, particularly in
the RNA Recognition motifs (RRM) that
endow the SxL protein with the capacity to
bind to RNA. These results agree with those
found from the comparison of the SxL proteins
of other Brachycera and Nematocera dipterans.
In all results, a significant variation was
observed in both N and C terminal domains.
The great majority of nucleotide changes in
RRMs were synonymous, indicating that
purifying selection is acting on these domains.
Transgenic studies performed by Saccone ef al.
(1998) and Meise ef al. (1998) have shown that,

in spite of the high sequence conservation,
neither Ceratitis nor Musca SxL proteins are
capable of replacing the endogenous SxL
protein in Drosophila. Moreover, overpro-
duction of both SxL proteins in transgenic flies
reduced the viability of both sexes. The authors
speculated that the ancient function of the SxL
protein is to bind RNA, acting primarily as a
translational repressor in both sexes to
modulate gene activity, while in Drosophila it
has additionally acquired the function of a
master regulator for sex-specific control of
genes regulating sex-determination or dosage
compensation. It is not possible, however, to
discard the alternative, non-mutually exclusive
possibility that SxL is a general splicing factor,
since both function in splicing and translation
are cxerted through its two RNA-binding
domains.

In conclusion, the results of the present
study showed that SxL gene appears to be
considerably conservative in structure in B.
zonata and in all non-drosophilid species
studied. Moreover, molecular mechanisms used
for regulating the expression of sex-specific
and sex-determining genes in insect pests will
be useful for further improvement of SIT which
could be used for Bactrocera control. Isolating
and sequencing full length gene is necessary for
more understanding of the mode of action and
control of SxL. gene expression.
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