ESTIMATION OF EVALUATION INDEX VALUES IN DIFFERENT LOCAL AND IMPORTED HYBRIDS OF SILKWORM, BOMBYX MORI L.

USAMA M.M. GHAZY

Sericulture Research Department-Plant Protection Research Institute – Egypt.

ABSTRACT

Forty two of silkworms, *Bombyx mori* L. hybrids were evaluated by using Evaluation Index Methods. Including thirty seven of local hybrids and five hybrids imported from different countries during Spring 2006. Hybrids of CXH, DXF, FXA, FXD and GXK acquired best values of Evaluation Index for all traits except for fifth instar duration. So that, these local hybrids can be used instead of the imported hybrids.

INTRODUCTION

The power of hybrids and phenomenal contribution of hybrid vigour to silkworm improvement. However, unlike in many plant species like rice where highly inbred lines are used for commercial exploitation, in the silkworm, only the hybrids of highly inbred lines or of different breeds are used (Yokoyama, 1979; Gamo and Hirabayashi, 1983 and Krishnaswami *et al.*, 1964). Heterosis or hybrid vigour is the phenomenon in which the crosses of two different varieties or lines produce a hybrid that is superior in growth, size, yield or general vigour (Falconer, 1981).

The present study an attempt to evaluate some local and imported silkworm hybrids using Evaluation Index method.

MATERIAL AND METHODS

Ten local races of silkworm *Bombyx mori* L. namely EchP. DchP. NoviP. NoviM. DjP, DjM, EjP, EjM, 380 and SA105P were used for hybridization. These races were coded as A, B, C, D, E, F, G, H, I and K, respectively. These races were obtained from Sericulture Research Department-Giza-Egypt.

Hybridization between local races were made by using male of race D was mated with E, F, H, I and K. Female of A, B, E, G, H and I were crossed with male of race K. C male was mated with B, D, E, F, H and G females. Male of race B crossed with A, C, I and K females. Also, male of F mated with females of B, D, E and H. G male crossed with E, F, and K. H male was mated with females of A, C, F, and K. Male of race I was crossed with H and K. Male of race A was mated with females of B and F. So, thirty seven of single local hybrids were obtained.

Also, evaluation is including five F_1 hybrids imported from different countries during Spring 2006. These hybrids are HQIX.XJIUF and HBBX.DT which imported from China and coded as China 1 and China 2, respectively. Hybrids of $C_1X.X_2$ and Bp35X M₂ which imported from Bulgaria and coded as Bulgaria 1 and Bulgaria 2. And Japon X Cin imported from Turkey and coded as Turkey. So, the investigation is including forty two hybrids.

Silkworm rearing was carried out according to Krishnaswami 1978. Three replicates from each hybrid were reared during Spring season of 2006 (April- May) under the laboratory normal conditions at 22.79°C and 75.34 % RH. Three hundred larvae were retained after third moult per each replicate. Data were accrued for nine economic traits namely cocoon weight (CW), cocoon shell weight (CSW), pupal weight (PW), cocoon shell ratio (CSR), silk productivity (SP), fifth instar duration (FID), total larval duration (LD), pupation ratio (PR) and double cocoon percentage (DCP). The weights of cocoon, cocoon shell and pupa were recorded by gram, while cocoon shell ratio, pupation ratio and double cocoon as percentage, fifth instar duration and total larval duration recoded by day and silk productivity were recorded by centigram/day.

Cocoon shell ratio for each entry was calculated according to Tanaka (1964) as follows:

Silk productivity was estimated by using formula of Chattopadhyay et al., (1995).

Cocoon shell ratio (%) =
$$\frac{cocoon shell weight}{fresh cocoon weight} x100$$

Silk productivity (cg/day) = $\frac{Cocoon shell weight (cg)}{fifth instar duration (day)}$

Where cg: Centigram

Double cocoon percentage and pupation ratio were calculated according to the following formulae of Lea (1996):

Double cocoon percentage (%) = <u>Number of pupae made double cocoon</u> <u>Total number of pupae harvested</u>

Pupation ratio (%) =
$$\frac{\text{Number of health pupae}}{\text{Corrected basic number of examined}}$$

Evaluation index were calculated by using the following formula according to Mano *et al.*, (1992):

Evaluation index (EI) =
$$\frac{(A-B)}{C}$$
 X10 + 50

.

Where:

A= Value obtain for a particular trait of the particular hybrid.

B= Mean value of the particular trait of all the considered hybrids.

C= Standard deviation (n-1) of a particular trait of all the considered hybrids.

10 = standard unit, 50 = Fixed value

In order to judge superiority of hybrid genotypes impartially, a common evaluation index is necessary to be adopted giving equal emphasis to all the commercial economic traits. The average of evaluation index value fixed to select a hybrid genotype is over 50. Only the hybrids with an evaluation index value higher than 50 have been considered of great economic importance.

RESULTS AND DISCUSSION

The averages of performance of forty two hybrids are found in Table 1. Data reveal that, hybrid of Bulgaria 1 acquired higher value of weights of cocoon, cocoon shell and pupa also, cocoon shell ratio among the imported hybrids.

KXD hybrid earned higher values of mean performance of weights of cocoon and cocoon shell also, for cocoon shell ratio and silk productivity characters among the local and the imported hybrids.

Hybrids of CXH, DXF, FXA, FXD and GXK acquired best values of Evaluation Index for all traits except for fifth instar duration. Also, the previous hybrids earned best values of the average of Evaluation Index (Table, 2).

From the previous results, it could be concluded that, hybrids of CXH, DXF, FXA, FXD and GXK can be used instead of the imported hybrids. Similar findings were reported by Babu *et al.*, (2002) who evaluated eighteen new bivoltine silkworm *Bombyx mori* L. hybrids by using evaluation index method. The results indicated that one hybrid combination being the best among the 18 hybrids.

TABLE (I)

Performance of some local and imported hybrids of silkworm, <i>Bombyx mori</i>	Performance o	f some local	and imported	hvbrids of silkworm	. Bombyx mori I
--	---------------	--------------	--------------	---------------------	-----------------

Performance of some local and imported hybrids of silkworm, Bombyx mori L.									
	CW	CSW	PW	CSR	FID	SP	LD	DCP	PR
AxB	1.241	0.257	0.988	21.063	9.000	2.860	35.000	5.294	93.664
AxH	1.281	0.264	1.018	20.775	9.000	2.939	43.000	3.030	95.652
AXK	1.392	0.292	1.092	21.200	9.000	3.248	35.000	0.000	29.167
BxA	1.098	0.253	0.828	23.347	9.000	2.807	35.000	10.204	97.030
BxC	0.978	0.183	1.014	18.921	9.000	2.037	35.000	9.551	99.441
<u>BxF</u>	1.001	0.221	0.778	22.398	8.000	2.765	34.792	3.306	92.366
BxK	1.059	0.204	0.859	19.471	9.000	2.270	36.000	5.607	89.916
CXB	0.974	0.235	0.786	24.245	9.000	2.607	34.792	4.545	72.131
CXE	1.239	0.249	0.989	20.327	9.000	2.767	35.000	3.077	95.588
CXH	1.271	0.309	0.974	27.538	9.000	3.435	35.000	3.200	98.425
DxC	0.901	0.173	0.736	19.208	9.000	1.918	37.792	0.000	70.423
DXE	1.161	0.255	0.903	22.354	9.000	2.838	35.000	2.273	95.652
DxF	1.270	0.283	0.989	22.586	9.000	3.148	35.000	2.740	98.649
ExD	1.077	0.258	0.856	24.446	8.000	3.230	34.792	0.000	98.030
EXF	1.224	0.236	0.969	19.500	8.000	2.947	35.000	1.237	88.828
EXG	1.381	0.295	1.108	21.621	9.000	3.280	36.000	5.430	91.322
EXK	1.289	0.299	1.046	23.400	9.000	3.326	34.792	12.075	92.982
<u>FxA</u>	1.271	0.279	1.006	22.083	9.000	3.099	35.000	4.317	100.000
FxC	0.982	0.189	0.790	19.359	9.000	2.098	35.000	1.724	97.890
FxD	1.249	0.296	0.960	23.451	9.000	3.294	35.000	3.822	98.125
FXG	1.373	0.285	1.100	20.994	9.000	3.171	35.000	2.976	95.455
FxH	1.003	0.184	0.813	18.461	8.000	2.301	36.792	2.963	97.826
GXC	1.215	0.242	1.143	20.205	9.000	2.685	35.000	5.405	98.813
GXK	1.240	0.279	1.011	22.739	9.000	3.098	35.000	0.000	98.649
HXC	1.352	0.284	1.066	21.077	9.000	3.157	35.000	4.681	95.723
HxD	1.106	0.243	0.856	22.014	8.000	3.043	36.000	0.000	98.824
HXF	1.205	0.244	0.986	20.464	8.000	3.052	35.000	6.452	96.875
HXI	1.181	0.229	0.914	19.990	9.000	2.549	35.000	2.128	99.471
HXK	0.763	0.148	0.613	19.314	10.000	1.478	36.000	0.000	83.721
IXB	1.280	0.289	0.995	22.921	9.000	3.211	35.000	15.068	97.333
IXD	1.186	0.271	0.920	23.102	10.000	2.713	35.000	1.835	90.083
IXK	1.142	0.244	0.903	21.566	9.000	2.707	35.000	3.544	96.107
KXB KXD	1.212	0.258	0.955	21.573	9.000	2.872	35.000	4.225	95.946
KXD	1.460	0.315	0.964	25.274	9.000	3.497	35.000	2.727	88.710
KXG KYH	1.136	0.231	0.899	20.492	9.000	2.564	35.000	10.619	96.996
KXH KYI	1.052	0.201	0.850	19.325	8.000	2.511	33.792	9.217	91.176
KXI China 1	1.331	0.291	1.022	22.413		3.229		0.000	78.125
<u>China 1</u> China 2	0.933	0.200	0.739	21.850	11.000	1.817	41.000	11.905	
	0.947	0.214	0.742	22.903	9.000	2.380	39.000	6.742	79.821
Bulgaria 1 Bulgaria 2			0.991	20.662	9.000	2.851	38.000	2.312	77.232
Turkev	1.332	0.297	1.017	22.518	11.000	2.699	42.000	2.817	74.737
	1.195	0.244	0.949	20.690	9.000	2.706 2.791	39.000	8.451	86.850
Average	1.172	0.250	0.932	21.615	8.976		35.918	4.417	90.517
SD	0.154	0.040	0.117	1.874	0.643	0.460	2.044	3.743	12.551

TABLE (II)

Evaluation I	Index w	ables of	some lo		innorte		le of sitt	wom	Rounbur	- morei T
Lyandhon	CWI		PW	CSR	FID	SP	LD	DCP	PR	average
AxB		51.930					45.510		52.507	51.166
AxH							84.652			55.813
AXK							45.510		1.120	47.951
BxA							45.510			51 459
BxC							45.510			45.998
BxC BxF							44.492			44.455
BxK							50.403			45.100
СХВ		46.314					44.492			45.724
CXE							45.510			49.783
СХН							45.510			57.697
DxC		30.983					43.310 59.170		33.990	38.494
DXE							45.510			
		58.340								49.721
DxF		52.172			34.829		45.510 44.492		55.986	53.379 48.631
EXD										
EXF			53.182				45.510			46.196
EXG		61.268			50.370		50.403			56.083
EXK		62.306			50.370		44.492	70.460	51.964	57.573
FxA		57.237			50.370	56.692	45.510		57.555	53.600
FxC							45.510			41.992
FxD							45.510		56.062	54.457
FXG									53.934	
FxH									55.823	
GXC	+	48.048					45.510			51.581
GXK			56.814				45.510			52.409
НХС							45.510			54.176
HxD	45.679						50.403	38.201	56.618	47.262
HXF			54.607						55.066	49.537
HX I	-					44.739	45.510	43.885	57.134	47.448
нхк	-	24.854					50.403		44.585	36.571
IXB		59.728					45.510		55.431	57.559
IXD		<u>55.364</u>					45.510			51.743
IXK	48.011	48.531	47.495	49.735	50.370	48.183	45.510	47.670	54.454	48.884
КХВ				<u>49.776</u>	<u>50.370</u>		45.510	49.489	54.325	50.890
KXD	68.728	66.096	52.777	69.524	50.370		45.510	45.487	48.560	56.934
KXG	47.644	45.348	47.229	44.004	50.370	45.072	45.510	66.571	55.162	49.657
KXH		37.968					39.599		50.525	43.621
KXI	60.328	60.146	57.724	54.256	50.370	59.536	45.510	38.201	40.127	51.800
China 1									47.961	
China 2									41.478	
Bulgaria 1									39.416	
Bulgaria 2									37.427	
Turkey									47.079	
							20.001			1 - 2.000

REFERENCES

- BABU, M. R.; L. H. CHANDRASHEKHARAIAH and J. PRASAD (2002): Multiple trait evaluation of bivoltine hybrids of silkworm *Bombyx mori* L. (Int. J. Indust. Entomol., 5 (1): 37-43).
- CHATTOPADHYAY, S.; S. K. DAS; G. C. ROY; S. K. SEN and S. S. SINHA (1995): Heterosis analysis on silk productivity of three-way crosses in *Bombyx* mori L. (Sericologia, 35 (3): 549-551).
- FALCONER, S. D (1981): Introduction to quantitative genetics.(Longman Scientific and Technical. London. Third ED.438p).
- GAMO, T. and T.HIRABAYASHI (1983): Genetic analysis of growth rate. pupation rate and some quantitative characters by diallel cross in silkworm, *Bombyx mori. (Japan J. Breed., 33, 178-190).*
- KRISHNSWAMI, S. (1978): New technology of silkworm rearing. CSR & TI (Bull.no.2, Central Silk Board, 1-23).
- KRISHNASWAMI, S.; M. S. JOLLY and S. SUBBA RAO (1964): Diallel analysis of quantitative characters in multivoltine races of silkworm. (Indian J. Genet., 24,213-222)
- LEA, H. Z. (1996): Basic Principles And Practical Techniques of Silkworm Breeding. (Department of biology, Kangwon National univ., Chun chon, Korea).
- MANO, Y.; S. N. KUMAR; H. K. BASAVARAJA; N. M. REDDY and R. K. DATTA (1992): An index for combined trait selection for silk yield improvement in *Bombyx mori L. (Mulb. Seric. Res. Mysore. 10: 12).*
- TANAKA, Y. (1964):" Sericology" (Central silk Board, Bombay. 95-B Meghdoot, Marine Drive PP. 216 – 20).
- YOKOYAMA, T. (1979): Silkworm selection and hybridization. (Genetics in Relation to Insect Management. Worked papers, Rockefeller Foundation, 71-83).