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HE MAPPING of saline soils is the first task before any

reclamation effort can be conducted. Soil salinity is determined,
traditionally, by soil sampling and laboratory analysis. Recently, it
became possible to complement these hard data with soft secondary
data made available using field sensors like electrode probes or
satellite images. Estimating spatial variability of soil salinity is an
important issue in precision agriculture.

In this study, geostatistical method of cokriging, were applied to
estimate and identify the spatial variability of soil salinity with ECe
measurements in 200 km? agricultural fields in the north and south
Bahariya oasis. In cokriging, more densely sampled secondary data
from the ETM satellite image source were incorporated to improve the
estimation of the electrical conductivity (ECe). The estimated spatial
distributions of ECe using the geostatistical methods with various
reduced data sets were compared with the extensive salinity
measurements in the large field. The results suggest that sampling cost
can be dramatically reduced and estimation can be significantly
improved using cokriging. Compared with the kriging results using only
primary data set of ECe, cokriging with reduced data sets of ECe
improves the estimations greatly by reducing mean squared error and
kriging variance up to 70% and increasing correlation of estimates and
measurements about 25%. Relative improvements in map accuracy were
highest (25% to 38%) in regression colocated cokriging approach,
which also performed better than ordinary kriging method that utilized
only one ancillary variable. The relative gain from incorporating remote
sensing secondary information increased with decreasing sampling
density. The results of these models allow to interpolate and classify
salinity on a more realistic and continuous scale. "

Keywords: Soil salinity, Spatial variability, Cokriging algorithm,
Colocated cokriging .

Soil salinity limits food production in many countries of the world. There are
mainly two kinds of soil salinity: naturally occurring dryland salinity and human-
induced salinity caused by the low quality of water. In both cases the
development of plants and scil crganisms are limited leading to low yields. In
Bahariya oasis, where more than 10% of the land is affected by salt, groundwater
and inadequate drainage conditions are the major causes of salinization.
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Generally, the classical soil survey methods of field sampling, laboratory
analysis and interpolation of these field data for mapping, especially in large
areas is relatively expensive and time consuming. Remote sensed data might be a
useful tool to overcome these problems. Dwivedi (1992) used Landsat MSS and
TM data for more detailed mapping and monitoring of the salt affected soils in
the frame of the reconnaissance soil map of India. Also, De Dapper & Goossens
(1996) indicated the development of GIS and remote sensing for monitoring and
predication of soil salinity in the Desert-Delta fringes of Egypt.

Conventionally (Soil and Plant Analysis Council, 1992) soil salinity is
determined by laboratory analysis (electrical conductivity of the saturated soil
paste extract ECe). This procedure is expensive and time-consuming, and
provides an incomplete view of the extent of soil salinity. An alternative to
laboratory analysis is to assess soil salinity in the field by determining the
apparent electrical conductivity (ECa). This can be done using sensors such as
the four-electrode probes (Rhoades & van Schilfgaarde, 1976) or by
electromagnetic induction instruments (McNeil, 1980). This procedure is
cheaper and less time-consuming and enabling a more intensive survey of the
study area. Creating maps tvpically involves sampling, measuring the variable of
interest and estimating values at unsampled locations through some form of
interpolation, plain regression, data aggregation, or other prediction techniques
(McBratney et al., 2003).

Geostatistics offers a collection of deterministic and statistical tools aimed at
understanding and modeling spatial variability. Hybrid geostatistical procedures
that account for environmental correlation have become increasingly popular in
recent years because they allow utilizing secondary information that is often
available at finer spatial resolution than the sampled values of a primary target
variable. If the correlation between primary and secondary variables is
significant, hybrid techniques generally result in more accurate local predictions
than ordinary kriging or other univariate predictors (Goovaerts,1999; McBratney
et al., 2000; Odeh et al., 1994 and Triantafilis et al., 2001).

Cokriging is the extension of kriging to more than one variable. It is most
likely to be beneficial where the primary variable is under sampled with respect
to the secondary variable (s) that are assumed to be correlated with the primary
variable. In some applications there are only a few measurements of the attribute
of interest; the resultant. predicated maps have poor resolution and the
corresponding uncertainty may be very large. In such situation it is critical to
account for secondary, indirect information that may be more densely sampled
(Goovaerts, 1997).

In this way, colocated cokriging is as reduced form of full cokriging. It
requires only knowledge of the semivariogram of the primary variable and the
cross-variogram between the primary and secondary variable (Curran &
Atkinson, 1997). Furthermore, the combination of geostatistics and remote
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sensing techniques has been used before to study and assess the magnitude and
extent of spatial variability in soil salinity (Lesch er al.. 1995; Christakos & Li,
1998 and Darwish, 1998).

This study aims to map soil salinity in the northemn and southern part of
Bahariya oasis using geostatistical techniques. integrating a limited data set of
soil salinity measurements (ECe) as a primary variable with ETM satellite image
as a secondary data source. The result of this methodology will be qualified
using the cross validation method.

Material and Methods

Study site description

Bahariya depression is located nearly in the middle of the Western Desert of
Egypt and comprising a total area of approximately 2250 km” (Fig.1). The area
falls under the arid condition as the total rainfall is 3-6 mm/year. Springs and
wells are the main two groundwater resources for irrigation and civic purposes
(Salem, 1987). In Bahariya, it is found that the main unsuitability criteria
eliminating more extend of cultivation areas is the excess of salts. In this
research, two study areas were selected. One is in the north of Bahariya covering
an area of about 118.3km’ and the second is covering partly the southern part of
it with an area of 77.5km’ (Fig. 2).

S ranas

Fig. 1. Location of Bahariya Oasis. Fig. 2. The study areas in N and S Baharyia
© LANDSAT 7 ETM Image (21/4/2002)
Order-No: 3000-0001.

Data description

Based on the field work and ground truth data obtained, 45 soil profiles and
71 soil augers were examined in different locations. Fig. 3a and 3b show the
location of the observation sites where soil samples were taken. Four transects in
area-1 and -2 in the southern one. Electrical conductivity soil salinity
measurements (ECe) dS/cm was determined in the soil water extract out of the
saturated soil paste. Total of six sample areas were selected and distributed over
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the study areas with a fixed width of 1km for each. The exact locations of the

soil profiles and auger points were precisely defined in the field by using the
DGPS and plotted on the maps.
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Fig. 3a. Location of sample points in
study area-1 (North).

Fig. 3b. Location of sample points in
studv area-2 (South).

Figure 4a and 4b show the frequency distribution of ECe (dS/cm) values in
study areas-1 and -2 respectively. The first one exhibit abnormal distribution,
while the second is somewhat normally distributed, which does not deemed Ln
transformation. Log-normally distributed data, for example, can be made to more
closely follow a normal distribution by applying the formula Ln (z) to each z
variant in the data set prior to statistical analysis. The success of the
transformation can be judged by observing its frequency distribution before and
after transformation. Although the L» transformation ECe semivariogram can

give a better fitting, but the problem of back transformation through the
estimation procedure is limiting its usability.
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Fig. 4a. Frequency distribution of ECe
values in study area-1 .
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Fig. 4b. Frequency distribution of ECe
values in study area-2.
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Method of geostatistical analysis

The variability of soil salinity representing horizontal distribution of salts in
continuous model was mapped. The study shows that it is possible to map soil
salinity variability using an appropriate interpolation technique. The part of the
study, as reported here, includes reconstructing the spatial variability of salinity;
and evaluating the accuracy to predict electrical conductivity measurements.
Geostatistical methods can be used to measure and model the spatial correlation
of soil salinity measurements as a primary variable and the satellite image as a
secondary data variable. The models of spatial correlation are then used along
with Kriging and the new geostatistical technique of Colocated Cokriging to
develop large scale maps showing the spatial pattern of soil salinity status in the
selected study area.

Colocated cokriging

As mentioned before, Cokriging is the extension of Kriging to more than one
variable. Colocated Cokriging is a reduced form of full Cokriging.
Considering Z (the primary variable) = | and Y (The secondary variable) = 2
Then, Colocated Cokirging with Markkov-type approximation of attribute Z at
location X is given by:

Z* ook (W) = nimy X Ay (W) Z () + A2 (u) [Y (u) +m, - my] Q)

Where: Z*cok (u) = cokriging estimator of Z(u).
Ali (u) = cokriging weight associated to neighboring datum Z(u) for
estimation at location u.
A2 (u) = cokriging weight associated to collocated secondary datum Y(u).
m. = mean of the primary variable (ECe measurements).
m, = mean of the secondary variable (Satellite data).

In this study, colocated cokirging geostatistics method was applied to map
soil ECe values, from available ECe data as primary data and ETM Satellite
image as densely sampled secondary data source. When the collocated secondary
variable Y (u) is known everywhere and varies smoothly across the study area
(e.g., satellite data & surface reflectance) there is little loss in retaining in the
cokriging system, provided that it is available at each location u being estimated
(Xu et al., 1992 and Goovaerts, 1998b). This is clear the case in remote sensing
where the secondary variable is provided by remotely sensed imagery data,
which often completely covers the area of interest. |

Selection of the imagery

Two smaller windows of a complete Landsat 7 Enhanced Thematic Mapper
(ETM) satellite image of Bahariya Oasis dated in (21-04-2002) were chosen to
be used in this study (Fig.2). The False Color Composite (FCC) of these image
windows is covering area-1 as shown in Fig. 3a and area-2 in Fig. 3b. The first
image window is within the Northern part of Bahariya depression, which is
covering most of the villages located there. The second one is covering partly the
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southern part of Bahariya. The following geo-morphological features are covered
by image one from north to south:

1- Maysera Plateau, escarpment and plateau footslope.

2- Mandisha Hill, hilland and footslope.

3- Peneplain sand sheet and rock out crop.

4- Plain sand sheet, sand flat and plava.
On the other hand, the following geo-morphological features can be recognized
in image two: _

1. Plain sand sheet, sand flat, playa and isolated conical hills.

2. Plateau footslope and escarpment.

Results and Discussion

Exploratory data analysis

Some statistics about the hard data (ECe) for areas-1 &-2 are reported in
Table 1. It was noted the presence of a strong spatial variability. For example in
areas-1 & -2, there is a big difference between the extreme values (minimum and
maximum). [n addition, to improve estimation accuracy, the correlation between
the primary and secondary variables should be as high as possible. Therefore, the
Pearson correlation coefficient was applied on the ECe values that were available
and the colocated reflectance measurements provided by the eight spectral bands
of the ETM image.

TABLE 1. Statistical summary of ECe (dS/cm) data

Items Mean Stand. Devia. | Sample variance Min. Max.
Area 1 (N) 37.27 46.51 2163.06 0.96 178.0
Area 2 (S) 51.26 39.41 1552.79 0.86 132.0

It is found, that the highest correlation (»=0.3) of the ETM bands with the
EC observations is signed for the ETM low gain band 6 (Fig. 5). At study areas-1|
and -2, the relationship between EC and surface reflectance REF was probably
masked by the sand sheet and flat layer on the soil surface, which had
accumulated as a result of geological history and greatly affected surface
reflectance shown in the satellite image, but not mainly EC.

The oldest rocks exposed within Bahariya depression are sandstone, siltstone
and clay of Cenomanian age that cover the floor of the depression and crop out
along the base of the escarpment (Parsons, 1962). In this way, the secondary
variable could be determined for every pixel covered by the image.
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Fig.S. The Correlation Coefficient statistical analysis among primary and
secondary variables (All correlations were significant at P < 0.001

level) .

On the other hand. the frequent distribution of the colocated reflectance
measurements of ETM low gain band 6 for area-1 and -2 is illustrated in Fig. 6a & 6b.
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Iig. 6a. Frequency distribution of ETM
low gain band 6 for area-1.

Fig. 6b. Frequency distribution of ETM
low gain band 6 for area-2 .

The retlectance values of ETM LG band 6 were standardized to zero mean
and unit variance for each study area and re-combined into one data set of
standardized the field surface reflectance (REF) for whole study area. The
confirmed Regression Coefficient of (ETM LG band 6) with the EC observations
for study areas-1 and -2 is indicating relatively higher correlation for area-1 than

area-2 (Fig. 7a & 7b).
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Fig.7a. The Regression Coefficient among variables (Z & Y) in area-1.
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Fig.7b. The Regression Coefficient among variables (Z & Y) in area-2.

Structure analysis

It is necessary to analyze the spatial variability of the data above by
semivariance function. Fig. 8a and 8b illustrate the semivariance value of
primary variable (ECe) of study areas-1 & -2. The sill of EC in areas-1 & -2 are

2620.0 m and 1845.0 m and their correlation lag range 3710.0 m and 1120.0 m
respectively.
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Fig. 8a. Isotropic variogram (spherical model) of ECe (dS/cm) in area-1.
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Fig. 8b. Isotropic variogram (spherical model) of ECe (dS/cm) in area-2.

The variogram shows a relative nugget effect of 11.7% for study area-1 and
10.0% for area-2, which could be calculated through this ratio [(C0/(C0 + C)) x
100] between nugget variance and sill. The nugget effect looks more significant
in study area-2 than area-1, which causes by random factors. On the other hand,
as Cokriging is a multivariate extension of kriging, when the secondary variable
is known everywhere and varies smoothly across the study area (e.g., collocated
reflectance measurements provided by ETM low gain band 6) there is little loss
in retaining in the cokriging system.The secondary variable provides information
only about the primary trend at location u.
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In order to apply a colocated cokriging method a cross-semivariance analysis
must be performed prior to cokriging, where CZY (u; - u) is the cross covariance
between primary and secondary variables at locations u; and u, respectively.

Again, the common practice consists of estimating and modeling the (cross)
semivariogram, then retrieving the (cross) covariance. Fig. 9a and 9b show the
experimental semivariogram of the secondary variable ETM LG band 6 and
cross semivariogram with the primary one (ECe point observations) for study
area-1, computed as:
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Fig. 9a. The semivariogram of secondary variable for study area-1.
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Fig. 9b. The cross-variogram of primary and secondary variables for area-1.
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The sampling interval can be determined based on the semivariograms. In
Fig. 9a & 9b, an exponential model of isotropic variogram was fitted for the
secondary variable (ETM LG 6) using an iterative procedure developed by
Goulard (1989). The cross-variogram between the primary and secondary data
sets is modeled (here a small nugget effect 11.6 m and a spherical model with sill
232.2 m and range 3400.0 m), indicating that the intensive sampling scheme
used resolved most of the spatial variation.

Nevertheless, Fig. 10a & 10b illustrate the experimental semivariograms of
the secondary variable (ETM LG 6) and the cross-variogram in study area-2. At
area-2, the isotropic variogram of (ETM LG 6) shows a spherical model with a
sill of 164.7m and a fitted range of 1150.0 m, which probably reflected gradual
differences in EC due to elevation. The cross-variogram between the primary
and secondary data sets in area-2 modeled linearly with sill of 0.1m and range of
0.75m. Although in study area-2, EC was less significantly correlated with the
secondary variable compare with area-1, only a small portion of the variation in
EC can be explained by variation in elevation.

Generally, cross-variograms largely confirmed the findings of the simple
correlation analysis, showing (i) more spatial correlation between EC and ETM
LG 6 at area-1 and (ii) declining spatial correlation between EC and ETM LG 6
at area-2 (Fig. 10b). This proves the existence of correlation between spatial
variability of the soil salinity data, which belongs to nugget effect.
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Fig. 10a. The semivariogram of secondary variable for study area-2.
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Fig. 10b. The cross-variogram of primary and secondary variables for area-2.
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Colocated Cokriging of EC point observations with ETM as secondary data source

The colocated cokriging interpolated maps cover study areas-1 and -2 as
shown in Fig. 1la & 12a. The ordinary cokriging algorithm was applied to
interpolate the EC data using GS+ program.

As a result of using search neighborhood area as indicated in the cross-
variograms of area-1 and area-2, quite lots of areas were closed to the primary
observation points and this give high effect of the secondary data. Closer to
primary observation points this effect is more screened by the available primary
data and this significantly improved the accuracy of colocated EC maps.
However, the visual interpretation of the EC colocated map of area-1 in relation
to the DEM (digital Elevation Model) grid image of each area give a good
impression that the estimation of salinity values is logical, taken into
consideration the location from the salt effected soils (playa), the relatively lower
elevation units (depressions) and the position in landscape in the oasis (Fig. 11b).
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Fig. 11a. [nterpolate-mlnnnte;:l cokriging map of EC (dS/cm) of the study area-1
(North of Bahariya).
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Fig. 11b. The Digital Elevation Model (DEM) map of area-1.
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On the other hand, the relatively high ECe (dS/cm) values that are
pronounced and presented as connected counter lines are expressing the arcas
where low elevation and much salinity features are available. This is clear
presented for area-2 in Fig. 12b. This quite validating the estimated interpolated

cokriged maps obtained. Obviously, there is a visually better resolution of spatial

detail in the EC colocated cokriging interpolated maps
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Fig. 12a. Interpolate-colocated cokriging map of EC (dS/cm) of the study area-2.
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Perform cross validation analysis

To assess the accuracy of the colocated cokriging estimated maps, there is a cross
validation analysis for evaluating effective parameters for cokriging. In cross-
validation analysis a graph can be constructed of the estimated vs. actual values for
each sample location in the domain. The cross validation analysis of study areas-1
and -2 are presented in Fig. 13a & 13b. Each point on the graph represents a location
in the input data set for which an actual and estimated value are available.
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Fig. 13a. Cross Validation (Cokriging) of study area-1.
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Fig. 13b. Cross Validation (CoKriging) of study area-2.
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The regression coefficient, which is describing the linear regression equation
is for (area-1) = 0.3 and for (area-2) = - 0.4. The standard error of the regression
coefficient (SE = 0.36, 0.39 for area-1 & -2 respectively). The r2 value is the
proportion of variation explained by the best-fit line (in case of (area-1) = 2.6%
and 10.2% for (area-2) and the y-intercept of the best-fit line is also provided.
The SE Prediction term is defined as SD x (1 - r2) 0.5, where SD = standard
deviation of the actual data (45.9 and 37.3 for areas-1 & -2 respectively).

Generally, the method of colocated cokriging significantly improved the accuracy
of interpolated cokriged EC maps, as shown by a reasonable acceptable regression
coefficient values in both study areas. For cokriged EC, patterns in the interpolated
EC maps closely resembled those of the DEM maps, indicating that this method is
also more vulnerable to potential artifacts in ancillary variables. In study areas | & 2,
both the primary variate (ECe measurements) and secondary one (surface reflectance
derived from ETM satellite image) contributed significantly to predicting the local
means of ECe.

However, it is clear that the spatial variability of area-2 is comparatively less
than that in area-1. The main reason for this weakness of spatial variability in
area-2 could be referred to the lack of EC sampling points available and still to
the high influence of the ECe (dS/cm) extreme values on neighboring locations.

Although two sites were used in our study, the range in soil types and terrain
conditions was limited. Clearly, more work needs to be done, to develop a
flexible, more generic framework for soil salinity mapping at different scales and
in different environments. Of particular interest is what secondary data source
(e.g., surface reflectance derived from satellite images) are most suitable for EC
mapping across larger regions, for which detailed on-thego mapping of EC or
similar properties is not feasible. Our study indicates great potential for reducing
sampling demand in digital soil salinity mapping when a cokriging approach is
used. However, the reduction of sample size tested here (Fig. 13a & 13b) was
somewhat arbitrary. Better procedures are needed for optimizing sampling with
regard to covering the variation in primary and secondary variables in both
feature and geographic spaces, including situations where little prior information
about the target variable is available.

Conclusion

The spatial distribution maps drawn based on cokriging interpolation method
explain clearly the spatial variability of soil salinity in north and south study
areas of Bahariya oasis. Geostatistical method of collocated cokriging that
utilized spatially correlated secondary information increased the quality of maps
of soil salinity (ECe measurements) as compared to ordinary kriging method.
Apparent EC cokriged with surface reflectance derived from satellite images
performed best in terms of increasing map accuracy. In this method, relative
improvements in map accuracy over ordinary kriging method ranged from 19%
to 38% at the two study areas and there was little loss of accuracy when

Egypt. J. Soil. Sci. 47, No.2 (2007)



114 KH. M. DARWISH et al.

sampling intensity was reduced by half as shown in area-2. The ETM LG band 6
secondary data source is considered valuable one for detailed mapping of EC at
the field scale, whereas the relative value of terrain atiributes varied
geographically.

Indeed, there are different original factors have influenced the final output of
the cokriging logarithm technique. Those factors can be related to the issues of
sampling, the spatial distribution of the soil salinity measurements in the space,
the total number of the observation points and the variability of the ECe data set
obtained. In addition, most secondary information (ie., satellite image data)
contains uncertainties that may mask relationships with EC values, or other soil
properties of interest. Furthermore, relying on a single secondary attribute is
risky because (i) the variable chosen may not be related to the pripary variable
of interest and (ii) field artifacts or errors in the secondary information could
cause significant errors in the EC prediction.

Improving those factors especially in the south study area-2, would play an
important role for receiving more accurate results out of this interpolation
method.

At the end of the whole procedure, it is still manage successfully to use the
obtained interpolated EC salinity maps. To reduce uncertainties, we recommend
using independently measured, multivariate secondary information in estimating
spatial variability of soil salinity approach.
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