RESPONSE OF Agave americana L.CV. MARGINATA PLANT TO DIFFERENT MEDIA AND WATER QUANTITIES

Shahin, S.M.¹; A.M.A. Mahmoud¹ and M.Y.A. Abdalla²

- (1) Botanical Gardens Res. Dept., Hort. Res. Inst., ARC, Giza, Egypt.
- (2) Veget. & Flor. Dept., Fac. of Agric., Mansoura Univ.

ABSTRACT

A trial was conducted at Orman Botanical Garden, Giza, Egypt during 2006 and 2007 seasons to find out the effect of weekly twice irrigation with four water quantities (75, 100, 125 and 150 ml/pot), planting in five types of media (sand, loam, san + loam (1:1 by weight), sand +10% chicken manure compost (CMC) and sand + 10% loam + 10% CMC) and their interactions on vegetative and root growth, suckers productivity, water use efficiency (WUE) and chemical composition of one-year old suckers of *Agave americana* L. cv. Marginata grown in 15-cm diameter clay pots under full sun conditions.

The obtained results indicated that plant height (cm), leaf No./plant, leaf length and width (cm), root length (cm), root No./ plant, as well as the vegetative parts and roots fresh and dry weights (g) were significantly increased with elevating irrigation water quantity and improving the quality of composed media in most cases of the two seasons. A similar trend was also gained with regard to number and length of suckers developed around the mother plant, W.U.E. (ml/g D.M), leaves content of chlorophyll a, b and carotenoids (mg/g F.W.) and the percentages of total carbohydrates, N,P and K in the leaves and roots. The highest records for all previous parameters were generally achieved when plants were irrigated with 150 ml of fresh water/pot and raised in the medium composed of sand + 10% loam+ 10% CMC, which is recommended to get the best vegetative and root growth parameters, highest quality and productivity of suckers and best chemical composition with high efficiency of the used water.

INTRODUCTION.

Agave americana L. cv. Marginata, century plant or American aloe belongs to Fam. Agavaceae, is native to North America; leaves are spreading in a basal rosette, to 1.5 m long, nearly 25 cm width, curved or reflexed at tip, margins toothed but not horny, yellowish-white to deep yellow; inflorescence paniculate, tall; flowers pale yellow. It is a very large plant with rosettes up to 3.5m wide; usually grown as an ornamental plant in semi-arid regions or in succulent collections; propagates by the suckers which develop around the old plants or by division of the rhizomes (Bailey, 1976). It is used to obtain high-fructose fermentable liquor for making mescal, a distilled alcoholic beverage similar to tequila. A fatty sap extracts from the thick leaf bases are used for making counterirritant and antirheumatic ointment (Huxley et al., 1992). A new application for this plant is the production of inulin. It is an indigestible oligosaccharide (fructan) that can be used as food additive or ingredient for food products (Coussement and Franck, 2005).

Inulin has good fat mimic properties when combined with water and it shows synergetic gelling effects when combined with gelling agents. Inulin is a prebiotic. Recent nutrition research has shown interesting results with regard to calcium absorption and colon cancer prevention by inulin (Ramirez et al., 2005). After inulin extraction, the agave bagasse can be used to obtain

agave fiberboards that have moisture and mechanical properties comparable to medium specific gravity fiberboards made by using aspen fiber (Iniguez – Covarrubias et al., 2001).

Because most cacti and succulent plants differ morphologically and physiologically from most of the other plants and exhibit crassulacean acid metabolism, and hence require less water than conventional crops and often will flourish on soils with low nutrients availability (Nobel, 1988), their use may increase in the future, specially for greening the newly reclaimed soils in arid and semiarid regions. Yet, relatively few studies have been done on commercial cactus and succulents. So, comprehensive information are still little concerning the effect of water deficit and medium components on growth, quality and chemical composition of such plant. In this respect, however, Abdel-Gayed (2001) and Shahii et al. (2006) on Agave sisalana observed that plant height, leaf No./plant, leaf length and width, as well as the vegetative parts and roots fresh and dry weights were significantly increased with raising either irrigation water amount or fertilization rate. Leaves content of chlorophyll a, b and carotenoids and the percentages of total carbohydrates, N,P and K in the leaves and roots were increased in response to either high water supply or fertilization rate. The different levels of fertilization elevated the water use efficiency, whereas increasing water supply decreased it. Similar observations were also gained by Graham and Nobel (1999) and North and Nobel (2000) on Agave desertii, Bacci et al., (2003) on Cupressus macrocarpa and Cornus alba, Knee et al., (2003) on Gleditsia triacanthos, Gymnocladus dioicus, Cercis canadensis and Robinia pseudoacacia, Karam et al., (2004) on Codiaeum variegatum and Schuch (2004) on Ruellia brittoniana, Myrtus communis cv. Compacta and Sophora secundiflora, as they all indicated that water use was varied due to the different environments, plant species, container size and medium ingredients.

The components of medium, that agaves are grown on may affect fertility, porosity, water holding capacity, bulk density, pH and conductivity of the medium, and consequently affect growth and flourishness of such plants. In this concern, Huxley et al., (1992) stated that agaves need a soil of mostly loam and sand with good drainage. Badano and Pugnaire (2004) revealed that agave plant actually invaded the Southeast of Spain with high growth rate in sandy soils.

The use of organic compost, as a cheap substitute for peat moss whose price continuously increases, in the formulation of media used for the commercial production of container grown ornamental has been investigated by many workers. In this regard, Marfa et al. (2002) reported that the following peat – substitutes: cattle manure compost, forest waste compost, pine bark compost, yard compost and raw coir improved growth of Nerium oleander, Euonymus japonicus and Viburnum tinus due to release of nutrients, especially nitrates, during the growing period. Gad (2003) on Ficus benjamina found among the following potting mixtures: clay, clay+straw, clay+ sawdust, peat moss, peat+clay, peat+vermiculite, peat+sand, vermiculite, vermiculite+straw, vermiculite+sawdust, sand+straw and sand+sawdust that peat moss alone produced the best vegetative and root growth, followed by peat+vermiculite and vermiculite+straw. High leaf

contents of N, P, K, chlorophylls a and b and carotenoids were closely correlated with the best growth obtained with the most suitable media. On the same line, were those findings revealed by Singh and Sidhu (2002) on Asparagus plumosus, Aglaonema costatum, Maranta bicolor and Nephrolepis exaltata, Strojny and Nawak (2004) on Tagetes erecta, Salvia splendens, Scaevola aemula and Verbena hybrida, Verhagen (2004) on Guinea impatiens, Hernandez-Apaolaza et al., (2005) on Pinus pinea, Cupressus arizonica and C. sempervirens, Chen and Li (2006) on Spathiphyllum and Benito et al. (2006) who reported that pruning waste compost is the acceptable component of a substrate for Lolium perenne and Cupressus sempervirens.

The present work aims to detect the beneficial effects of addition of loam, chicken manure compost or both to sand on the growth of Agave americana L. cv. Marginata under different irrigation water quantities.

MATERIALS AND METHODS

A study was consummated at Orman Botanical Garden, Giza, Egypt throughout 2006 and 2007 seasons to determine the optimum water quantity and the best medium components suitable for growing century plant (*Agave americana* L. cv. Marginata).

One-year old suckers of about 8-10cm long with 3-4 small leaves were planted on March, 15th for both seasons in 15 cm diameter clay pots filled with 1.5 kg of one type of the following media: sand, loam (physical and chemical properties of both are shown in Table a), a mixture of equal parts of sand and loam, by weight, a mixture of sand+ 10% of chicken manure compost (CMC) by weight (chemical analyses of CMC are shown in Table b), and a mixture of sand + 10% loam + 10% CMC.

Table (a): Physical and chemical properties of sandy and loamy textures used in the study.

							,.										
Soil	S.P	EC	рН	Particle	size dist	ributio	n (%)	Cat	tions	(meg/	L)	Anions (meq/L)					
texture		dS/m		C. sand	F. sand	clay	silt	Ca ²⁺	Mg ^z *	Na	K [*]	HCO32	Cl	SO ₄ 2			
Sandy	20	6.5	8.00	8.60	4.55	4.70	4.75	27.50	15.25	39.37	0.53	6.50	38.19	37.96			
loamy	39	4.1	7.70	25.10	40.50	16.00	18.40	20.50	8.00	11.88	0.19	1.56	14.07	24.94			

Table (b): Chemical analyses of the chicken manure compost (CMC) used in the study.

			 					
•	Sample	O.M. (%)	N (%)	P ₂ O ₅ (%)	K ₂ O (%)	Ca (%)	Mg (%)	
	CMC	30.7	0.96	0.50	0.83	0.42	2.00	

One sucker was raised in each pot in the open field under the full sunand was weekly twice irrigated with the following amounts of fresh water: 75, 100, 125 and 150 ml/pot beginning on March, 15th until the final harvest on October, 30th. The amount of irrigation water was not added as a percent of field capacity (F.C.) due to the variability in it for the different media used in this study, which makes the addition of irrigation water as a percent of F.C. more difficult and more subjected to fall in error.

All irrigation quantities were combined with each medium mentioned before to form twenty interaction treatments.

Split plot design was used during both seasons, as the main plot was the medium type and the sub-plot was devoted to water quantity, with three replicates as each replicate contained six plants (Das and Giri, 1986).

At the end of October, the following data were recorded: plant height (cm) from soil surface in the pot to the farthest point of the leaves, leaf No./plant, leaf length and width (cm) for the fifth leaf from the base and upward, length of the longest root (cm), root No./plant, as well as fresh and dry weights (g) of vegetative parts and roots. Number of suckers developed around the mother plant and their lengths (cm) were also registered. Total amount of water (ml)/ plant/ season was computed by multiplying number of irrigation times throughout the season, which was 64 times, by the amount of water (ml) used in each time for the different irrigation treatments. Water use efficiency (W.U.E) was calculated by dividing the total amount of water (ml)/ plant/ season by the total amount of dry matter (g)/ plant/ season to determine the quantity of water necessary for producing 1g of dry matter by century plant under various media used in the present work. In fresh leaf samples taken from the various treatments in the second season, photosynthetic pigments content (chlorophyll a, b and carotenoids as mg/g F.W.) was measured according to the method of Moran (1982), while in vegetative and root dry samples, the percentages of total carbohydrates (Herbert et al., 1971), as well as N.P and K content (Jackson, 1973) were determined.

Data were statistically analyzed as described by SAS program (1994) using Duncan's Multiple Range Test (1955) for elucidating the significancy level among means of the different treatments.

RESULTS AND DISCUSSION

Effect of different media, water quantities and their interactions on: a-vegetative and root growth:

According to data presented in Tables (1), (2) and (3), it is clear that plant height (cm), leaf No./plant, leaf length and width (cm), root length (cm), root No./plant, as well as the vegetative parts and roots fresh and dry weights (g) were generally improved in response to increasing water amount with various significance levels, specially for plants cultivated in mixture 3, followed by those grown in loam when compared to means of plants grown in the sandy medium in both seasons. Cultivating plants in mixtures No. 1 and 2 slightly improved the previous characters with few exceptions in both seasons. Best vegetative and root growth, however, was obtained from planting in mixture 3, which consists of sand + 10 % loam+ 10 % CMC, and irrigating at the level of 150 ml/pot, as this combined treatment gave, in general the utmost high averages for all previous traits in all cases of the two seasons.

Table (1): Effect of media, water quantities and their interactions on some vegetative growth traits of Agave americana L. cv. Marginata plant during 2006 and 2007 seasons.

		Plant	height	(cm)			Leaf	No./p	lant			Leaf	length	(cm)			Leaf	width	(cm)	
Type of		Water	quantit	y (ml)			Water	quantit	y (ml)			Water	quanti	ty (ml)	$\overline{}$		Water	quanti	ty (ml)	,
medium	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean
									Fi	rst sea	son: 2	006								
Sandy	11.20e	11.63e	13 10d	15,38b	12.83d	5.50fe	6.67ef	8.00de	10.00c	7.54c	11.38f	12.88e	16.73d	21.15cb	15.54c	2.7d	3.0c	3.4b	3.5b	3.15b
Loamy	14.17c	14.25c	15.13bc	17.20ba	15.19b	8.00de	8.00de	10.75cb	12.00b	9 6 9b	17.88¢c	20.75c	26.0ab	25.0ba	22.41a	3.4b	3.5b	3.7ba	4.5a	3.78ab
Mixture 1	15.835	13.28d	14.67cb	16.86ba	15.165	7.33e	8.25d	11.25bc	11.00bd	9.46b	16.17d	17.63dc	25.25ba	23.50b	20.64ba	3.5b	3.5b	4.0ba	4.3ab	3.83a
Mix' re 2	12.36de	13.63cd	13.76cd	17.67ab	14.34c	8.00de	8.90d	10.00c	10.67ct	9.39b	16.00de	16.86d	21.88cb	23.00b	19.44b	3.0c	3.2bc	3.5b	4.0ba	3.43ba
Mixture 3	14.33c	16.67ba	15.30b	21.00a	16.83a	8.67d	10.33c	12.50b	14.50a	11.50a	17.50dc	20.33c	26.10a	27.75a	22 92a	3.5b	3.7ba	4.3ab	4.7a	4.05a
Mean	13.58c	13.89c	14.38bc	17.62a		7.50c	8.43cb	10.50ba	11.64a		15.79c	1769b	23.19a	24.08a		3.22c	3.38c	3.78b	4.20a	
									Sec	ond se	ason:	2007								
Sandy	11.42e	11.56e	12.76de	15.00cb	12.69d	5.001	6.40e	b00.8	10.00c	7.35c	12.51e	13.71ed	16.58cd	20.70bo	15.87c	2.5d	2.8c	3.3bc	3.5b	3.03c
Loamy	14.50c	14.80c	15.48bc	17.48ab	15.57ba	7.33ed	8.00d	11.00cb	12.33b	9.67b	16.78cd	21.00b	24.17ba	26.00a	21.99a	3.3bc	3.4b	3.8ba	4.5a	3.75a
Mixture 1	12.86de	13.55cd	14.50c	17.00ba	14.48c	7.50de	8.00d	12.25b	11.67bd	9.93b	15.36d	18.11c	23.80ba	25.33ab	20.65ba	3.1cb	3.3bc	3.8ba	4.5a	3.68ba
Mixture 2	12.65de	13.26d	13.61cd	16.78ba	14.08c	7.00e	7.36de	10.50cb	11.67b	9.13b	15.10d	17.00c	22.00b	23.11ba	19.30b	3.0cb	3.1cb	3.4b	3.9ba	3.35b
Mixture 3	15.00cb	15.93b	16.33b	19.76a	16.76a	8.50dc	10.00c	12.67b	14.33a	11.38a	17.21c	21.80b	25.90a	26.87a	22.95a	3.3bc	3.5b	4.2ab	4.8a	3.95a
Mean	13.29c	13.82c	14.54bc	17.20a	<u> </u>	7.07c	7.95c	10.89ba	12.00a	T	15.39c	18.33b	22.49ab	24.40a		3.04c	3.22c	3.70b	4.24a	

^{*} Mixture 1: a mixture of sand + loam (1:1, w/w), Mixture 2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

^{*} Means having the same letters within a column or row are not significantly different at 5% level according to Duncan's Multiple Range Test.

This may indicate the role of enough water in preventing the synthesis of abscisic acid (ABA), which negatively affects root growth, induces defoliation, lowers absorption of minerals and then inhibiting plant growth (Hoffman et al., 1999). Moreover, Dosmann et al., (1999) concluded that Katsura ornamental tree as a drought avoider that abscises its leaves to reduce transpirational water loss, is capable of quick refolation after water becomes available due to increasing levels of auxins and gibberellins and reducing of ABA level, which might activate meristems and encourage cell division, elongation and enlargement with increasing metabolites in the plant which are reflected on more growth and heavier weight of plant parts. On the other hand, the presence of loam granules combined with manure compost (as done in mixture 3) may improve structure and texture of the medium, increase cation exchange capacity and fertility, beside raising the water holding capacity of the mixture and consequently, water up ake by plants, which leads finally to activate vital processes to produce more constituents necessary for more growth and high quality (Verhagen, 2004). Such results are in harmony with those found by North and Nobel (2000) on Agave desertii, Abdel-Gayed (2001) and Shahin et al. (2006) on Agave sisalana, Bacci et al. (2003) on Cupressus macrocarpa and Cornus alba, Karam et al. (2004) on Codiaeum variegatum and Chen and Li (2006) on Spathiphyllum.

Table (2): Effect of media, water quantities and their interactions on length and number of roots of *Agave americana* L. cv.

	1416				3 2000	oo and 2007 Seasons.									
Type of	İ	Roo	t length	(cm)		<u>.</u>	Numbe	r of roo	ts/plant						
medium		Water	quantit	y (ml)			Water	quantit	y (ml)						
	75	100	125	150	Mean	75	100	125	150	Mean					
				F	rst sea	eason: 2006									
Sandy	20.50g	29.00ed	32.00dc	40.33b	30.46d	7.36f	8.43e	11.00d	12.00dc	9.70d					
Loamy	26.67e	24.00fe	27.0e	34.00c	27.92c	9.21ed	10.00d	12.27cd	14.50c	11.50cb					
Mixture 1	22.17f	23.78fe	31.67dc	36.67bc	28.57c	9.00ed	12.78cd	13.80c	16.33b	12.98b					
Mixture 2	25.33ef	30.17d	36.0cb	34.18c	31.42b	8.76e	9.76de	11.67dc	12.78cd	10.74c					
Mixture 3	26.50e	42.50ba	44.00a	47.50a	37.63a	13.46c	13.98c	16.00b	20.17a	15.90a					
Mean	24.24d	29.89c	34.13b	38.54a		9.56c	10.99cb	12.95b	15.16a						
				Sec	ond se	ason: 2	007								
Sandy	24.10f	27.93e	31.76d	38.26c	30.51d	8.00fe	8.67ef	10.38de	12.50dc	9.89d					
Loamy	27.00e	28.80de	29.82d	40.00cb	31.41c	9.46e	10.33de	13.20c	15.41bc	12.10cb					
Mixture 1	26.64ef	28.13de	31.1 0d	37.00cd	30.72c	9.78ed	11.96d	14.33cb	16.76b	13.21b					
Mixture 2	27.36e	29.56d	36.00dc	41.04bc	33.49b	9.00e	10.00ed	12.80cd	14.00cb	11.45c					
Mixture 3	30.00d	36.76dc	42.00b	46.80a	38.89a	12.86cd	14.00cb	17.43b	21.20a	16.37a					
Mean	27.02d	30.24dc	34.14bc	40.62a		9.82d	10.99c	13.63b	15.98a						

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

^{*} Means having the same letters within a column or row are not significantly different at 5% level according to Duncan's Multiple Range Test.

Table (3): Effect of media, water quantities and their interactions on vegetative parts and roots fresh and dry weights of Agave americana L. cv. Marginata plant during 2006 and 2007 seasons.

	Ve	getativ	e parts	F.W. (3)	Vegetative parts D.W. ((g)	1	Roc	ts F.W	(g)	1	Roots D.W. (g)					
Type of	1	Water o	uantity	/ (ml)			Water	quanti	ty (ml)			Water	quantit	y (ml)			Water	quantit	y (ml)		
medium	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean	
				,					Fir	st seas	on: 20	006									
Sandy	54.85g	83.43f	149.80d	192.87dc	120.24d	5.45g	7.67f	19.42d	28.40bc	15.24c	5.17g	5.28g	17.37dc	15.30d	10.78d	1.71g	2.18fg	7.31d	6.38ed	4.40d	
Loamy		101.76ef						23.27c	30.29b	18.94b	6.60f	12.50e	20.96c	28.26a	17.08ba	2.60f	4.53e	9.42cb	10.46b	6.75b	
Mixture 1		150.48d							30.17b				17.63dc	18.87cd	13.32c	3.03fe	4.38e	7.50d	8.25¢	5.79c	
Mixture 2		130.00ed										9.83fe	19.80c	26.40ba	15.43b	2.43f	4.27e	7,80d	9.43cb	5.98c	
Mixture 3		225.00cb				12.18e	23.51c	29.10bc	39.33a	26.03a	6.46f	23.3b	22.63cb	29.20a	20.38a	3.73ef	8.68c	9.85bc	12.97a	8.81a	
Mean	104.78d	138.14c	192.71b	236.04a		9.98d	15.46c	22.84b	31.70a		5.98d	12.32c	19.68b	23.61a		2.70d	4.81c	8.38b	9.50a		
									Seco	ond se	ason:	2007									
Sandy	50.00h	82.56g	135.70e	186.73d	113.75d	5.17g	7.61gf	17.58d	26.36bc	14.18d	6.41hg	5.10h	16.81d	17.50dc	11.46d	2.10g	2.12g	7.00cd	7.25c	4.62d	
Loamy	125.34ef	106.26f	218.00c	250.00b	174.90b	9.26f	11.50e	23.43c	30.40ba	18.63cb	6.68gh	14.33ed	23.00b	29.41a	18.36a	2.65fe	5.04d	9.85b	10.78ba	7.08b	
Mixture 1	120.71fe	137.33e	226.91cb	231.63bc	179.15b	11.15e	16.44de	22.81¢	32.53ba	20.73b	7.22g	12.48e	17.32dc	19.87c	14.22c	3.40e	5.08d	7.25c	8.74cb	6.12c	
Mixture 2	86.67g	128.39ef	201.67cd	229.30bc	161.5cb	8.85f	16.50de	26.76bc	33.24a	21.34b	6.55gh	9.58f	19.70c	26.98ba	15.70b	2.78ef	4.16ed	7.74c	9.35b	5.26cd	
Mixture 3						12.33e	21.47cd	28.43b	35.46a	24.42a	7.25g	17.35dc	21.00bc	28.57a	18.54a	4.21ed	6.50dc	9.15b	12.50a	8.09a	
Mean	99.97d	132.99c	206.08b	237.57a		9.34d	14.71c	23.80b	31.60a		6.82d	11.77c	19.57b	24.47a		3.03d	4.58c	8.20b	9.73a		

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

^{*} Means having the same letters within a column or row are not significantly different at 5% level according to Duncan's Multiple Range Test.

b- Suckers productivity and water use efficiency:

As shown in Table (4), it is obvious that low and medium amounts of water (75, 100 and 125 ml/pot) caused a slight increase in the suckers produced around century plants in the two seasons, whereas raising the water quantity to 150 ml/pot induced a highly significant increment in such parameter giving 4.83 and 4.54 suckers/plant in the first and second seasons, respectively. A similar trend was observed regarding the effect of media, as all medium types slightly improved this trait, except for the mixture No. 3 that greatly increased it to 3.27 and 3.05 suckers/ plant in the first and second seasons, respectively.

On the other hand, the length of resulted suckers was greatly increased in response to either medium type or water amount treatments employed in the two seasons. The tallest suckers, towever resulted from plants irrigated with 150 ml of water/pot and cultivated in mixture No. 3, as this combined treatment elongated the length of suckers to 5.28 cm in the first season and to 5.00 cm in the second one.

Table (4): Effect of media, water quantities and their interactions on number and length of suckers developed on Agave americana L. cv. Marginata plant during 2006 and 2007 seasons.

	26a2	OHS.								
Type of		Suck	ers No.	plant			Length	of sucl	ker (cm)
medium		Water	quantit	y (ml)			Water	quantit	y (ml)	
	75	100	125	150	Mean	75	100	125	150	Mean
				Fir	st sea:	son: 20	006			
Sandy	0.00g	0.00g	1.00f	3.00d	1.00b	0 .00e	0.00e	2.13dc	2.97c	1.28c
Loamy	0.00g	1.00f	1.67e	5.16b	1.96b	0.00e	1.83d	3.00cb	3.80ь	2.16ba
Mixture 1	0.00g	1.00f	1.33fe	4.00c	1.58b	0.00e	1.50ed	2.50c	3.26bc	1.82b
Mixture 2	0.00g	1.00f	1.33fe	4.00c	1.585	0.00e	1.46ed	2.58c	3.33bc	1.84b
Mixture 3	1.00f	1.67e	2.40de	8.00a	3.27a	1.58de	1.88d	3.20cb	5.28a	2.99a
Mean	0.20b	0.93b	1.55b	4.83a		0.32d	1.33c	2.68b	3.73a	
				Sec	ond se	ason:	2007			
Sandy	0.00g	0.00g	1.00fg	3.00d	1.00b	0.00e	0.00e	2.26dc	3.00c	1.32d
Loamy	0.00g	1.00fg	1.78ef	5.33b	2.03b	0.00e	1.96d	2.86cd	3.91b	2.18b
Mixture 1	0.00g	1.00fg	1.33f	3.86c	1.55b	0.00e	1.48ed	2.45dc	3.17c	1.78c
Mixture 2	0.00g	1.00fg	1.38f	3.79c	1.54b	0.00e	1.46ed	2.67cd	3.21c	1.84cb
Mixture 3	1.33f	2.00e	2.17ed	6.71a	3.05a	1.50ed	2.00d	3.10c	5.00a	2.90a
Mean	0.27b	1.00b	1.53b	4.54a		0.30d	1.38c	2.67b	3.66a	

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

These results indicate the synergistic effects of both high supply of water and high quality of medium ingredients on supplying the growing buds with the required water and nutrients necessary for accelerating growth, and hence forming more and longer suckers. In this concern, Gad (2003) on *Ficus benjamina* pointed out that peat moss alone increased number and quality of branches per plant and shoot: root ratio followed by peat + vermiculite and

^{*} Means having the same letters within a column or row are not significantly different at 5% level according to Duncan's Multiple Range Test.

vermiculite + straw. Similarly, Benito et al. (2006) mentioned that mixing pruning waste compost with sand increased growth and number of tillers on Lolium perenne plants.

It appears from data in Table (5) that the amount of water necessary for producing 1g of dry matter in the two seasons was markedly declined in response to either increasing water quantity or improving the components of growing medium. That means that water use efficiency (W.U.E) was increased with increasing supply of water and with improving the quality of medium. In general, the best W.U.E was gained from watering with 150 ml/pot and planting in the mixture No. 3. Such results may indicate the role of increasing water supply combined with improving ingredients of the growing medium (as done in the mixture No. 3) in activating nutrients uptake and absorbing more soil water that leads to activate the vital processes, which finally result in greater growth with higher production of dry matter. On the same line were those results attained by Abdel-Gayed (2001) and Shahin et al. (2006) on sisal, Karam et al. (2004) on croton and Schuch (2004) on Ruellia brittoniana, Myrtus communis and Sophora secundiflora.

Table (5): Water use efficiency by Agave americana L. cv. Marginata plant under different media, water quantities and their

combinations during 2006 and 2007 seasons.

Total amount of water	Type of	Total D.M. (g)/plant/season	W.U.E.	. (ml/g D.M)		
(ml)/plant/season	medium	2006	2007	2006	2007		
	Sandy	7.16	7.27	670.39	660.25		
4800	Loamy	13.44	11.85	357.14	405.06		
(Treatment of 75 ml)	Mixture 1	14.31	14.55	335.43	329.90		
	Mixture 2	12.55	11.63	382.47	412.73		
	Mixture 3	15.91	16.54	301.70	290.21		
	Sandy	9.85	9.73	649.75	657.76		
6400	Loamy	15.90	16.54	402.52	386.94		
(Treatment of 100 ml)	Mixture 1	22.38	21.52	285.97	297.40		
	Mixture 2	21.00	20.66	304.76	309.78		
	Mixture 3	32.19	27.97	198.82	228.82		
	Sandy	26.73	24.58	299.29	325.47		
8000	Loamy	32.69	33.28	244.72	240.39		
(Treatment of 125 ml)	Mixture 1	29.00	30.06	275.86	266.13		
	Mixture 2	28.70	34.50	278.75	231.88		
	Mixture 3	38.95	37.58	205.39	212.88		
	Sandy	34.78	33.61	276.02	285.63		
9600	Loamy	40.75	41.18	235.58	233.12		
(Treatment of 150 ml)	Mixture 1	38.42	41.27	249.87	232.62		
	Mixture 2	39.73	42.59	241.63	225.41		
	Mixture 3	52.30	47.96	183.56	200.17		
	Sandy	19.63	18.80	473.86	482.28		
	Loamy	27.70	25.71	309.99	316.38		
Medium mean	Mixture 1	26.03	26.85	286.78	281.51		
· -	Mixture 2	25.50	27.35	301.90	294.95		
	Mixture 3	34.84	32.51	222.37	233.02		

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

c- Chemical composition:

Data recorded in Tables (6) and (7) proved that leaves content of chlorophyll a, b and carotenoids, as well as the percentages of total carbohydrates, N, P and K in the leaves and roots were greatly increased as a result of elevating the application rate of water, while medium types slightly raised them except for the mixture No.3, which induced a marked increment in such constituents, followed by the loamy soil. The interaction between medium, and water quantity reveal that irrigation level at 150ml/pot combined with planting in the mixture No.3 gave the highest contents for the previously stated constituents. This result could be interpreted by the synergistic effect of both enough water and favourable composed medium on supplying century plants with their required water and nutrients necessary for good and healthy growth.

Table (6): Effect of media, water quantities and their interactions on pigments content (mg/g F.W.) in the leaves of Agave americana

L. cv. Marginata plant during 2007 season.

Type of	viarginata pi		antity (ml)		
medium	75	100	125	150	Mean
• •			Chiorophyll	<u> </u>	
Sandy	0.220	0.243	0.286	0.350	0.275
Loamy	0.228	0.251	0.310	0.386	0.294
Mixture 1	0.226	0.246	0.298	0.370	0.285
Mixture 2	0.223	0.245	0.286	0.346	0.276
Mixture 3	0.265	0.293	0.35€	0.476	0.348
Mean	0.233	0.256	0.308	0.386	
		(Chlorophyli	b	<u> </u>
Sandy	0.161	0.179	0.202	0.243	0.196
Loamy	0.170	0.191	0.233	0.281	0.219
Mixture 1	0.166	0.187	0.214	0.268	0.209
Mixture 2	0.164	0.181 .	0.217	0.256	0.205
Mixture 3	0.197	0.225	0.256	0.331	0.252
Mean	0.172	0.193	0.225	0.276	
			Carotenoids		
Sandy	0.109	0.132	0.150	0.178	0.142
Loamy	0.146	0.180	0.203	0.245	0.194
Mixture 1	0.135	0.167	0.197	0.248	0.187
Mixture 2	0.125	0.153	0.173	0.217	0.167
Mixture 3	0.173	0.211	0.255	0.310	0.237
Mean	0.138	0.169	0.196	0.240	

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

Such gains are in accordance with those of Graham and Nobel (1999) on Agave desertii, Abdel-Gayed (2001) and Shahin et al. (2006) on Agave sisalana, Gad (2003) on Ficus benjamina, Karam et al. (2004) on croton and Chen and Li (2006) who reported that coal fly ash, as an alternative to lime amendment, provides nutrients for Spathiphyllum plants, which was confirmed by high nutrients content in plant shoots.

Table (7): Effect of media, water quantities and their interactions on some chemical constituents of Agave

						400 10		anu i		<u>uui III</u>	<u>y 200</u>	,, <u>ac</u>								
	To	otal car	bohyd	rates (*	%)			N (%)					P (%)					K (%)		
Type of		Water	quantif	ty (mi)			Water	quantit	y (ml)			Water	quanti	ty (ml)			Water	quantit	y (ml)	
medium	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean	75	100	125	150	Mean
									******	In the	leave	8								
Sandy	25.00	28.46	31.52	36.60	30.40	0.96	0.99	1.12	1.13	1.05	0.18	0.15	0.21	0.17	0.18	1.57	1.82	2.16	2.10	1.91
Loamy	27.68	30.87	35.33	42.53	34.10	1.36	1.28	1.80	1.42	1.47	0.22	0.25	0.30	0.26	0.26	1.90	2.26	2.58	2.50	2.31
Mixture 1	26.40	28.79	34.52	38.49	32.05	1.07	1.14	1.56	1.51	1.32	0.24	0.21	0.26	0.23	0.24	1.84	2.21	2.36	2.34	2.19
Mixture 2	27.10	29.00	32.86	37.80	31.69	1.12	1.05	1.50	1.30	1.24	0.21	0.17	0.24	0.21	0.21	1.70	2.00	2.24	2.15	2.02
Mixture 3	30.45	32.68	35.78	43.55	35.62	1.40	1.48	1.89	2.00	1.69	0.29	0.30	0.35	0.11	0.34	2.10	2.33	2.60	2.67	2.43
Mean	27.33	29.96	34.00	39.80		1.18	1.19	1.58	1.47		0.23	0.22	0.27	0.26		1.82	2.13	2.39	2.35	
										In the	roots	3								
Sandy	16.48	19.04	20.38	20.16	19.02	0.89	0.98	1.00	1.07	0.99	0.14	0.16	0.17	0.15	0.16	0.50	0.68	0.70	0.63	0.63
Loamy			23.15					1.43	1.52	1.27	0.17	0.21	0.29	0.24	0.23	0.63	0.74	0.87	0.76	0.75
Mixture 1	17.41	19.36	22.61	23.80	20.80	0.93	1.17	1.31	1.46	1.22	0.15	0.23	0.26	0.23	0.22	0.56	0.66	0.69	0.68	0.65
Mixture 2							1.12	1.30	1.27	1.15	0.15	0.18	0.21	0.21	0.19	0.53	0.63	0.71	0.64	0.63
Mixture 3						1.15	1.29	1.20	1.79	1.36	0.20	0.24	0.26	0.25	0.24	0.76	0.81	0.93	0.79	0.82
Mean	18.23	20.13	22.79	23.31	I	0.96	1.16	1.25	1.42		0.16	0.21	0.24	0.22		0.60	0.71	0.78	0.70	

^{*} Mixture1: a mixture of sand + loam (1:1, w/w), Mixture2: a mixture of sand + 10% chicken manure compost (CMC) and mixture 3: a mixture of sand + 10% loam + 10% CMC.

According to the aforementioned results, it may be concluded that one-year-old suckers of *Agave americana* L. cv. Marginata grown in 15 cm diameter clay pot filled with a mixture of sand + 10% loam + 10% chicken manure compost should be twice irrigated weekly during summer months with 150 ml of fresh water/pot to get the best and healthy growth.

REFERENCES

- Abdel-Gayed, M. (2001). Physiological studies on some succulent plants. M. Sc. Thesis, Fac. Agric., Kafr El-Sheikh, Tanta Univ.
- Bacci, L.; P. Battista; B. Rapi; F.Sabatini and E.Checcacci (2003). Irrigation control of container crops by means of tensiometers. Acta Hort., 609: 467-474.
- Badano, E.I. and F.I. Pugnaire (2004). Invasion of Agave species (Agavaceae) in southeast Spain: Invader demographic parameter and impact on native species. Divers. Distrib., 10 (1): 493-500.
- Bailey, L.H. (1976). Hortus Third. Macmillan Publishing Co., Inc., 866 Third Avenue, New York, 10022. Collier Macmillan Canada, Inc., Printed in USA, 1290 pp.
- Beinto, M.; A. Masaguer; A. Moliner and R.A. Antonio (2006) Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresource Technology, 97(16): 2071-2076.
- Chen, J.J. and Y. Li (2006). Coal fly ash as an amendment to container substrate for Spathiphyllum production. Bioresource Technology, 97(15): 1920-1926.
- Coussement, P. and A. Franck (2005). New food applications for inulin. Agro Food Ind. Hi-Tech., 16(9):26-28.
- Das, M.N and N.C. Giri (1986). Design and Analysis of Experiments. 2nd Ed., Published by Mohinder Singh Sejwal for Wiley, New Delhi 110002, 488pp.
- Dosmann, M.S.; J.K. Iles and W.R. Graves (1999). Drought avoidance in katsura by drought induced leaf abscission and rapid refoliation. HortScience, 34(5): 871-874.
- Duncan, D.B.(1955). Multiple range and multiple F-tests. J. Biometrics, 11:1-42.
- Gad, M.M. (2003). Evaluation of various potting media and fertilizer levels for commercial nursery production of *Ficus benjamina* L. Assuit J. Agric. Sci., 34(4): 123-151.
- Graham, E.A. and P.S. Nobel (1999). Root water uptake, leaf water storage and gas exchange of a desert succulent: implications for root system redundancy. Annals of Botany, 84(2): 213-223.
- Herbert, D.; P.J. Phillips and R.E. Strange (1971). Determination of total carbohydrates. Methods in Microbiology, 5 (8): 290-344.
- Hernandez-Apaolaza, L; A.M. Gasco; J.M. Gasco and F. Guerrero (2005). Reuse of waste materials as growing media for ornamental plants. Bioresource Technology, 96(1): 125-131.
- Hoffman, A.; C. Shock and E. Feibert (1999). Taxane and ABA production in yew under different soil water regimes. HortScience, 34(5): 882-885.

- Huxley, A.; M. Griffiths and M. Levy (1992). The New Royal Hort. Soc. Dict. Gar., The Stockton Press, New York, 257 Park Avenue South, NY 100 10, USA. Vol. 1, 815pp.
- Iniguez-Covarrubias, G.; S.E. Lange and R.M. Rowell (2001). Utilization of by-products from the tequila industry. Part1: Agave bagasse as a raw material for animal feeding and fiberboard production. Bioresource Technology, 77(1): 25-32.
- Jackson, M.L. (1973). Soil Chemical Analysis. Prentice-Hall of India Private Limited M-97, New Delhi, India, 498pp.
- Karam, N.S.; M. J. Mohammed and N.A. Al-Lataifeh (2004). Growth and irrigation requirements of croton in substrates amended with precharged Zeolitic tuff. J. Plant Nutrition, 27(10): 1779-1794.
- Knee, M.; D.K. Struve; M.H. Bridgewater and J.W. Phillips (2003). Growth and water use by four leguminous tree species in containers on a gravel surface or embedded in mulch. Special Circular Ohio Agric. & Dev. C., 189:57-64.
- Marfa, O.; F.Lemaire; R. Caceres; F. Giuffrida and V. Guerin (2002). Relationships between growing media fertility, percolate composition and fertigation in peat substitute substrates used for growing ornamental shrubs. Scientia Hort., 94(3/4): 309-321.
- extracted with N-N-dimethyl formamid. Plant Physiol., 69:1376-81.
- Nobel, P.S. (1988). Environmental Biology of Agaves and Cacti. Cambridge Univ. Press, New York, 270pp.
- North, G.B. and P.S. Nobel (2000). Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent. Annals of Botany, 85(2):247-255.
- Ramirez, J.A.; R.C. Gomez; C. Hernandez and M. Vazquez (2005). Reduction of hardness of *Agave americana* core. Food Technology and Biotechnology, 44(4): 545-551.
- SAS Institute (1994). SAS/STAT User's Guide: Statistics. Vers. 6.04, 4th Ed.; SAS Institute Inc., Cary, N.C., USA.
- Schuch, U.K. (2004). Container production of ornamental crops in retractable roof greenhouses in semi- arid climate of the Southwestern United States. Acta Hort., 659(1): 105-111.
- Shahin, S.M.; N.D. Manoly and S. Ahmed Samira (2006). Response of sisal (*Agave sisalana* Perinne) to chemical fertilization and water supply. Minufiya J. Agric. Res., 31(1): 107-124.
- Singh, P. and G.S. Sidhu (2002). Effect of potting media on the growth of pot plants. Proceeding of the National Symposium on Indian Floriculture in the New Millennium, Bangalore, 25-27th Feb., 355-356.
- Strojny, Z. and J.S. Nowak (2004). Effect of different growing media on the growth of some bedding plants. Acta Hort., 644: 157-162.
- Verhagen, J.B. (2004). Effectiveness of clay in peat based growing media. Acta Hort., 644: 115-122.

استجابة نبات الأجاف (صنف مارجيناتا) للبيئات وكميات مياه الرى المختلفة سيد محمد شاهين من المختلفة سيد محمد شاهين ما حمد محمد على محمول ومحمد يونس على عبد الله معمد المحمد على معهد بحوث البساتين، مركز البحوث الزراعية الجيزة مصر المنصورة . حسر الخضر والزينة، كلية الزراعة، جامعه المنصورة .

أجريت هذه الدراسة بحديقة الأورمان النباتية - الجيزة - مصر خلال الموسمين المتتابعين المريت المدين ال

ولقد أوضحت النتائج حدوث زيادة معنوية في ارتفاع النبات، عدد الأوراق /نبات، طحول وعرض الورقه، طول أطول جذر، عدد الجذور /نبات، وكذلك في الوزن الطازج والجاف للنموات الخضرية والجذرية بزيادة كمية المياه المستخدمة في الري أو بتحسين جودة مخلسوط الزراعة، وذلك في معظم الحالات لكلا الموسمين. ولقد تم الحصول على نفس الإتجاه فيما يتعلق بعدد وطول الخلفات المتكونة على كل نبات، كفاءة استخدام مياه الري، محتوى الأوراق من كلوروفيللي أ، بوالكاروتينويدات، وكذلك النسبة المنوية للكربوهيدرات الكلية والنيتروجين والفوسفور والبوتاسيوم في الأوراق والجنور. وبصفة عامة، حققت النباتات أفضل النتائج في جميع الصحفات المخكورة سابقا عندما رويت بمعدل ١٥٠ مل/اصبص وزرعت في مخلوط التربة الثالث (المكون من الرمل + ١٠ كومبوست زرق الدولجن).

وعليه، فإنه للحصول على أفضل معدل للنمو الخضرى والجذرى، وأكبر عدد وطسول للخلفات الناتجة، زيادة كفاءة مياه الرى المستخدمة مع تحسين محتوى النباتات من المكونات الداخلية ،فإننا نوصى برى نباتات الأجاف (نبات القرن) صنف مارجيناتا عند زراعتها تحب الشمس فى أصص فخار قطرها ١٥سم مرتين أسبوعيا خلال الصيف بمعدل ١٥٠مل/أصيص، على أن تكون الزراعة فى مخلوط يتكون من الرمل + ١٠% طمسى + ١٠% كومبوست زرق الدواجن.