Isolation of chitinase gene induced during infection of Vicia faba by Botrytis fabae

(Received: 15.09 .2006; Accepted: 08.10.2006)

M.F.Attia*; N.M.Abou-Zeid***; K.A.Abada*; M.H.Soliman**and Noha. F. El-Badawy***
* Plant Pathology Department , Faculty of Agriculture ,Cairo University, Giza. ** Genetics Department, Faculty of Agriculture ,Cairo University, Giza.
*** Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt.

ABSTRACT

The moderately resistant (Giza 716) and the susceptible (Giza 429) faba bean cultivars were used to identify some pathogenesis related proteins (PRs) associated with infection by chocolate spot disease. One isolate of Botrytis fabae purified from a plant sample taken from Nubaria location (Behera governorate, Egypt) was used in the artificial infection experiment. Qualitative and quantitative analyses were carried out on all protein banding patterns of the healthy and the infected faba bean leaves harvested at 8, 24 and 48 hr after inoculation. Data revealed that a 26 $k D a$ protein band was more intensive 8,24 and 48 hr after inoculation in cultivar Giza 716,. In addition, a 29 kDa protein band appeared after 24 and 48 hr . Furthermore, in cultivar Giza 429, 54 kDa protein bands appeared after 8, 24 and 48 hr post inoculation and 28 and 20 kDa appeared after 24 hr post inoculation.Reverse-Transcription ($R T-P C R$) showed that chitinase gene is expressed at very early stages in infected faba bean leaves. DNA fragment at molecular weight 900 bp appeared at 8, 24 and 48 hr after inoculation and disappeared in the healthy plants. The amplified products were cloned into pGEM-T Easy vector. Four clones named (PNAM1, PNAM2, PNAM3 and PNAM4) were selected for validation. The recombinant plasmids PNAM1, PNAM2 were verified for the presence of the Chitinase gene coding sequences by using both specific and universal primers in PCR. BNAM1-Chit-EG gene sequence showed 58.15% similarity when aligned with other Chitinase genes published in the gene bank.

Key words: Vicia faba, Botrytis fabae, pathogensis- related protein, clonin, chitinase gene, sequencing.

INTRODUCTION

Faba bean (Vicia faba L.) is one of the most important food legumes in Egypt. This crop is attacked by a number of plant pathogens and parasites. The most important fungal disease is chocolate spot. The causal organisms of chocolate spot are Botrytis fabae and Botrytis cinerea. Although both species are able to cause the disease in the field,

Botrytis fabae is more aggressive than Botrytis cinerea. Chocolate spot is the most destructive disease and causes considerable losses in the yield of faba bean in the northern region of the Nile Delta of Egypt, where low temperature and high relative humidity favoring its spread are prevailing (Mohamed, 1982).

Inoculation of plants with compatible and incompatible pathogens triggers a variety of plant defense responses, including the
activation of genes encoding pathogensisrelated proteins (Van Loon, 1997). Many of these proteins have been shown to exhibit antifungal activity in vitro (Ponstein et al., 1994), for example the PR2-class ($B-1,3$ glucanase) and PR3 class (chitinase) proteins hydrolyzing the important fungal cell wall components (Mauch et al., 1988). This suggested that PR proteins may paly an important role in pathogen defense. Some of the tobacco PR-proteins were identified as chitinase (Legrand et al., 1987) and B 1,3 glucanase (Kauffmann et al., 1987) with potential antifungal activity, it has often been suggested that the collective set of PR-proteins may be effective in inhibiting pathogen growth, multiplication and spread (Kombrink and Somssich, 1997). Plant disease resistance genes (R genes) encode proteins that detect pathogens. The tools of biochemical and molecular studies have been applied to investigate the mechanisms involved in disease resistance. There have been experimental successes with foreign proteins in plants to develop disease resistant crops.Van Loon (1985) reported that the biochemical changes occurring in the stressed plant include the production of pathogenesis - related proteins (PR), among these are chitinases. These enzymes are capable of catalyzing chitin containing fungal cell wall and is therefore may play a major role in the plant response (Schickler and Chet, 2004). Mauch et al .(1988) proved that a basic chitinase in combination with a basic $B-1$, glucanase, both isolated from bean plants, have a strong antifungal effect in vitro. Margis-Pinherio et al. (1991) stated that two acidic chitinases were formerly called bean PR3 and PR4 proteins or chitinases. Danhash et al. (1993) studied the molecular characterrization of four chitinase cDNAs obtained from Cladosporium fulvum infected tomato. They reported that the southern blot analysis of tomato chitinase confirmed that the acidic
extracellular 26 and 27 kDa chitinase are each encoded by a single gene in tomato. Mahe et al. (1993) observed that the first induction of chitinase mRNA occurred $8-10 \mathrm{hr}$, before hypersensitive response symptoms were visible in Colletotrichum lindemuthianum bean interaction. Furthermore, Margis-Pinherio et al. (1993) reported that chitinase mRNA became detectable after a few hours post inoculation. Enan et al. (1994) found two polypeptides (26 kDa protein band and 16 kDa protein band) in protein banding pattern of infected faba bean cultivar (Giza 402) during infection with Botrytis fabae using SDS-PAGE. These two polypeptides may be pathogenesis - related proteins (PRs) induced in response to fungal infection (10-12 hr. after inoculation) before the onset of lesion formation in bean plants. Lingrang Kong et al. (2005) constructed a cDNA library using mRNA isolated from wheat plants harvested at $2,6,12,24,36,72$ and 96 hr . after inoculation with conidiospore suspension of Fusarium graminearum. They added that the cDNA clone encodes an acidic isoform of class 1 chitinase containing 960 bp coding region.

The present work was planned to identify PR proteins induced by infection with Botrytis fabae in faba bean and also to clone and sequence the genetic regions responsible for these types of proteins.

MATERIALS AND METHODS

Plant cultivars

Two cultivars of faba bean were used in this study as a host plant for the artificial infection with Botrytis fabae isolate. Both cultivars were obtained from Field Crop Research Institute, Agricultural Research Center, Giza, Egypt. The response of these cultivars to chocolate spot disease are different, i.e., Giza 429 cultivar is highly susceptible and Giza 716 cultivar is moderately resistance.

Fungal isolates

One aggressive Botrytis fabae isolate was used in the present study for the artificial infection, isolated from Nubaria location, Behera governorate.

Artificial infection

Faba bean plants (45 days old) were artificially infected with the spore suspension (25×10^{4} spores $/ \mathrm{ml}$) of the isolate under study, using a fine mist hand sprayer. Inoculated plants were then covered with polyethylene sheets supported with metal frames to maintain a high relative humidity. Samples were taken after 8,24 and 48 hr post inoculations, respectively.

SDS-Polyacrylamide gel electrophopresis

Two grams from each plant leaves were taken and ground in liquid nitrogen to a fine powder, 50 mg of the ground sample were transferred to an eppendorf tube and 0.7 ml of extraction buffer (0.6 ml 1 M Tris HCL, pH $6.8,5 \mathrm{ml} 50 \%$ glycerol, $2 \mathrm{ml} 10 \%$ SDS , $0.5 \mathrm{ml} \beta$-mercaptoethanol, and $0.9 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$) was added . The extract was centrifuged at 14000 rpm for 15 min under cooling. Supernatants containing soluble protein fractions were transferred to clean tubes and stored at $-20^{\circ} \mathrm{C}$. Protein content was estimated according to the methods of Bradford (1976) by using Bovine Serum Albumin (BSA) as a standard. Protein content was adjusted to $2 \mathrm{mg} / \mathrm{ml}$ per sample. SDS was added to the sample at the rate of 4 mg SDS $/ 1 \mathrm{mg}$ protein, then $50 \mu \mathrm{l}, \beta$ mercaptoethanol were added. The mixture was boiled at $100^{\circ} \mathrm{C}$ in a water bath for $3-5 \mathrm{~min}$ and $20 \mu \mathrm{l}$ of this crude protein solution were resolved on 12% SDS - PAGE using molecular weight protein marker as a standard. Electrophoresis was carried out at 2 milliampere per sample till the samples reach one inch from the bottom of the gel. Gels were removed from the apparatus and placed in
plastic tanks containing 50% ethanol and 10% acetic acid-freshly prepared, then gels were stained by the silver staining method for protein described by Sammons et al. (1981). Gels were scanned using gel documentation system (AAB Advanced American Biotechnology 1166 E. Valencia Dr. Unit 6 C, Fullerton CA 92631). The different molecular weights of each band were determined.

Amplification of chitinase gene by RT-PCR

Total RNA was isolated from healthy and infected plants after different time intervals, i.e., 8,24 and 48 hr post inoculation using the method described by Enan et al. (1994). RNA was purified using tri- reagent RNA kit (Sigma). cDNA synthesis was carried out in a reaction mixture ($40 \mu \mathrm{l}$ final volume) containing $10 \mu \mathrm{l}$ of freshly prepared RNA for template: 10 pmol of oligo(dt) antisense primer : 20 U of MMuLV reverse transcriptase (Promega) : 100 mM of each dNTP; 1 mM DTT; 50 mM Tris HCL. $\mathrm{pH} 8.3 ; 75 \mathrm{mM} \mathrm{KCL}$ and 6 mM MgCL 2 . The reaction mixture was incubated at $37^{\circ} \mathrm{C}$ for 1 hr and stored at $-20^{\circ} \mathrm{C}$ until use. Chitinase specific products were amplified by PCR, (using T-GRADIENT thermal cycler from Biometra) in $25 \mu \mathrm{l}$ volume containing $2.5 \mu \mathrm{l}$ of cDNA; 25 pmol of each primer forward primer (Chit 1) 5-ATT ATT GTT CTT TTA GTC CT-3` and reverse (Chit 2) 5`-CTT TGT TCT TAT TCC ATT GA-3` ; 10 mM of each dNTPs; 1 U of Taq DNA polymerase; 10 mM Tris-Hcl, \(\mathrm{pH} 9.0 ; 50 \mathrm{mM} \mathrm{Kcl} ; 1 \mathrm{mM} \mathrm{MgCl}{ }_{2}\). Denaturation at \(94{ }^{\circ} \mathrm{C}\) for 3 min was followed by 35 cycles of 1 min at \(94^{\circ} \mathrm{C} ; 2 \mathrm{~min}\) at \(45^{\circ} \mathrm{C}\) and 1 min at \(72^{\circ} \mathrm{C}\) with a final extension step at \(72^{\circ} \mathrm{C}\) for 7 min , for a total. Conditions for the amplification of hemi-nested products were the same, except that 25 pmol of specific primers (Chit 1) and (Chit3) 5`-GGCGGCACGGGTA GGGGTGACATTG-3 and $1 \mu \mathrm{l}$ of 1000 folds diluted first PCR reaction mixture for template were used. Three oligonucleotide primers were

[^0]synthesized according to the published sequence clone PHs2 Gene Bank Accession No. L22032.

Cloning of chitinase into pGEM-T-Easy vector

The generated DNA fragments of chitinase genes obtained after PCR amplification were purified using QiA quick gel extraction kit (Qiagen) according to manufacturer's instructions; the products were ligated into pGEM- T Easy vector (system 1) from Promega (Madison,WI, USA) , and transformed into competent JM 109 E. coli cells (Promega) with subsequent ampicillin selection following manufacturer's instructions.

The promega pGEM- T Easy cloning kit offered a rapid and efficient cloning method for PCR products based on the use of the T overhang in the linearized vector and A tail on the PCR products as an alternative to the DNA overhangs. $2 \mu \mathrm{l}$ of ligation reactions were add and mixed gently by tapping and incubated on ice for 30 min . Cells were heat shocked for 45 sec. at $42^{\circ} \mathrm{C}$ in a water bath incubator to increase the transformation efficiency. The tubes were then placed on ice for 1 min to cool down, $900 \mu \mathrm{l}$ of LB medium were added to each tube and shaked gently at $37^{\circ} \mathrm{C}$ for 2 h for cell recovery. $100 \mu 1$ transformation mix were plated onto Luria-Bertani (LB) plates containing ampicillin $50 \mathrm{mg} / \mathrm{ml}, 100 \mathrm{mM}$ IPTG and $50 \mathrm{ug} / \mathrm{ml} \mathrm{X}$-gal and incubated at $37^{\circ} \mathrm{C}$ overnight for selecting the transformed cells. The sample cultures were grown overnight at $37^{\circ} \mathrm{C}$. Plasmid DNA was prepared from each culture by using the QiA prep spin, Mini prep kit (Qiagene), following manufacturers instructions.

DNA sequencing

The recombinant plasmid (PNAM1) containing chitinase fragment was recultured separately in 5 ml LB medium with ampicillin at $100 \mathrm{ug} / \mathrm{ml}$. Plasmid was extracted using QiA prep ${ }^{\circledR}$ Miniprep kit (Qiagen). The DNA insert was verified by (1) PCR using M13F/ M13R and Chit $\mathrm{F} /$ Chit R primers to validate cloning.
(2) Sequencing of one strand on an Applied Biosystems 310 genetic analyzer. (Applied Biosystems, ABI) using sequencing redy reaction mix according to manufacturer's instruction (Applied Biosystem) at Gene Analysis Unit, VACSERA.

RESULTS AND DISCUSSION

In order to find biochemical differences between the healthy and the infected plants at different intervals, total protein extracts were isolated and electrophoresed on one dimension (SDS-PAGE).

Differences in the intensity of the same protein bands between the infected and healthy plants obtained at molecular weight of 26 kDa after 8,24 and 48 hr post inoculation, which was very weak in the healthy plants, while a new protein band at molecular weight of 29 kDa presented in the infected plants after 24 and 48 hr . post inoculation, as shown in (Fig. 1). This band agrees with that obtained by Enan et al. (1994). Protein pattern of faba bean leaves (cultivar Giza 429) at different periods post inoculation with Botrytis fabae Nubaria isolate (Fig. 2) revealed that a new protein band at a molecular weight of 54 kDa appeared after 8,24 and 48 hr post inoculation and 28 and 20 kDa appeared after 24 hr post inoculation.

Fig (1): SDS - PAGE showing the protein patterns analyzed after 8, 24 and 48 hr of healthy (H) and infected (I) faba bean cultivar (Giza 716) with Botrytis fabae Nubaria isolate (lanes 1-6). M mid molecular weight protein marker.

Upon interaction with the pathogen, plants initiate a complex network of defense mechanisms, among which is the dramatic increase in chitinase activity. Isolation and characterization of disease-related genes may need to be complemented by biochemical studies to understand fully their functions (Kotchoni and Shonukan, 2002). Electrophoretic patterns of soluble proteins have been used as a powerful tool for the study of genetic variability of infected and healthy plants. In addition, various novel proteins are collectively referred to as pathogenesis-related proteins. These PRs defined as proteins coded for by the host plant, but induced specifically in
pathological or related situations.
Chitinase enzyme is an important component in eukaryotic signal transduction pathway. A gene from faba bean plants (cultivar Giza 716) was characterized after infection with Botrytis fabae (Nubaria isolate) during the present investigation. The quality of RNA isolated during this study depended on the source of tissue being used as a starting material. The protocol described under the materials and methods (Enan et al. 1994) was used successfully to isolate a high yield of total RNAs from infected and healthy leave tissues. The RNA was reverse transcribed by the MMLV reverse transcriptase using oligo (dt) as
minus-sense primer and the resulting complementary DNA (cDNA) was amplified by PCR after adding Chit1 and Chit2 primers to amplify 900 bp fragment in the infected plants, where this band disappeared in the healthy plants (Fig. 4). Meanwhile, Chit1 and Chit3
primers were used to amplify 340 bp fragment (Fig. 5). These results were in agreement with those obtained by (Mahe et al.(1993); MargisPinheiro et al. (1993) and Lingrang Kong et al. (2005).

Fig. (3): Cistron map of the clone HPS2. Primers used for PCR amplification of partial sequences from chitinase gene are indicated by arrows. Chit1 with Chit2 gave a PCR fragment size 900 bp and Chit1 with Chit3 gave a PCR fragment size of 340 bp . Oligo (dt) (Roche) primer was used in reverse transcription reaction as minus primer.

Fig. (4): Agarose gel electrophoresis showing the RTPCR products of the chitinase genes region of faba bean using Hi-expand -Fidelity PCR system. 200 ng of total RNA extracted from infected faba bean tissue reverse transcribed into cDNA using oligo (dt) (Roche) minus primer. Lanes (1,2 and 3) : RTPCR products of correct size (900 bp) at 8, 24 and 48 hr . after inoculation, respectively amplified using Chit1 and Chit2 primers. lane C: healthy faba bean tissue . Lane M: Molecular weight marker (100 bp)

Fig. (5): Agarose gel electrophoresis showing the RT-PCR products of the chitinase gene of faba bean using Hi-expand-Fidelity PCR system. 200 ng of total RNA extracted from infected faba bean tissue reverse transcribed into cDNA using oligo (dt) minus primer. Lanes (1,2 and 3): RT-PCR products of correct size (340 bp) at 8, 24 and 48 hr . after inoculation respectively amplified using Chit1 and Chit3 primers . Lane C: healthy faba bean tissue. Lane M: Molecular weight marker (100 bp).

[^1]Four white colonies named (PNAM1, PNAM2, PNAM3 and PNAM4) lanes1-4 resistant to ampicillin containing recombinant plasmids were selected for testing the presence of the chitinase gene by PCR. Plasmids were amplified using both Chit1 and Chit2 and

M13F /M13R primer pairs as shown in (Fig. (6). The recombinant clones using the primer pair M13 forward and M13 reverse showed amplified product of size 1700 bp , where it amplified 900 bp when using Chit1 and Chit2 primers.

Fig. (6): Agarose gel electrophoresis showing the PCR products after cloning into PGEM-T-Easy vector using Hi-expand-Fidelity PCR system. PCR wes performed on recombinant chit clone to verify the presence of chitinase gene insert in PGEM-T-Easy vector. Lanes (1 and 2) showing the expected size (1.7 kb) of the amplified PCR product using M13 universal primers, and (900 bp) as the expected size of the amplified PCR with specific primers (Chit1 and Chit2).

Sequencing and alignment analysis of BNAM1 clone

BNAM1 clone was sequenced using forward primer used in RT-PCR technique. Using DNAMAN V 5.2.9 package, Madison, Wisconsin, USA, the sequence obtained from BNAM1 clone was aligned to the published chitinase sequences in gene bank.

Comparison of partial nucleotide sequence of BNAM1-Chit-EG showed 58.15\%
sequence homology with the other published sequences of Chitinase genes under the accession numbers (L22032 and DQ078281 of Ulmus americana Chitinases); (L16798, of Zea mays class I acidic Chitinase); (U97522, of Vitis vinifera class IV endochitinase); (D45183, Chenopodium amaranticolor Chitinase); (AF112965, Triticum aestivum (bread wheat) beta-1,3-glucanase precursor) as shown in Fig. (7).

L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965 DQ078281
F.bean Chit-Eg

Chit-Chenopod

L22032 GGAGCAAACCTATTAAACAACCCTGATCTCGTAGCAACTGACCCTGTCATTTCCTTCAAA
TATCAAGCTCC----GCCTTTAATGACATGCTTAAACAT---CGTAACGACCGGTGGTTT TATCAAGCTCC----GCCTTTAATGACATGCTTAAACAT---CGTAACGACCGGTGGTTT NNNTNNNTNNCNGGCTTCNTCAGAAGNGNNGNAACTGGA---TGTNCC-TTCCGGGNGAG AGTTTGGTGACAGACGCGTTCTTTAATGGGATTATTAAC---CAAGCAGGCTCTAGCTGT GATATTGTGACACAGGCATTTTTCGATGGGATAATTAAT---CAAGCTGCTTCGAGTTGT TATCACAGAAGAT--CTCTTCGAGAGGATGCTGAAGCAC---CGCAACGAACCTGACTGC GGCACGGGCATCAGCCTCCTCATGGACGTCGGCAACGGCGCGCTAACCAGCCTCGCAAAC

CCTGCCAAGGGGTTTTACACCTATGATGCT-TTTATTTCGGGGCTGTCCAAGGCGTTTCC CCTGCCAAGGGGTTTTACACCTATGATGCT-TTTATTTCGGGGCTGTCCAAGGCGTTTCC ACTGTCGGGGAGTAAAATTGCCGTGTCGCCGTTGGTGCCCTCGCGCCCGTCAGAATGCGC GCTGGTAAGAGGTTCTACACCAGATCTGCT-TTCTT-----GAATGCTCTCGGAAACTAT GCTGGGAAGAATTTTTACACCCGTGCAGCG-TTTCT------CAGTGCCTTGAATTCGTAT AAAGCTCGGGGCTTCTACACGTACGACGCC-TTCAT-----CACGGCGGCGGACGCGTTC GACCCCTCCGCCGCGCCCGCCTGGGTCAAGGCCAACGTGCAGCCCTTCCCGGGCGTCTCC

CTGCAATTTGC-----GGACCACCGGGGATGATATCACCCGTAAAAGGGAGATTGCTGCT CTGCAATTTGC----GGACCACCGGGGATGATATCACCCGTAAAAGGGAGATTGCTGCT CATATGGTTA-----GGGGCACTGGGTGGGCCNGC-CTCTCACAGACCACTTCAGTTNC CCTCAGTTCG------GTAAAGGTGGATCCTCCGATGATACTAAGCGTGAAGTTGCCGCC TCTGGGTTCG------GCAACGATGGTTCTACCGATGCTAATAAGCGCGAGATTGCAGCT CGGGGCTTCG------GCACCACGGGCAGCACGGAGGTCCAGAAGCGCGAGCTCGCCGCG TTCCGCTACATCGCCGTCGGCAACGAGGTCACGGACAGCGCCGGCCAGAAGACCATCCTC

TTCTTAGGCCAAACTTCCCATGAAACTACAGGGGGGTGGGCAAGTGCACCGAGGGGTCCA TTCTTAGGCCAAACTTCCCATGAAACTACAGGGGGGTGGGCAAGTGCACCGAGGGGTCCA gGCCCGATTCCAAAAGCCCAGCCGGCAATTGCC TTCTTTGCTCATGTCACCCATGAAACT TTCTTCGCTCATGTCACACACGAGACT
TTCTTGGGGCAGACGGGGCATGAGACCACGGGCGGCTGGCCGAACGCGCCCGACGGCGCC CCGGCCATAAAGAACATACAAACGGCGCTCGCGGCCGCCGGCCTCAGCGGCAGCATCAAG ATAACTCTTGGGGGATACTGCTACAATAGGGAGCCAAAAACCCTTCTTCTCGATTATTGT ATAACTCTTGGGGGATACTGCTACAATAGGGAGCCAAAAACCCTTCTTCTCGATTATTGT --------TTCTTGTTCTCGTCGAGCGTTGGACAGGGAGGGCNTCTGAC-CACTTATTTC ---------GGAAGTTTTTGCTACATAGAGGAGATTTCGAAATC------TACCTATTGT ---------GGACACTTTTGTTATATTGAAGAAATCAATGGTGCCTCTCATAACTACTGT TTCAC---CTGGGGCTACTGCTACAAGGAGGAGAACGGCGCCACCGCCGACTACTGCGAC GTGTCGACTTCGCTGCGGTTCGACGTGGTCAATAACACCTCCCCGCCCTCCAACGGCGTG TCTTTTAGTCC---TACT---TGGCCT--TGTGCTTCCGGAAAGAGATACTTTGGCCGTG TCTTTTAGTCC---TACT---TGGCCT--TGTGCTTCCGGAAAGAGATACTTTGGCCGTG TCGCCCAGCTC---CGACGGGCGGCTC--NCTNTTTCTGGCNT-AAACACCTTCATTACG AACGCAAGCGC---AAC---ATGGCCG--TGCAATCCAAGCAAGCAATACTATGGCAGAG GATTCAAGCAA---TACCCAATATCCA--TGTGTCTCCGGTCAAAATTACTACGGCCGTG ATGACGGGCGAGTACGCCCAGTGGCCG--TGCGTCGCCGGCAAGAAGTACTTCGGCCGCG TTCGCGGACACATCATTCATGGGGCCGATCCTGGACTTCCTGGCGAGCACCGGCGCACCG GTCCCATTCAAC-TCTCCTGGAACTACAACTATGGACAGTGTGGAAGGCGC----- -GTCCCATTCAAC-TCTCCTGGAACTACAACTATGGACAGTGTGGAAGGCGC------ATA TTCGCCTTCTGT-TTCCCATTCACTCTCCCCGTGGGGCCGTGCGCCTACTTN--- -GGCCTCTTCAAC-TCACATGGAACTACAACTACGGAGCAGCCGGTAGAAGC------ATT GACCGCTTCAAC-TAACATGGAACTACAACTACGGCGCTGCTGGAAACAGC----- - ATT GGCCCATCCAGC - TCTCCTACAACTACAACTACGGGCCGGCCGGGGAGGACGCGACCATC CTGCTGGTCAACGTGTACCCCTACTTCGCCTACAAGGGCGACCAGCAGAACATCAAGCTC GGAGCAAACCTATTAAACAACCCTGATCTCGTAGCAACTGACCCTGTCATTTCCTTCAAA TAACTCAACATTCTCCNCNCTCTCGCGATTTGNTTTAACCAGGNTTTNANGCNCTAAATC GGATTCGACGGTATTAATGCACCAGAAACAGTTGCTAACAACCCTGTTACTGCCTTTAGA

Arab J. Biotech., Vol. 10, No. (2) July (2007):289-300.

Chit-Vitis
Chit-Maize AF112965

L22032 DQ078281 F.bean Chit-Eg Chit-Chenopod Chit-Vitis Chit-Maize AF112965

L22032
DQ078281 F.bean Chit-Eg Chit-Chenopod
Chit-Vitis
Chit-Maize AF112965

L22032
DQ078281
F.bean Chit-Eg Chit-Chenopod Chit-Vitis Chit-Maize AF112965

L22032
DQ078281
F.bean Chit-Eg Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965

L22032
DQ078281
F.bean Chit-Eg Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965
L22032
DQ078281
F.bean Chit-Eg

Chit-Chenopod
Chit-Vitis
Chit-Maize
AF112965

GGATTCAATGGCTTGAGCAACCCTGGAATTGTTGCAACTGACGTGGTTACTTCATTCAAG GCCCAGGACCTGCTGAGCAACCCGGAGCTGGTGGCGTCGGACGCGTCCATCTCCTTCAAG GACTTCGCCACCTTCGTGCCAGGCAGCACCACCGTGACCGACAACGGGCTGACGTACAGC
 ACGGCCTTATGGTTCTGGATGA---------- CCCCACAGTCA------ - CCAAAGCCCT TCTATCTCTACTTCTTCCTTATCTNA----CTGCCTCANGTCATATCTGANCGAGGTCAT ACAGCCTTCTGGTTTTGGATGAACAACGTCCACTCTATTATCAACTCCGGCCGAGGGTTC ACTGCATTATGGTTTTGGATGAATAATGTTCACTCTGTCCTAA-----GCCAAGGTTTC
 AACCTGTTCGACGCCATGGTCGACTCCATCTACGCCGCACTGGAGAAAGCCGGCAAGCCC

CGTGCCATGACGTCATCACCGGAAGATGGAGTCCT-TCCGGCACCGACCAGTCGGCCGGC CGTGCCATGACGTCATCACCGGAAGATGGAGTCCT-TCCGGCACCGACCAGTCGGCCGGC AG--CTATCCTTNTATCCTCTCATATAT--CTGCGATCTCATAGTGATCCTTANGTAANG GGTGCCACCATTCGAGCTATCAATAGTA-- - TCGAATGTAATGGTGGTAATACAGGTGCT GGTGCCACAATTCAAGCCATCAATGGTGCCGTCGAATGTAATGGTGGAAACACAGCTGCC CGTGCCACGACGTGCCAACCGAGCAGTGGACCCCC-TCGGCCGCCGACAAGGCCGCGGGG GACGTTAAGGTGGTCATATCCGAGAGCGGGTGGCCGTCGGCCGGTGGGGTCGGGGCGACG - CGAGTTGCGGGCTACGGCGTGATCACCAATATTATCAACG-GT--GGGATAGAATGCGG - CGAGTTGCGGGCTACGGCGTGATCACCAATATTATCAACG-GT--GGGATAGAATGCGG NAAAGCTAAAGTACCCTCTCCCCTCATCCCTTCANTCNACC-TCACTG-ATCTNCNATTA GTCAATTCTCGGGTTCAACTCTATAGACAATATTGTAATCA-GTTTGGTGTTTCTCCTGG GTTAACGCCCGCGTTCAGTATTACAAGGACTACTGCAGTCA-GCTCGGGGTTTCACCTGG - AGGCTTCCGGGCTACGGCGTCATCACCAACATCATCAACG-GC-----ATCGAGTGCGG GCGCAGAACGCGCGGGCTTACAACCAGGGATTGATCAACCACGTCCGCGGGGGCACGCCG

GAAAGGTCAGGTTCCCCAGGTGGTGGAACGGATTGGATTCTA-CAAAAGGTACTGTGATA GAAAGGTCAGGTTCCCCAGGTGGTGGAACGGATTGGATTCTA-CAAAAGGTACTGTGATA CAACACCAACTCTCССTA----- CTATGCGCATCTTCTCCTCTCACGCGATTCCGTTCGA GAACAATCTCAGTTGCTAAGTA--CATCTTTAATATAGTTTT-AAAGGTGTGTTGGTAGT TGACAACCTCACTTGCTGATAAGTCATACGTATACAAACTCC-AATTGAATTATACATAT CAAAGGCTACAACGAGAAGGTGGCCAACCGGACCTTCTTCTA-CACCAGCTACTGCGACA AAGAAGCCCAGCTTGCTGG--AGACGTACATTTTCGCCATGTTCAACGAGAACCAGAAGA

TCCTTATAG---TTGGCTATGGGAACAACCTTGATTGCTATAACCAGAGGCCTTTTGGGA TCCTTATAG-- TTGGCTATGGGAACAACCTTGATTGCTATAACCAGAGGCCTTTTGGGA CNAACATAA---- CGCCATGTTATGAAACATCNACCCTATGCTTTTCCTATTATAAGTC ACTCTATGC - TACTAACCAACTTAAAAATTTTTTATTGTAATTTATGAAAAATAAAAGGA GAAGGGTATACGTAAACTATGGGAAGAATAAAGAGTTATGTGGTATGAAACCCTTAGTAG TCCTTGGCA-- TCAGCTACGGCGACAACTTGGACTGCTACAACCAGAGGCCTTCAACAG CAGGGGATC--- CGAC--GGAGAACAACTTTGGGCTGTTCAATCCGGACAAGTCGCCGG

ATGGACTCTTGTTGGACACCATGTAACGACT
ATGGACTCTTGTTGGACACCATGTAA----TCCTCACCNTTCTCCACTCCTCACCTTACAN T---ACCTGCTTAAAATACAATGAAATAAAA T---ACTT--TTGCCATATAATGCTCTGCAT C-GCATCCTTGCTGGAACCGCTGCTCCGCTG CCTACTCCGTTACTTTCTAAATGCAAAATTC

Fig. (7-A): CLUSTAL multiple sequence alignment of partial nucleotides encoding the Chitinase gene of the Egyptian faba bean (f. bean Chit-Eg) in comparison with the published Chitinase sequences. The overall sequences showed 58.15% sequence homology.

[^2]

Fig. (7-B): CLUSTAL multiple sequence alignment of partial nucleotides encoding the Chitinase gene of the Egyptian faba bean Chitinase (F. bean Chit-Eg) in comparison with the published Chitinase sequences. The overall sequences showed 58.15% sequence homology (A). L22032 \& DQ078281: Ulmus americana Chitinases, Chit-Maize: Zea mays class I acidic chitinase Accession number (L16798), Chit-Vitis: Vitis vinifera class IV endochitinase Accession number (U97522), Chit-Chenopod: Chenopodium amaranticolor Chitinase Accession number (D45183), AF112965: Triticum aestivum (bread wheat) beta-1,3-glucanase precursor (Glb3). F. bean Chit-Eg showed 36\% identity with published Chitinase sequences in the homology tree (B). The alignment and the phylogeny tree were generated using (DNAMAN V 5.2.9 package, Madison, Wisconsin, USA).

In conclusion plants initiate a complex network of defense mechanisms, among which is a dramatic increase in chitinase activity. For our data we concluded that chitinases are capable of hydrolyzing chitin-containing fungal cell walls and are therefore thought to play a major role in the plant's response. Therefore, one of the strategies used to increase plant tolerance to fungal infection is the constitutive over expression of proteins involved in plantdefense mechanisms (Schickler and Chet, 2004).

REFERENCES

Bradford, M.M. (1976). A rapid and sensitive method for the quantitification of microgram
quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248254.

Danhash, N.; Cornelia, A. M.; Wagemakers, J.A.L.; Pierre, J.M.; Dewit and Van Kan,l.initial (1993). Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol. Biol. 22:1017-1029.
Enan, M.R. (1994). Cloning and characterization of chitinase gene induced during infection of Vicia faba by Botrytis fabae. M. Sc., Botany Department, Fac. of Science, University of Mansoura.
Kauffmann, S.; Legrand, M.; Geoffroy, P. and Friting, B. (1987). Biological function
of pathogenesis-related proteins: four PR proteins of tobacco have $B-1,3$ glucanase activity. EMBO Journal 6: 3209-3212.
Kombrink, E. and Somssich, L.E. (1997). Pathogenesis-related proteins and plant defense. In: Carroll G., Tudzynski P., eds. The Mycota V, Part A. Plant Relationships. Berlin Springer Velgar, 107-128.
Kotchoni O.S. and Shonukan O.O. (2002). Regulatory mutations affecting the synthesis of cellulose in Bacillus pumilus. World J. Microbial.Biotechnol.18:487-491.
Legrand, M.; Kauffmann, S.; Geoffroy, P. and Friting, B. (1987). Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinase. Proceeding of the National Academy of Sciences, U.S.A 84:6750-6754.
Lingrang Kong, J.; Anderson, M. and Ohm, H.W. (2005). Induction of wheat defense and stress- related genes in response to Fusarium graminearum. Genome 48: 29-40.
Mahe, A.; Grisvard, J. and Michael, D. (1993). Two avirulent races of Colletotrichum lindemuthianum trigger different time courses of plant defense reaction in bean. Molecular Plant-Microbe Interaction 6: 423-428.
Margis -Pinherio, M.; Metza-Boutigue, M.H.; Awade, A.; Detapia, M.; Leret, M.M. and Burkard, G. (1991). Isolation of complementary DNA encoding the bean PR4 chitinase: An acidic enzyme with an aminoterminus cysteine- rich domain. Plant Mol. Biol. 17:243-253.
Margis-Pinherio, M.; Christian,M.; Didierjean, L. and Burkard,G. (1993). Differential expression of bean chitinase genes by virus infection, chemical treatment and UV irradiation. Plant Mol. Biol. 22:659688.

Mauch, F.; Hadwiger, L.A. and Boller, T. (1988). Antifungal hydrolases in pea tissue. 1 . Purification and characterization of two chitinases and two $B-1,3$ glucanase differentially regulated during development and in response to fungal infection. Plant Physiol.87:325-333.
Mohamed, H.A. (1982). Major disease problems of faba beans in Egypt. In Faba bean Improvement (eds) Hawtin, G. and Webb, C. Martinus Njhoff Publishers, the Hague, the Netherlands, pp. 213-225.
Palomino C.; Satovic Z.; Cubero J.I.; Torres AM (2006). Identification and characterrization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome. 49 (10):1227-1237.

Ponstein, A.S.; Bres-Vloeman, S.A.; SelaBuurloge, M.B.; Van-den Elzen, P.J.M.; Melchers, L.S. and Comelissen, B.J.C. (1994). A novel pathogen-and woundinducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol. 104:109-118.
Sammons, D.W., Adams, L.D. and Nishizawa, E.E. (1981). Ultrasensitive silver based color staining of polypeptides in polyacrylamide gels .Electrophoresis .2:135.
Schickler, H and Chet, I. (2004). Heterologous chitinase gene expression to improve plant defense against phytopathogenic fungi. Journal of Industrial Microbiology and Biotechnology: vol 19:196-201.
Van Loon, L.C. (1985). Pathogénesis -related proteins. Plant Mol. Biol. 4: 111-116.
Van Loon, L.C. (1997). Induced resistance in plants and the role of pathogensis- related proteins. Eur. J. Plant Path. 103: 753-765.

الملفص العربـي

Botrytis fabae عزل جيـن الكايتنينيز المستحث أثناء إصابـة الفول البلكي بـواسطة فطر


```
    قسم أمراض النبت .كلية الزراءة ، ججلمعة القاهرة ، الجيزة ، مصر.
    قت الورالةة . كلية الزراعة، جلمعة القاهرة، الجيزة، مصر.
مع****
```

 الثشيكو لاتى ، وتم استخدام احد عزلات فطر Botrytis fabae المنقى من عينة فول نباتية مجمعة من منطقة النوبارية (محافظة البحيرة، مصر) في عمل تجربة العدوى الاصطناعية. وقد تم عمل التحليل الكمي و النوعي للبروتينات الكلية المعزولة من النباتاتات

 يتم التعبير عنه في المر احل المبكرة في أوراق الفول البلاي المصابة ، حيث أوضحت النتائج ظهور شظية لجين الكايتينيز ذات وزن

البلمرة التنسلسل داخل ناقل بلازميدى pGEM-T-Easy وقد تم اختيار أربع بلازميدات (متحورة) سميت PNAM1 , PN1 PNAM4 , PNAM3 , PNAM2 أظهرا نتائج موجبة باستخدام كل من البادئات المتخصصة و الثمولية . .تم عمل تحلبل التتابع

[^0]: Arab J. Biotech., Vol. 10, No. (2) July (2007):289-300.

[^1]: Arab J. Biotech., Vol. 10, No. (2) July (2007):289-300.

[^2]: Arab J. Biotech., Vol. 10, No. (2) July (2007):289-300.

