EFFECT OF BIO AND MINERAL FERTILIZATION ON THE MAIN INSECT PESTS AND SOME CHARACTERS OF SUGAR BEET PLANTS Abou-Attia, F.A.M.* and Kh.A. Abd El-Aziz** - * Economic Entomology Dept., Fac. of Agric. Kafr El-Sheikh Univ., Egypt. - ** Dept. of Agric. Botany, Fac. of Agric. Kafr El-Sheikh Univ., Egypt. #### **ABSTRACT** Field studies were carried out at the experimental farm, Faculty of Agriculture, Kafr El-Sheikh University during two successive seasons; 2003/2004 and 2004/2005 to study the effect of mineral fertilizer and bio-fertilizers (Cerealine, Microbien and Phosphorine or mixture of three bio-fertilizers combined with mineral fertilizer) on major insect infestation for sugar beet and growth, yield and quality of roots. Results showed that mineral fertilizer alone or combined with bio fertilizer highly significant increased the infestation with *Pegomyia mixta* Vill. compared with control. The highest population densities (1624 indiv. and 135 blotches/48 plants) were in treatment of 90 kg N/fed. followed by Cerealine + 46 kg N/fed. (666 indiv. and 99 blotches/48 plants). Population density of *Cassida vittata* Vill. highly significant increased on plants treated with biofertilizer plus 23 or 46 kg N/fed. compared with mineral fertilizer alone or control. Mixture of biofertilizers plus 46 kg N/fed. harboured the highest numbers (468 indiv./48 plants) of *Cassida vittata* Vill. The maximum population density of *Scrobipalpa ocellatella* Boyd. (73 larvae/48 plants) was recorded in control treatment, followed by biofertilizers plus 23 kg N/fed. While the lowest number of that insect was in treatment of 90 kg N/fed. Population density of jassids, *Empoasca* spp. highly significant increased on plants treated with mineral fertilizer followed by biofertilizer compared with control. In contrast, population density of *Nezara viridula* L. highly significant increased in treatments of bio and mineral fertilizer while insignificant at 90 kg N/fed. compared with control. Results showed that biofertilization combined with mineral fertilization highly significant increased root length, root diameter and root & foliage weight of sugar beet plants compared with control treatment. The highest root and foliage weight/plant (938.2 and 198.4g, respectively) were recorded in Cerealine combined with 70 kg N/fed. Phosphorine and Cerealine plus 70 kg N/fed highly significant and significant increased sucrose percentage (20.05 and 18.95%, respectively). Highly significant differences among treatments of mineral and biofertilizer were found for total soluble solids percent (T.S.S.%). Some treatments of bio and mineral fertilizer affected the quality of sugar beet juice such as potassium ions, sodium ions and α amino nitrogen and quality degree percentage. Generally, it is concluded that Phosphorine or Cerealine or mixture plus 70 kg N/fed. are recommended for reducing major insect infestation for sugar beet and increasing root weight and sucrose percentages. #### INTRODUCTION Sugar beet (*Beta vulgaris* L.) provides about 40% of the world sugar production and represents the second source, after sugar-cane, for sugar production in Egypt. Improvement of sugar beet production can be achieved through optimizing the cultural practices such as fertilization. Nitrogen fertilizer is an essential element for sugar beet yield and quality. Biofertilization is a new approach of nitrogen fertilizer which may reduce the environmental pollution. In addition, biofertilizers play an important role in nitrogen fixation and plant nutrition as well as release of potassium and phosphorus in soil by introduced organisms (Brown, 1982 and Kennedy and Tchan, 1992). The sugar beet plants attract numerous insect pests, that attraction rate could be affected by different doses of nitrogenous fertilization. Bassyouny (1987) and Bassyouny and Abou-Attia (1998) indicated that the infestations of most sugar beet insects were obviously related to the amount and source of applied fertilizer. Afify, et al. (1994) showed that inoculation of sugar beet seeds with nitrogen fixation bacteria alone or combined with mineral NPK fertilizer resulted in significant higher insect infestation than control treatment. Mesbah et al. (2002) indicated that the dressing of corn grains with the biofertilizers phosphorine & Rhizobacterine before sowing, lowered to some extent the levels of infestation by Chilo Agamemnon (Bles.) and Ostrinia nubilalis (Hb.), in comparison to the minerally fertilized corn plants. Relatively few studies evaluated the response of sugar beet to these bacteria and NPK fertilizers or major associated insect infestations under field conditions. With respect to bio-mineral N-fertilizer effects, Favilli *et al.*, (1993) noticed that inoculation of sugar beet seeds with *Azosprillum lipoperum* plus 60 kg N/ha improved the root weight compared with 100 kg N alone. Shabev *et al.* (1995) showed that inoculation of sugar beet seed with nitrogen fixation bacteria led to an increase in plant yield. Abu El-Fotoh *et al.* (2000) showed that the addition of biofertilizer with 50% of N mineral recommended dose produced significantly higher root yield and sugar beet quality affected sodium ions, potassium ions, α amino nitrogen and total sugar percentage. Nemeat-Alla (2004) concluded that inoculation of sugar beet seed with biofertilizers (Cerealine plus Phosphorine) or 90 kg N/fed. increase sugar beet yield. The objectives of the present investigation are to study the effect of bio and mineral fertilizer combination compared to mineral fertilizer alone or control on: 1) population of some major sugar beet insect pests and 2) yield and quality parameters of sugar beet crop. #### MATERIALS AND METHODS Field studies were carried out at the experimental farm, Faculty of Agriculture, Kafr El-Sheikh University, during 2003/04 and 2004/05 growing season using Pleno variety of sugar beet to study the effect of biofertilizer, mineral fertilizer or their combination on major insect infestations, growth, yield and quality of sugar beet. The experiments were laid out in a complete randomized block design with three replicates. Each plot $(3 \times 6 \text{ m}^2)$ consisted of 6 rows; 6m long and 50 cm apart. During land preparation, superphosphate $(15.5\% \text{ P}_2\text{O}_5)$ and potassium sulphate $(48\% \text{ K}_2\text{O})$ were incorporated into the soil at a rate of 100 and 50 kg/fed. respectively. Ammonium nitrate (33.5% N) at a rate of 90, 70, 46 or 23 kg/fed. was added in two equal splits, the first directly after thinning, and the second one month later. Sugar beet seeds were sown during the fourth week of November. At sowing, the seeds were inoculated with Cerealine (Azosprillum brasilens Tarrand, Krieg and Döbereiner), Microbien (Azotobacter chroococcum Beijerinck) and Phosphorine (Bacillus megatarium de Bary) at rates of 600, 600 and 800 g per feddan, respectively. both Cerealine and Microbien contain nitrogen fixing bacteria, while phosphorine contains phosphate dissolving bacteria. Arabic gum was used as an adhesive agent of biofertilizers to sugar beet seeds. The mineral fertilizer alone or combined with biofertilizers were arranged in 16 treatments, in addition to control with three replicates (Table 1). The biofertilizers were supplied by Soil and Water Research Institute, Agricultural Research Center, Egypt. Table (1): Applied bio and mineral fertilizers | Treatment
No. | Kg/feddan | | | | | | | | | | | | | | |------------------|---------------|----------|----------|-------------------|--|--|--|--|--|--|--|--|--|--| | 1 | Ammonium n | itrate | 90 kg | | | | | | | | | | | | | 2 | Ammonium n | itrate | 70 kg | | | | | | | | | | | | | 3 | Ammonium n | itrate | 46 kg | | | | | | | | | | | | | 4 | Ammonium n | itrate | 23 kg | | | | | | | | | | | | | 5 | Cerealine | 600 g | + | Ammonium nitrate | 70 kg | | | | | | | | | | | 6 | Cerealine | 600 g | + | Ammonium nitrate | 46 kg | | | | | | | | | | | 7 | Cerealine | 600 g | + | Ammonium nitrate | 23 kg | | | | | | | | | | | 8 | Microbien | 600 g | + | Ammonium nitrate | 70 kg | | | | | | | | | | | 9 | Microbien | 600 g | + | Ammonium nitrate | 46 kg | | | | | | | | | | | 10 | Microbien | 600 g | + | Ammonium nitrate | 23 kg | | | | | | | | | | | 11 | Phosphorine | 800 g | + | Ammonium nitrate | 70 kg | | | | | | | | | | | 12 | Phosphorine | 800 g | + | Ammonium nitrate | 46 kg | | | | | | | | | | | 13 | Phosphorine | 800 g | + | Ammonium nitrate | 23 kg | | | | | | | | | | | 14 | Cerealine | 300 g | + | Microbien 300g + | Phosphorine 400g +
Ammonium nitrate 70 kg | | | | | | | | | | | 15 | Cerealine | 300 g | + | Microbien 300 g + | Phosphorine 400 g + Ammonium nitrate 46 kg. | | | | | | | | | | | 16 | Cerealine | 300 g | + | Microbien 300 g + | Phosphorine 400 g + Ammonium nireate23 kg. | | | | | | | | | | | 17 | Control (with | out fert | ilizers) | | | | | | | | | | | | For insect investigation, eight samples of sugar beet plants were taken throughout the growing season. Two plants were taken from each plot, thus each treatment was represented by six plants in each sampling date and represented by 48 plants throughout the experimental period. each plant was examined for counting some major insects; *Pegomyia mixta* (eggs, maggots and blotches), *Cassida vittata* (larvae, pupae and adults), *Scrobipalpa ocellatella* (larvae), jassids *Empoasca* spp. (nymphs and adults) and *Nezara viridula* (nymphs and adults). At harvesting, root length (cm.), root diameter (cm.), root weight (g.), foliage weight (g.) were estimated on nine plants (3 plants \times 3 replicates) during both seasons, while sugar percentage, total soluble solids (T.S.S%), potassium ion (K %), Sodium ion (Na%), α -amino nitrogen % and quality degree percentage were determined at Sugar Delta Company during the second season. Data were statistically analyzed according to Duncan's Multiple Range Test (1955). # **RESULTS AND DISCUSSION** # 1. Effect of bio and mineral fertilization on sugar beet insect infestation: Data in Tables (2 and 3) show that the response of insect infestation to mineral fertilization alone or bio-fertilization combined with mineral fertilization during 2003/2004 and 2004/2005 seasons. Data in Table (4) present average of two season. # 1.1. Sugar beet fly, Pegomyia mixta Vill. Results in Tables (2 and 3) showed that the highest population densities of P. mixta (1550 and 1698 individuals/48 plants) during the first and second season, respectively were got from treatment receiving 90 kg N/fed. as recommended level of mineral fertilization, followed by Cerealine combined with 46 kg N/fed. (676 and 655 indiv./48 plants) and Microbien combined with 46 and 23 kg N/fed. (536 and 549 indivi.). Then, mixture of Bio-combined with 46 kg N/fed. (520 and 510 indiv.) and Phosphorine combined with 23 kg N/fed. (459 and 450 indiv.). While control treatment harboured the lowest population density of P. mixta (275 and 315 indiv.) compared with biofertilization and mineral fertilization. Concerning blotches of P. mixta, results in Tables (2 and 3) showed that the highest numbers of blotches were recorded in plots of 90 kg N/fed. (140 and 129 blotches) in the first and second seasons, respectively, followed by moderate numbers of blotches in treatments of biofertilization. While the lowest numbers of blotches were found in control treatment (42 and 54 blotches) in the first and second seasons, respectively. Data in Tables (2 and 3) revealed that the sugar beet plants fertilized with high rate of nitrogen (90 kg N/fed.) produced a large amount of foliage but were severely attacked by P. mixta, about three times higher compared with treatments of biofertilizer. Results in Table (4) revealed that the highest average two seasons 2003/04 and 2004/05 for population density of *P. mixta* (1624 indiv./48 plants) and their blotches (135 blotohes/48 plants) were recorded in treatment receiving 90 kg N/fed. as chemical fertilizer. While Cerealine + 46 kg N/fed. gave the next highest population density (666 indiv. and 99 blotches/48 plants) followed by mixture of biofertilizer, Microbien and Phosphorine compared with control treatment (295 indiv. and 48 blotches/48 plants) while other treatments harboured lower average for population density of that insect. Statistical analysis showed that the application of mineral fertilizer alone or biofertilizer combined with mineral fertilizer highly significant increased the infestation with *P. mixta* (Eggs, larvae and blotches) compared with control treatment. The present results are in agreement with those obtained by Aly (1988) who revealed that sugar beet infestation with *P. mixta* increased at rates of 80 and 100 kg N/fed. Talha (2001) showed that the number of insects per sugar beet leaf increased by the increase of nitrogenous fertilization mainly *Spodoptera littoralis*, *P. mixta*, *Jassids* and *N. viridula* during late planting date. Affify, et al. (1994) showed that high population density of *P. mixta* was recorded in the treatment receiving mineral NPK fertilizers or single bacterial inoculants over two or three inoculants combinations, while the lowest population density was recorded in the untreated control. ## 1.2. Tortoise beetle, Cassida vittata Vill. Data in Tables (2 and 3) showed that the maximum population density of C. vittata (467 and 487 indiv./48 plant) was recorded in the treatment receiving mixture of three inoculants combined with mineral fertilization (23 or 46 kg N/fed.) in the first and second seasons, respectively followed by treatments receiving Phosphorine (400 indiv.) and Microbien (397 indiv.) combined with 23 kg N/fed, in the first and second season respectively. Also, the highest population density of C. vittata was recorded in treatment receiving 23 and 46 kg N/fed. (309 and 299 indiv./48 plants) in the first and second seasons, respectively. Population density of C. vittata highly significant increased on plants treated with biofertilization (Cerealine, Microbien, Phosphorine and their mixture), plus mineral fertilization at a rate of 23 kg N/fed, compared with plants treated with mineral fertilization alone or control treatment, in the first season. While in the second season, highly significant differences were recorded between population density of C. vittata in mixture of biofertilizer treatments combined with 70, 46 or 23 kg /fed. and Microbien combined with 46 or 23 kg N/fed, while other treatments highly negative significant compared with control treatment. Data in Table (4) indicated that the maximum average population density of *C. vittata* (468 indiv./48 plants) was recorded in treatment receiving mixture of biofertilizer combined with 46 kg N/fed. followed by Microbien, Phosphorine or Cerealine combined with 23 kg N/fed. (390, 360 and 338 indiv./48 plants respectively) compared with control treatment (319 indiv./48 plants). While treatments of chemical fertilizer came in the end. The lowest average population density of *C. vittata* (128 indiv./48 plants) was found in treatment receiving 90 kg N/fed. Our results are in agreement with those found by Aly (1988) who reported that *C. vittata* was not affected with nitrogenous levels. Affify, *et al.* (1994) found that the plants inoculated with the three inoculants together hurboured the greatest mean numbers of *C. vittata* as compared to plants treated with two combined inoculant types. Also, it was noticed that the single inoculant of *Azotobacer chroococcum* gave the highest population density of *C. vittata* as compared with other inoculants, nitrogen fertilizer and control. # 1.3. Sugar beet moth, Scrobipalpa ocellutella Boyd. Data in Tables (2 and 3) showed that the highest population density of *S. ocellatella* (76 and 69 larvae/ 48 plants) was found in control in the first and second seasons, respectively, which might be due to the unhealthy plants, that contain small foliage and lead to increase number of *S. ocellatella*. The results cleared that the application of biofertilizers combine with low level of mineral fertilizer (23 kg N/fed.) increased population density of *S. ocellatella* compared with mineral fertilizer alone. The maximum population density of *S. ocellatella* (68 and 60 larvae/48 plants) was recorded in the treatment receiving Phosphorine combined with 23 kg N/fed., while mineral fertilizers (23 kg N/fed.) gave high population density of the insect (48 and 35 larvae/48 plants) compared with other mineral fertilization. Table (2): Effect of Bio and mineral fertilization on the main insect pests population which attacking sugar beet at Kafr El-Sheikh during season 2003/04. | Inc | sect | N | lineral | nitroge | en | | erealine | | Mic | robier | 1 + | Pho | sphori | ne + | Three | ; | L.S.I | | | |-------------------------------|----------|-------|---------|---------|--------|------|----------------|-------|--------|----------------|-------|--------|---------|--------|------------------|----------|-------|---------|--------------| | infestation | | | (k | (g) | | l mi | mineral N (kg) | | | mineral N (kg) | | | neral N | (kg) | + mineral N (kg) | | | Control | | | | | 90 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | | 1% | | | Eggs | 1030 | 590 | 630 | 348 | 200 | 341 | 145 | 150 | 250 | 110 | 155 | 167 | 144 | 132 | 220 | 158 | 107 | | | | Larvae | 520 | 415 | 325 | 230 | 240 | 335 | 210 | 240 | 286 | 200 | 169 | 220 | 315 | 225 | 300 | 243 | 168 | | | Pegomyia
mixta | Total | 1550k | 1005j | 955i | 578g | 440e | 676h | 350f | 390d | 536f | 310b | 324b | 387d | 459e | 357c | 520f | 401d | 275a | 22.6
30.2 | | | Blotches | 140k | 115j | 101i | 80efg | 84g | 98i | 72cd | 83fg | 99i | 64b | 69bc | 78ef | 103i | 65b | 92h | 76de | 42a | 5.31
7.08 | | | Larvae | 52 | 120 | 150 | 142 | 100 | 115 | 168 | 170 | 175 | 189 | 125 | 192 | 210 | 240 | 248 | 260 | 163 | | | Canada | Pupae | 12 | 16 | 20 | 40 | 30 | 38 | 46 | 42 | 32 | 49 | 38 | 41 | 56 | 58 | 64 | 52 | 25 | | | Cassida
≀ittata | Adults | 75 | 100 | 110 | 127 | 80 | 117 | 143 | 96 | 125 | 145 | 119 | 124 | 134 | 131 | 137 | 155 | 103 | | | mata | Total | 139a | 236bc | 280c-f | 309efg | 210b | 270cde | 357gh | 308efg | 332fg | 383hi | 282c-f | 357gh | 400hij | 429ijk | 449jk | 467k | IJUINAT | 47.8
63.8 | | Scrobipal;
ocellatella | | 22a | 29cd | 39e | 48g | 24ab | 31d | 43f | 28cd | 39e | 52h | 26bc | 51gh | 68j | 31d | 42ef | 63i | 76k | 3.45
4.60 | | lassids
nymphs+adults) | | 480m | 420L | 391k | 342i | 296g | 349j | 301g | 258d | 352j | 315h | 193a | 277f | 228c | 206b | 269e | 223c | 129a | 5.63
7.51 | | V. <i>viridula</i>
nymphs+ | | | 93f | 68c | 57b | 102g | 80e | 72d | 210n | 179m | 110h | 105g | 145k | 91f | 141j | 164L | 115i | 48a | 3.67
4.90 | Means followed by a common letter are not significantly different at the 5% level by DMRT. Table (3): Effect of Bio and mineral fertilization on the main insect pests population which attacking sugar beet at Kafr El-Sheikh during season 2004/05. | infe | Insect
infestation | | | nitroge
g) | n - | Ce | realine
eral N |) +
(kg) | Microbien +
mineral N (kg) | | | mineral N (kg) | | | + mineral N (kg) | | | Control | L.S.D | |-------------------|--------------------------------|-------|-------|---------------|------|------|-------------------|-------------|-------------------------------|------|------|----------------|------|------|------------------|------|------|---------|----------------| | | | 90 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | _23 | 70 | 46 | 23 | | 176 | | 60 | _⊵ggs | 1217 | 666 | 744 | 431 | 175 | 352 | 135 | 96 | 127 | 278 | 87 | 187 | 121 | 118 | 234 | 147 | 99 | | | Z-m | Larvae | 481 | 392 | 318 | 218 | 257 | 303 | 220 | 189 | 275 | 271 | 178 | 214 | 329 | 208 | 276 | 222 | 216 | | | Редотуја
тіхtа | Total | 1698k | 1058j | 1062j | 649 | 432f | 6551 | 355d | 285b | 402e | 549h | 265a | 401e | 450f | 326c | 510g | 369d | 315c | 19.73
26.32 | | 9, | Blotches | 129h | 102g | 90f | 63c | 72d | 100g | 60c | 52b | 72d | 81e | 47a | 60c | 91f | 54b | 79e | 61c | 54b | 3.97
5.29 | | e | Larvae | 43 | 101 | 174 | 34 | 117 | 133 | 152 | 189 | 189 | 216 | 103 | _175 | 185 | 325 | 238 | 291 | 200 | | | 50 | Pupae | 5 | 12 | 6 | 2 | 20 | 22 | 32 | 31 | 27 | 45 | 22 | 28 | 40 | 48 | 40 | 43 | 29 | | | SS₽ | Adults | 69 | 85 | 119 | 107 | _ 97 | 91 | 135 | 106 | 143 | 136 | 90 | 106 | 94 | 114 | 126 | 113 | 117 | | | Cassida | Total | 117a | 198c | 299g | 143b | 234e | 246f | 319i | 326j | 359L | 397m | 215d | 309h | 319i | 404n | 487p | 447o | 346k | 5.67
7.56 | | oce
L | obipalpa
ellatella
arvae | 14a | 17b | 29d | 35e | 25c | 33e | 44f | 26c | 35e | 58i | 34e | 46fg | 60i | 25c | 48g | 51h | 69j | 2.83
3.77 | | nymp | assids
hs+adults | 418m | 456n | 530o | 333k | 326j | 284i | 204d | 227f | 275h | 372L | 157a | 246g | 185b | 193c | 233f | 186b | 213e | 6.75
9.00 | | | ra vindula
hs+adults | 33b | 76h | 47c | 45c | 73gh | 28a | 63de | 130k | 183L | 60d | 80i | 64e | 69f | 82ij | 84j | 71fg | 33b | 3.49
4.65 | Means followed by a common letter are not significantly different at the 5% level by DMRT. Table (4): Effect of Bio and mineral fertilization on the average numbers of the main insect pests population which attacking sugar beet at Kafr El-Sheikh during two seasons 2003/04 and 2004/05. | Insect | | N | Mineral nitrogen
(kg) | | | | Cerealine +
mineral N (kg) | | | Microbien +
mineral N (kg) | | | sphori
eral N | ne + | Three
+ mi | | | | | |-----------------|--------------|-----------|--------------------------|------|------|-----|-------------------------------|-----|-----|-------------------------------|------|-----|------------------|------|---------------|-----|-----|------|---------| | | infestation | | | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | Control | | · · · | Eggs + | 2003/2004 | 1550 | 1005 | 955 | 578 | 440 | 676 | 530 | 390 | 536 | 310 | 324 | 387 | 459 | 357 | 520 | 401 | 275 | | Ø | larvae | 2004/2005 | 1698 | 1058 | 1062 | 649 | 432 | 655 | 355 | 285 | 402 | 549 | 265 | 401 | 450 | 326 | 510 | 369 | 315 | | egomy
mixtra | | Mean | 1624 | 1032 | 1009 | 614 | 436 | 666 | 443 | 338 | 469 | 430 | 295 | 394 | 455 | 342 | 515 | 385 | 295 | | 8.5 | 8.8 | 2003/2004 | 140 | 115 | 101 | 80 | 84 | 98 | 72 | 83 | 99 | 64 | 69 | 78 | 103 | 65 | 92 | 76 | 42 | | <u>5, c</u> | Blotches | 2004/2005 | 129 | 102 | 90 | 63 | 72 | 100 | 60 | 52 | 72 | -81 | 47 | 60 | 91 | 54 | 79 | 61 | 54 | | ч. | | Mean | 135 | 109 | 96 | 72 | 78 | 99 | 66 | 68 | - 86 | 73 | 58 | 69 | 97 | 60 | 86 | 69 | 48 | | | | 2003/2004 | 139 | 236 | 280 | 309 | 210 | 270 | 357 | 308 | 332 | 383 | 282 | 357 | 400 | 429 | 449 | 467 | 291 | | Cass | ida, vittata | 2004/2005 | 117 | 198 | 299 | 143 | 234_ | 246 | 319 | 326 | 359 | 397 | 215 | 309 | 319 | 404 | 487 | 447 | 346 | | | ae + nunae | Mean | 128 | 217 | 290 | 226 | 222 | 258 | 338 | 317 | 346 | 390 | 249 | 333 | 360 | 417 | 468 | 457 | 319 | | → adu | ilts) | 2003/2004 | 22 | 29 | 39 | 48 | 24 | 31 | 43 | 28 | 39 | 52 | 26 | 51" | 68 | 31 | 42 | 63 | 76 | | Scrot | pipalpa | 2004/2005 | 14 | 17 | 29 | 35 | 25 | 33 | 44 | 26 | 35 | 58 | 34 | 46 | 60 | 25 | 48 | 51 | 69 | | cella | tella | Mean | 18 | 23 | 34 | 42 | 25 | 32 | 44 | 27 | 37 | 55 | 30 | 49 | 64 | _28 | 45 | 57 | 73 | | (Larv | ae) | 2003/2004 | 480 | 420 | 391 | 342 | 296 | 349 | 301 | 258 | 352 | 315 | 193 | 277 | 228 | 206 | 269 | 223 | 192 | | Jassi | ds | 2004/2005 | 418 | 456 | 530 | 333 | 326 | 284 | 204 | 227 | 275 | 3/2 | 157 | 246 | 185 | 193 | 233 | 186 | 213 | | (nym)
+adul | ohs | Mean | 449 | 438 | 461 | 338 | 311 | 317 | 253 | 243 | 314 | 344 | 175 | 262 | 207 | 200 | 251 | 205 | 203 | | ∔adul | ts) | 2003/2004 | 51 | 93 | 68 | 57 | 102 | 80 | /2 | 210 | 179 | 110 | 105 | 145 | 91 | 141 | 164 | 115 | 48 | | Neza | ra viridula | 2004/2005 | 33 | 76 | 47 | 45 | 73 | 28 | 63 | 130 | 183 | 60 | 80 | 64 | 69 | 82 | 84 | [/] | 33 | | (n) mu | shsshcs | Mean | 42 | 85 | 58 | 51 | 88 | 54 | 68 | 170 | 181 | 85 | 93 | 105 | 80 | 112 | 124 | 93 | 41 | | `+ adi | ults) | | | | | | | | | | | | | | | | | | | #### Abou-Attia, F.A.M. and Kh.A. Abd El-Aziz The maximum average population density of S. ocellatella (73 larvae/48 plants) was recorded in control treatment Table (4), followed by Phosphorine (64 larvae), mixture of biofertilizer (57 larve), Microbien (55 larvae) and Cerealine (44 larvae) combined with 23 kg N/fed. Finally, mineral fertilizer at rate 23 kg N/fed. (42 larvae/48 plants) while, the lowest average population density was found in treatment 90 kg N/fed. (18 larvae/48 plants). Statistical analysis showed highly negative significant differences between population density of *S. ocellatella* in treatments of mineral fertilizer alone and biofertilizer combined with different rates of mineral fertilizer (70, 46 and 23 kg N/fed.) compared with control treatment in both seasons. The obtained results are in agreement with those obtained by Affify, et al. (1994) who indicated that the maximum population density of S. ocellatella was recorded from the untreated control treatment. Also, population density of the insect on plants receiving either mineral NPK fertilizer or single bacterial inoculant were higher over two or three inoculants combinations. Mesbah et al. (1985) indicated that nitrogen levels did not generally affect infestation levels significantly by S. ocellatella. Bassyouny and Abou-Attia (1998) found that application of organic manures alone produced dense foliage and greatly reduced number of the beet moth, S. ocellatella. Opposite results were obtained from application of organic manure with mineral fertilizer which produced small foliage and increased number of beet moth S. ocellatella. # 1.4. Jassids, Empoasca spp. Results in Tables (2 and 3) showed that the highest population density of jassids (nymphs and adults) (480 and 530 indiv./48 plants) were recorded in the treatment receiving 90 and 46 kg N/fed. in the first and second seasons, respectively, followed by Microbien + 46 or 23 kg N/fed. (352 and 372 indiv./48 plants). Then, treatment of Cerealine + 46 or 70 kg N/fed. (349 and 326 indiv./48 plants). Finally, treatments of Phosphorine and mixture of biofertilizer combined with 46 kg N/fed. hurboured lower population density of jassids 277 and 246 indiv. for Phosphorine and 269 and 233 indiv. for mixture of biofertilizer in both season respectively. While control treatment hurboured the lowest population density of Jassids (192 and 213 indiv./48 plants) in both season respectively. Generally, numbers of jassidas were lowers in treatments, of biofertilizers than in treatments of mineral fertilizers. Results in Table (4) indicated that the maximum average population density of jassids (461 indiv./48 plants) were recorded in treatment of 46 kg N/fed., while treatments receiving biofertilizer combined with mineral fertilizer harboured low population density compared with mineral fertilizer alone. The lowest population density of jassids (175 indiv./48 plants) were found in treatment of Phosphorine combined with 70 kg N/fed. Statistical analysis revealed highly significant differences among population density of jassids in treatments of mineral fertilizers alone or mixed with biofertilizers compared with control. Except, highly negative significant was recorded in treatments of Phosphorine and mixture of biofertilizer combined with 70 and 23 kg N/fed, then Serealine with 23 kg N/fed, in the second season. ## 1.5. The green stink bug, Nezara viridula L. Data in Tables (2 and 3) showed that the highest population density of *N. viridula* (210 and 183 indiv./48 plants) was found in treatment receiving Microbien + 70 and 46 kg N/fed. in both season respectively, followed by mixture of biofertilizers combined with 46 kg N/fed. (164 and 84 indiv./48 plants) then, treatment of Phosphorine combined with 46 and 70 kg N/fed. (145 and 80 indiv./48 plants) in both seasons, respectively. Finally, treatment of Cerealine combined with 70 kg N/fed. harboured (102 and 73 indiv./48 plants). While control treatment harboured lower number of population density for *N. viridula* (48 and 33 indiv./48 plants). Results revealed that the sugar beet plants receiving 70 kg N/fed. as mineral fertilizer harboured the highest number of *N. viridula* (93 and 76 indiv./48 plants) in both seasons, respectively compared with other treatments. Data in Table (4) revealed that the highest average population density of *N. viridula* (181 indiv./48 plants) were found in sugar beet plants treated with Microbien + 46 kg N/fed. followed by mixture of biofertilizer and Phosphorine combined with the same rate of mineral fertilizer (124 and 105 indiv./48 plants) respectively). On the other hand, mineral fertilizer showed low numbers of the insect compared with biofertilizer. The lowest average population density of *N. viridula* (41 indiv./48 plants) was recorded in control treatment. Statistical analysis revealed highly significant differences among population density of *N. viridula* in all treatments of mineral fertilizer alone and biofertilizer combined with different rates of mineral fertilizer compared with treatment control in both season. Except insignificant difference was recorded in treatment 90 kg N/fed. as mineral fertilizer in both season. The present results concerning the sucking insects are in line with those of Talha (2001) who indicated that the number of jassids and *N. viridula* increased by the increase of nitrogenous fertilization. Godfrey *et al.* (2000) showed that high levels of nitrogen can increase aphid populations. They indicated the possibility of using this as a cultural control measure. Gamieh and Saadoon (1998) indicated that the population density of the phytophagous mite, *Tetranychus cucurbitacearum* increased significantly with nodulation and N-fertilization recording the highest figure at 80 kg N/fed. Yanni *et al.* (1991) and Hegazy *et al.* (1997) indicated that increase of plant nitrogen content to a certain level was found to induce the severity of infestation with major soybean pests such as the red spider mite, *T. cucurbitacearum*. # 2. Effect of Bio and mineral fertilization on sugar beet growth, yield and quality: # 2.1. Root length and diameter: Data in 152 (5) showed that the maximum root length/plant (27.5 cm.) was recorded in the treatment receiving Cerealine + 70 kg mineral N/fed. followed by Phosphorine + 46 kg N/ fed. (27 cm), The control treatment (without fertilizers) produced the shortest root (18.8 cm). Results in Table (5) showed that maximum root diameter (11.4 cm) was recorded in the treatment receiving Phosphorine combined with 70 kg. N/fed., while the minimum was recorded in the control (6.9 cm.). In general, sugar beet plants, which received 70 kg N/fed. alone as mineral fertilization or combined with bio-fertilization gave the biggest root diameter. The statistical analysis showed highly significant of differences among root length and root diameter values in all treatments of mineral fertilization alone and biofertilization combined with mineral fertilization. These results are in agreement with those obtained by Afify et al. (1994) who indicated that bacterilization of sugar beet plants alone or in combination with mineral NPK fertilizer gave higher plant vegetative growth characters than untreated control. Bassal et al. (2001) and Badr (2004) indicated that root length and diameter at harvest were higher when sugar beet plants were treated by biofertilizer. # 2.2. Root and foliage weight: The maximum root weight/plant (938.2 g.) was recorded in the treatment receiving Cerealine + 70 kg N/fed., while the minimum (467.2 g.) was for control (Table 5). The bio-fertilization is responsible for increased nitrogen content by nitrogen fixing bacteria which lead to increase of root weight. The maximum foliage weight per plant (198.4 g.) was recorded in the treatment receiving (Cerealine) combined with 70 kg N/fed., while the minimum (134.4 g.) was of control (Table 5). The application of three biofertilizers combined with 23 kg N/fed. gave the next high foliage weight (193 g.). Statistical analysis showed highly significant differences among treatments of mineral fertilization alone and biofertilization combined with mineral fertilization for root and foliage weight compared with control in the first season. While significant and insignificant differences were recorded between treatments compared with control treatment in the second season. The current results are in agreement with those obtained by Afify et al. (1994) who found that inoculation of sugar beet seed with Azotobacter chroococcum, Bacillus megaterium and Bacillus ceruleans caused a significant increase in root and sugar yield. Suckhovitskaya (1998) reported that sugar beet seed inoculation with Bacillus megaterium increased crop yield by 23%. Cakmakci et al. (1999) found that seed inoculation of sugar beet with biofertilization increased sugar beet root in comparison to mineral fertilizer. Yields of root and sugar usually increased by the application of biofertilizers (Ali 2003 and Badr 2004). # 2.3. Quality parameters : The results presented in (Table 6) showed that the maximum sucrose (20.05%) was obtained in treatment receiving Phosphorine combined with 70 kg N/fed. followed by Cerealine combined with 70 kg N/fed. (18.95%) then by mineral fertilization at a rate of 46 kg N/fed. (18.90%). The remaining treatments and control produced low sucrose percentages. Total soluble solids percentage (T.S.S. %) (Table 6) were higher in the treatment receiving mixture of three biofertilizers combined with 70 kg N/fed. (24.5%) followed by Microbien combined with 23 kg N/fed. (24%) and Phosphorine combined with 46 kg N/fed. (23.7%). 480.3a 454a 467.2 145.7a 123.0 134.4 30.83 344.8 459.9 0.62 0.82 299.7 399.9 Growth Root Weight (g) Foliage Weight 2004/2005 Mean 2003/2004 2004/2005 2003/2004 882.7fg 828.7e 769.7c 876b 852.4 161c 187.4a | 160.1a | 156.4a 893b 831.4 172.3e 983b 932.9 1886 Table (5): Effect of Bio and mineral nitrogen fertilization on growth and yield characters of sugar beet plants at Kafr El-Sheikh during 2003/04 and 2004/05 seasons (Average of two seasons). Mineral nitrogen Microbien + Phosphorine + Three biofertilizers LSD 5% 1% Cerealine + mineral N (kg) mineral N (kg) mineral N (kg) + mineral N (kg) Control characters (kg) 90 מל 46 23 46 23 70 46 23 46 70 46 1.13 25,2def 2003/2004 26.5a 24.2d 22.6c 21.2b 25.9efg 22,2bc 24.0d 26.3fg 24.9de 26.3fg 17.8a 25.8efg 24.2d 22.6c 22.8c 26.50 Root 1.50 Length 1.11 2004/2005 26.5def 21.8b 29.2i 28.7hi 28,3ghi 27,7fgh 27.3fg 26.5def 26.9ef 26.8def 24.5c 28.4ghi 26.0de 26.0de 24.8c 25.6cd 19.8a (cm) 1.48 25.5 21.5 27.2 26.2 26.1 26.7 Mean 26.5 23.6 27.5 26.1 24.3 24.4 23.5 27.0 26.4 25.4 18.8 0.53 2003/2004 10.3ef 9.4d 8.8c 8.1b 10.9a 10.5fg 9.8de 9.8de 9.8de 8.0b 10.6fg 10.0e 9.9de 10.7fg 10.3ef 6.9a 11.1g 0.70 Root diameter 0.87 2004/2005 8.2b 11.0cde 10.9cde 10.4cd 10.7cd 11.8ef 11.4def 8.6b 10.2c 10.6cd 8.6b 12.1f 10.5cd 10.3c 10.1c 9.1b 6.9a (cm) 1.17 Mean 10.05 10,4 8.5 8.4 11.0 10.7 10.1 10.0 10.2 8.3 11.4 10.3 10.3 10.7 104 9.7 6.9 940.7 880b 910.4 197.3m 872f 890b 881 181.7f | 155.1a | 165.3a | 176.3a | 193.4a | 183.9a | 778.7e 8605 819.4 170.3d 900 ah 9746 937 189i 837.7e 904.3ah 916b 910.2 185.3a 195.3a 190.3 909b 873.4 186.3h 188.9a 943.31 929b 936.2 213.7p 940 803ab 871.5 2130 165.4a 153.1a 188.3a 189.6 183.1 931) 744ab 837.5 197.7m 193 187,7 160,6 164,4 157 198,4 193,8 173,6 181,3 179 181,9 186,5 187,6 Means followed by a common letter are not significantly different at the 5% level by DMRT. 983.3i 893b 938.2 199h 197.7a 933.7i 939b 936.4 195.3 192.3a 878f 934b 906 192k 623b 624ab 623.5 156 3b 157.6 Table (6):Effect of Bio and mineral nitrogen fertilization on quality parameters of sugar beet roots (at harvest) at Kafr El-Sheikh during 2004/05 season | Quality parameters | N | lineral i
(k | | ו ו | | erealine + Microbien + Phosphorine + Three biological N (kg) mineral N (kg) mineral N (kg) | | | | | | | | Control | LS
5% | | | | |-------------------------|----------|-----------------|---------|----------|--------|--|----------|---------|----------|---------|---------|---------|---------|---------|----------|---------|----------|--------------| | Parameters | 90 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | 70 | 46 | 23 | l | 1% | | Sucrose | 17.65abc | 18.60def | 18.90ef | 17.70a-d | 18.95f | 18.80ef | 17.75a-d | 17.25ab | 18.60def | 17.15a | 20.05g | 18.50gf | 17.60ab | 18.50gf | 18.0a-e | 18.70ef | 18.10b-f | 0.80 | | otal soluble
solid % | 23,5de | 23.0cd | 23.0cd | 22.5bc | 22.5bc | 23.0cd | 23.5de | 23.0cd | 23.0cd | 24.0ef | 23.5de | 23.7e | 22.5bc | 24.5f | 22.5bc | 22.0ab | 21.5a | 0,58
0.77 | | otassium ion % | 6.04bcd | 5.66ab | 6.90f | 6.46gf | 6.79ef | 6.13bcd | 6.83ef | 6.67def | 5.76ab | 6.57def | 6.24b-e | 5.89bc | 6.91f | 5.78b | 6.14bcd | 5,76b | 5,14a | 0,55
0,74 | | Sodium Ion | 3.11cde | 2,31a | 3.10cde | 2.44ab | 3.23de | 2.95b-e | 3.52e | 3.26de | 2.68a-d | 3.49e | 3.09cde | 2.64a-d | 3.49e | 3.23de | 3.0b-e | 2.49abc | 2.27a | 0.54 | | k-amino nitrtogen | 1.95abc | 1,66a | 3,24e | 2.61d | 2.25c | 1.99abc | 3.18e | 2.78d | 1.97abc | 2.77d | 2.66d | 1.88ab | 3.21e | 2.16bc | 2.10bc | 1.97abc | 2,23bc | 0.31
0.41 | | Quality % | 79.5cd | 82.9h | 78.7bc | 79.7cde | 79.2cd | 78.6bc | 76.7ab | 77.1ab | 81.9fgh | 76.7ab | 81.3d-h | 81.7e-h | 76.4a | 80.6c-g | 79.9c-f | 82.3gh | 79.4cd | 1.88
2.5 | Means followed by a common letter are not significantly different at the 5% level by DMRT. Statistical analysis showed highly significant differences between Phosphorine plus 70 kg N/fed. and control, for sucrose %, while significant differences were found between both Serealine + 70 kg N/fed and 46 kg N/fed. compared with control. Highly significant differences were found among mineral or biofertilizer compared with control in case of total soluble solid percentages. These results are in agreement with those obtained by Nureldin *et al.* (2002) reported that inoculation of sugar beet with biofertilizer in form of Azotobacterine and Phosphobactrine together with 75 kg N/fed. as mineral fertilizer gave the highest sucrose %, and purity%. Ali (2003) indicated that the percentage of T.S.S. and sucrose significantly increased with biofertilizer only. Sodium and Potassium ions play an important role in physiological equilibrium condition in cellular solution for sugar contents in sugar beet yield. Data in Table (6) showed that the highest value of potassium ion in sugar beet roots (6.91%) was recorded for Phosphorine + 23 kg N/fed., followed by 46 kg N/fed. (6.90%) then Cerealine + 23 kg N/fed. (6.83%). Also, the highest value of sodium ion was recorded in Cerealine + 23 kg N/fed. (3.52%) followed by Microbien or Phosphorine + 23 kg N/fed. (3.49% each). Highly significant differences among treatments for potassium and sodium ions compared with control were recorded. Data in Table (6) showed no clear cut trend due to sources of fertilizers (mineral alone or bio-mineral fertilizer) for α-amino nitrogen. Results showed that 70 kg N/fed. or mixture of biofertilizer combined with 23 kg N/fed. highly significant increased the quality degree percentage compared with control treatment. The highest values (82.9 and 82.3%) were recorded in treatment receiving 70 kg N and mixture of three biofertilizer plus 23 kg N/fed. respectively. These results are in agreement with those reported by Abu El-Fotoh *et al.* (2000) and Nureldin *et al.* (2002). # **REFERENCES** - Abu El-Fotoh, H.G.; A.A. Abd El-Magid and R.E. Knany (2000). Effect of biofertilization on sugar beet yield, quality and optimization of the chemical fertilizer. Proc. 9th Conf. Agronomy, Minufiya Univ., 1-2 Sept.: 561-567. - Afify, A.H.; F.M. Hammouda; A.M. Basyouni and F.I.A. Hauka (1994). Effect of bacterization and mineral fertilization on the main characters and major insect infestations of sugar beet plants. J. Agric. Sci., Mansoura Univ., 19 (1): 201-208. - Ali, M.H.A. (2003). Microbiological chemical studies on the rhizophere of sugar beet plants. Ph. D. Thesis, Fac. Agric., Al-Azhar Univ., Egypt. - Aly, F.A. (1988). Effect of nitrogenous and potash fertilization rates on sugar beet infestation with main insects. J. Agric. Sci., Mansoura Univ., 13 (1): 357-361. - Badr, A.I. (2004). Response of sugar beet plant to mineral and biological fertilization in North Delta. Ph. D. Thesis, Fac. Agric., Al-Azhar Univ., Egypt. - Bassal, S.A.A.; A.A. Zohry and K.A. Douby (2001). Effect of row and hill spacings and biomineral N-fertilization rates on sugar beet productivity. J. Agric. Sci., Mansoura Univ., 26 (9): 5217-5226. - Basyouni, A.M. (1987). Studies on the insects of sugar beet at Kafr El-Sheikh Governorate. Ph. D. Thesis, Fac. of Agric., Tanta Univ., Egypt. - Bassyouny, A.M. and F.A. Abou-Attia (1998). Effect of organic manures on sugar beet properties and the insect infestations. J. Agric. Sci., Mansoura Univ., 23 (4): 1729-1737. - Brown, M.E. (1982). Nitrogen fixation by free living bacteria associated with plants fact or fiction? in: Bacteria and plants (M. Rhodes Roberts and F.A. Skinner, eds.). Academic Press, London. PP. 25-41. - Cakmakci, R.; F. Kanter and O.F. Algar (1999). Sugar beet and barley yield in relation to *Bucillus polymyxa* and *Bucillus megaterium* varphosphaticum inoculation. J. of Plant Nutr. and Soil Sci., 162 (4): 437-442. - Duncan, D.B. (1955). Multiple range and multiple F-tests. Biometrics 11: 1-42. - Favilli, R.; R. Pastorelli and A. Gori (1993). Response of sugar beet to Azospirillum bacterization in field experiments. Agric. Med., 123: 281-285. - Gamieh, G.N. and S.E. Saadoon (1998). The effect of nodulation, N-fertilization and certain acaricides on phytophagous and soil mites in Soybean fields. J. Agric. Res., Tanta Univ., 24 (2): 137-149. - Godfrey, L.D.; J.J. Cisneros; K.E. Keillor; R.B. Hutmacher; P. Dugger and D. Richter (2000). Influence of cotton nitrogen fertility on cotton aphid, Aphis gossypii, population dynamics in California. Proceedings of Beltwide cotton conference, San Antonio, USA, 4-8 January, Vol. (2): 1162-1165. - Hegazy, M.H.; F.A. Sherif; F.K. Abd El-Fattah and G.N. Gamieh (1997). Response of soybean to biofertilization, levels of Phosphorus and its relationship with spider mite infestation. J. Agric. Sci., Mansoura Univ., 22 (7): 2207-2216. - Kennedy, I.R. and Y.T. Tchan (1992). Biological nitrogen fixaion in nonleguminous field crops: recent advances. Plant and Soil., 141: 93-118 - Mesbah, A.H.; H.K. El-Sherif and A.A. Gaber (1985). The common harmful pests found on sugar beet plants in Alexandria region. 2-Effect of irrigation regime and nitrogen levels on the infestation of *Pegomyia hyascyami* Curtis and *Scrobipalpa ocellatella* Boyd., the common sugar-beet insect-pests at Alexandria region. Annals Agric. Sci., 23 (1): 365-372. - Mesbah, H.A.; A.K. Mourad; H.M. El-Nimr; M.A. Massoud and A.A. Abd El-Aziz (2002). The role of some agricultural practices and fertilizer type on both the incidence of stem borers infestation and corn yield in Egypt. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet. 67 (3): 575-89. - Nemeat-Alla, H.E.A. (2004). Effect of some agronomic practices on yield and quality of sugar beet. M.Sc. Thesis, Fac. of Agric., Kafr El-Sheikh, Tanta Univ., Egypt. - Noureldin, N.A.; M.A. El-Gawad; M.F. Hamed; A.H. Nassar and S.R. Khalil (2002). Response of some sugar beet (*Beta vulgaris* L.) varieties to mineral and bio-fertilization under Egyption environmental conditions. Environ. Sci., Institute of Environmental Studies and Res., Ain Shams Univ., 4 (1): 163-187. - Shabev, V.P.; V. Yu. Somlin and O.S. Safrina (1995). Nitrogen fixation in rhizosphere. Yield of beet root and nitrogen balance in flood plain and soil using nitrogen fixing bacteria of the genus *Pseudomonas*. Agrokhimiya, 11: 3-14 (C.F. CD ROM Computer system). - Suckhovitskaya, L.A. (1998). Survival rates and growth stimulating effects of Bucillus megatherium and Agrobacterium radiobacter strains introduced into soil (BIBLIOGRAPHIC CITATION). Applied Biochemistry and Microbiology, 34 (1): 81-83. - Talha, E.A.M.M. (2001). Integrated pest management of sugar-beet insects. M.Sc. Thesis, Fac. of Agric., Mansoura Univ., 102 pp. - Yanni, Y.G.; A.A. Hassan; M.M. El-Beheiry and M.E. Hassan (1991). Relation between soybean and intensity of infestation with the spider mite *Tetranychus cucurbitacearum* (Sayed) under different sowing dates and increasing amounts of nitrogenous fertilizer. World J. of Microbiol & Biotechnol., 7: 37-42. - تأثير التسميد الحيوى والمعدنى على الآفات الحشرية الرئيسية وبعض صفات نباتات بنجر السكر. - فايز على محمد أبوعطية "، خالد عبدالدايم عبدالعزيز " " - قسم الحشرات الاقتصادية كلية الزراعة جامعة كفرالشيخ مصر. - قسم النبات الزراعى كلية الزراعة جامعة كفرالشيخ مصر. نظرا لما يسببه التسميد المعدني من تلوث للبينة وارتفاع أسعاره حاليا يتم الإتجاه لدراسة التسميد الحيوى كبدائل صديقة للبينة وترشيد استخدام الأسمدة الكيماوية. ولهذا الغرض أجريت الدارسة الحالية في المزرعه البحثية لكلية الزراعة – جامعة كفر الشيخ خلال موسمين متتاليين ٢٠٠٤/٢٠٠٣، ٢٠٠٤/٢٠٠٤ بهدف در اسة تأثير الأسمدة الحيوية المصرية الجديدة مثل السريالين – الميكروبين (كمثبت للأزوت الجوى) الفوسفورين (ميسر لعناصر الفوسفور – البوتاسيوم)، الخليط الحيوى مضافا معها التسميد المعدني بجرعات ٧٠ ٤٦، ٢٤٣ معها التسميد المعدني المعدني فقط وبنفس الجرعات السابقة بالإضافة بالإضافة الى ٩٠ كجم نتروجين/فدان وهو المعدل الموصى به على أهم الأفات الحشرية التي تهاجم نباتات بنجر السكر على مدار الموسمين وصفات النمو ومحصول الجنور والعرش الأخضر عند الحصاد للموسمين كما درست تأثير هذه الأسمدة على جودة المحصول عند الحصاد في الموسم الثاني. - وتم الحصول على النتائج التالية: - ١- درجة الإصابة العشرية بأهم حشرات بنجر السكر: - أوضح التحليل الأحصائي أن التسميد المعدني فقط أو التسميد الحيوبي مختلطا مع التسميد المعدني يزيد بدرجة عالية المعنوية من الإصابة بنبابة البنجر (بيض، يرقات وأنفاق) مقارنة بالكنترول حيث وجدت أعلى كثافة عددية للحشرة (١٦٢٤ فرد، ١٣٥ نفق/٨٤نبات) في معاملة ٩٠كجم نتروجين/فدان ترها معاملة السريالين + ٤٦كجم نتروجين/فدان (٦٦٦ فرد، ٩٩ نفق/٨٤ نبات) مقارنة بالكنترول (٢٩٥ فرد، ٢٤ نفق/٨٤ نبات). - الكثافة العددية لخنفساء البنجر السلحفائية تزداد بدرجة عالية المعنوية على نباتات بنجر السكر المعاملة بالتسميد الحيوى مضافا إلية ٢٣ أو ٢٦كجم نتروجين/فدان مقارنة بالتسميد المعدنى فقط أو الكنترول. # J. Agric. Sci. Mansoura Univ., 32 (2), February, 2007 - ومعاملة الخليط الحيوى (سريالين + ميكروبين + فوسفورين) + ٢٤كجم نتروجين/فدان أحتوت على أعلى كثافة عددية لخنفساء البنجر (٢٦٨ فرد/٤٨ نبات). - سجلت أعلى كثافة عددية لفراشة البنجر (٧٣ يرقة/٤٨ نبات) في معاملة الكنترول، تلاها التسميد الحيوى مضافا اليه ٣٣كجم نتروجين/فدان. بينما كان أقل تعداد لهذه المحشرة في المعاملة ٩٠كجم نتروجين/فدان (١٨ يرقة/٤٨ نبات). - الكثافة العددية للجاسيد ازدادت بدرجة عالية المعنوية على نباتات بنجر السكر المعاملة بكل النسب للتسميد المعدنى ثم تلاها معاملات التسميد الحيوى مقارنة بالكنترول حيث كان أعلى تعداد لهذه الحشرة (۱۲ غفرد/۸عنبات) في معاملة ٤٦ كجم نتروجين/فدان. - على العكس، الكثافة العددية للبقة الخضراء ازدادت بدرجة عالية المعنوية بمعاملة النباتات بالتسميد الحيوى مختلطا بالتسميد المعدنى والتسميد المعدنى فقط حيث سجل أعلى تعداد للحشرة (١٢٤ فرد/٤٨ نبات) في معاملة الخليط الحيوى مع ٤٦كجم نتروجين/فدان بينما كانت الفروق غير معنوية في المعاملة ٩٠كجم نتروجين/فدان مقارنة بالكنترول. - ٧- صفات النمو والمحصول: أظهرت النتائج أن التسميد النتروجيني والتسميد الحيوى مختلطا بالتسميد النتروجيني تزيد بدرجة عالية المعنوية طول الجذر، قطر الجذر، وزن الجذر والعرش الأخضر لنباتات بنجر السكر عند الحصاد في كلا الموسمين مقارنة بمعاملة الكنترول. حيث وجد أعلى وزن لجذر النبات (٩٣٨,٢جم) ووزن العرش الأخضر (٩٨,٤جم) في معاملة السريالين مختلطا مع ٥٧٠جم نتروجين/فدان. - ٣- صفات الجودة: أوضحت النتائج أن معاملة التسميد الحيوى (قوسفورين + ٧٠كجم نتروجين/فدان) أدت الى زيادة نسبة السكر بدرجة عالية المعنوية (٢٠,٠٥%) في جذور بنجر السكر. وبدرجة معنوية في معاملة السريالين مختلطا مع نفس نسبة التسميد المعدني (١٨,٩٥%). ووجدت فروق عالية المعنوية بين معاملات التسميد المعدني والحيوى المحتوى المواد الصلبة الذائبة الكلية (٣.٨.٥.٥). كما أظهرت النتائج أن بعض معاملات التسميد المعدني والحيوى أدت الى جودة العصير في جذور بنجر السكر من خلال تأثيرها على محتواه من أيونات البوتاسيوم والصوديوم وألفا أمين نيتروجين. وبصفة عاملة يمكن الإستنتاج بأن التسميد الحيوى لنباتات بنجر السكر بأحد الأسمدة الأتية: الفوسفورين أو السريالين أو الخليط الحيوى الثلاثي مضافا إليه ٧٠كجم نتروجين/فدان يمكن التوصية به لخفض الإصابة الحشرية بأهم الحشرات التي تهاجم نباتات بنجر السكر (ذبابة للبنجر، خنفساء البنجر و فراشة البنجر) وزيادة وزن الجذور _ نسبة السكروز _ ترشيد استخدام الأسمدة الكيماوية وتقليل تلوث البيئة.