SEMI FIELD AND LABORATORY TRIALS TO STUDY THE SUSCEPTBILITY OF DIFFERENT FABA BEAN VARIETIES TO Tetranychus urticae KOCH INFESTATION Abdel-Rahman, Soheir I.; Abla A. Ibrahim and S. M. Soliman Plant Protection Research Institute, Agric. Res. Center, Dokki, Giza ## **ABSTRACT** A semi field trial was done to estimate the population numbers of the different stages of the two spotted spider mite, *Tetranychus urticae* on six different varieties of *Faba bean*, which are Giza 40, Giza 3, Nubaria 4, Masr 2, Masr 1, and Giza 2. Two levels of artificial infestation, 2 and 4 adult females of about the same age per plant beside control were noticed and recorded. Obtained results revealed that, there are significant differences in number of eggs, adult females and males. On the other hand, no-significant differences in the number of moving immature stages were noticed. This study showed a variable significant difference in the average numbers for all stages for the tested six faba bean varieties when infested with *T. urticae*. Observation of inspection showed significant differences of the average numbers and abundance of the mite *T. urticae*. The laboratory studies estimate the influence of the six faba bean varieties. On developmental stages of mite *T. urticae*, results revealed that incubation period, total immature stages and life cycle have low significant differences. On the other hand, the average durations of life span, longevity and fecundity have significant differences. ## INTRODUCTION Faba bean is considered one of the most economic important leguminous crops in Egypt. It is the main food of all Egyptian as well as farm animals. This crop is usually attacked by several insect and mite pests during its growth. Mites are considered one of the major pests attacking faba bean crop, which it cause a great damage and sever losses, therefore different studies on faba bean varieties, biological and ecological on the two spotted spider mite, *T. urticae* showed be carried to avoid using pesticides. Sherif et al. (1994), Megali (1997), Farrag et al (1998), Kasim and Younes (2000) found that Tetranychid mite, *Tetranychus urticae* was the most dominant phytophagous species infesting faba bean plants. Amer (2003) evaluated six faba bean varieties for their relative susceptibility, to spider mites, *T. urticae*. He showed that the level infestation of spider mites during second season 2000 was higher than the first on 1999. The present work aims to study the effect of different faba bean verities on developmental stages and fecundity of the two spotted spider mite condition and semi field trails. ## **MATERIALS AND METHODS** Agricultural soil was taken from an area of one Kirate and was greatly mixed and an equally limited amount was put in fifty four pots. Seeds of six faba bean varieties were planted on the 3rd of November, 2004. After emergence only three plants were lefted, while the remainder plants were carefully discarded. Each faba bean variety was infested by two levels of *T. urticae* infestation and each was repeated two times. The stock culture of the two-spotted spider mite, T. urticae was maintained at the laboratory as a source of infestation. Artificial infestation with T. urticae adult females was done two times on the 2^{nd} , and 4^{th} December 2004. Two levels of artificial infestation were done with 2 and 4 adult females per each pot ands without equally of eighteen pots for each treatment. Examination was taken place weekly from 15 Jan. 2005 till the 26th Feb. 2005 by taking 12 leaflets per each treatment (4 pots). Number of eggs, moving larvae, quiescent larvae, moving protonymphs, quiescent protonymphs, moving deutonymphs, quiescent deutonymphs, adult males and adult females were recorded by examining the whole leaflets. Biological studies were carried out under laboratory conditions. Petridishes with cotton pad moist and leaflets were kept on the cotton pads. Six faba bean varieties were investigated. New emergence adult female and male were transferred on each leaflet of Petri-dish. The adult male and female were transferred daily on a new leaflet and so on till the end of egg laying. Eggs of each Petri-dish were examined daily to count egg hatching and moving and quiescent stages until the emergence of adult males and females to estimate fertility of females. ## **RESULTS AND DISCUSSION** Table (1) shows the duration of the different stages of *Tetranychus urticae* Koch when reared on six different faba bean varieties under laboratory conditions. Data revealed that the short incubation period was found when mites reared on Giza 40 variety followed by Masr 1, while the longest incubation period was found when mites reared on Masr 2 and Nubaria (1) varieties. Obtained data revealed that moving and quiescent of larval and protonymphal stages lasted on six different faba bean varieties. On the other hand, total immature stages durated 6.0 days with Masr (2), Masr (1) and Giza (2) while, this period differ with other varieties. Total immature stages have the same duration in Giza (3), Nubaria (1), Masr (2), Masr (1) and Giza (2) varieties, while this period lasted 6.8 days in Giza (40) variety. Table (2) shows the effect of six different faba bean varieties on preoviposition, oviposition and post-oviposition periods as well as longevity period and sex-ratio of *T. urticae*. Pre-oviposition period varied greatly according to faba bean varieties. The longest pre-oviposition period was found in case of Giza (40) with a mean of 3.00 days, while the longest pre-oviposition period was found with Masr (2) variety. Oviposition period varied greatly, it was noticed that the longest period with Giza (40), Giza (3) and Giza (2) with a mean of 11.4, 11.0 and 9 days. The lowest periods were 7.8, 7.0 and 7.6 days in the remainder three varieties. Table (1): Durations (in days) of different stages of *Tetranychus urticae* Koch when reared on faba bean varieties under laboratory conditions. | Varieties | Duration in days on the following varieties | | | | | | | | | | | |-----------------------|---|---------------------------|---------------------------|-------------------------|--------------------------|--------------------------|--|--|--|--|--| | Stages | Giza (40) | Giza (3) | Nobariah (1) | Masr (2) | Masr (1) | Giza (2) | | | | | | | Incubation period | 3.8±0.44 ^a | 4.054±0.087 ^a | 4.248±0.624a | 4.4±0.548 ^a | 4.0±0.0ª | 4.4±0.548 ^a | | | | | | | Moving larva | 1.0±0.0 a | 1.054±0.121 a | 1.0±0.0 a | 1.0±0.0 a | 1.0±0.0 a | 1.0±0.0 a | | | | | | | Quiescent larva | 1.0±0.0 a | 1.0±0.0 a | 1.0±0.0 a | 1.0±0.0 ^a | 1.0±0.0 a | 1.0±0.0 a | | | | | | | Moving protonymphs | 1.0±0.0 a | | | | | | | Quiescent protonymphs | 1.0±0.0° | 1.0±0.0 ^a | 1.0±0.0 a | 1.0±0.0° | 1.0±0.0 a | 1.0±0.0 a | | | | | | | Moving deutonymphs | 1.8±0.447 a | 1.0±0.0 b | 1.2±0.447 b | 1.0±0.0 b | 1.0±0.0 ⁵ | 1.0±0.0 b | | | | | | | Quiescent deutonymphs | 1.0±0.0 a | 1.0±0.0° | | | | | | | Total immature | 6.8±0.447° | 6.054±0.121 ^b | 6.2±0.447 b | 6.0±0.0 b | 6.0±0.0 D | 6.0±0.0 ^b | | | | | | | Life cycle | 10.6±0.894 a | 10.108±0.156 a | 10.452±0.684 a | 10.4±0.548 a | 10.0±0.0 a | 10.0±0.548 a | | | | | | | Life span | 25.8±1.789° | 24.908±1.734 ^a | 21.252±1.526 cb | 19.4±1.577 ^c | 20.6±0.894 ^{cb} | 22.4±0.548 ^{cb} | | | | | | | Generation | 13.6±0.894 a | 12.108±0.156 b | 12.052±1.210 ^b | 11.4±0.548 ⁶ | 12.0±0.0 ^b | 12.4±0.548 ^b | | | | | | Some figures means not significant Table (2): Female longevity and fecundity of the spider mite, *T. urticae* Koch when fed on different faba bean varieties under laboratory conditions. | Period | Varieties | | | | | | | | | | | | | |------------------------|---------------------------|--------------------------|-------------------------|--------------------------|---------------------------|---------------------------|------------|--|--|--|--|--|--| | Periou | Giza (40) | Giza (3) | Nobariah (1) | Masr (2) | Masr (1) | Giza (2) | LSD | | | | | | | | Pre-oviposition | 3.0±0.00 ^a | 2.0±0.0 ^b | 1.6±0.548 ^b | 1.0±0.0 ^d | 2.0±0.0 ⁶ | 2.0±0.0 ^b | 0.292 | | | | | | | | Oviposition | 11.4±3.286 a | 11.0±1.732 ^a | 7.8±2.168 ^b | 7.0±0.0 ^b | 7.6±0.894 ^b | 9.0±0.0 ^{ab} | 2.401 | | | | | | | | Post-oviposition | 0.6±0.894 ^c | 1.8±0.447 | 1.4±0.548 ^{ab} | 1.6±0.458 ^{ab} | 1.0±0.0 ^{cb} | 1.0±0.0 ^{co} | 0.674 | | | | | | | | No. of eggs/female | 29.0±4.583 ^b | 26.8±2.775 ^b | 28.0±7.348 ^b | 31.8±6.099 ^{ab} | 30.4±4.159ab | 36.4±3.286 ^a | 6.483 | | | | | | | | No. of eggs/female/day | 1.992±0.644 ^{cd} | 1.835±0.310 ^d | 2.590±0.473bc | 3.353±0.794 a | 2.895±0.520 ^{ab} | 3.033±0.274 ^{ab} | 0.6968 | | | | | | | | Longevity | 15.2±3.194 a | 14.8±1.789a | 10.8±2.168 ^b | 9.6±1.342 b | 10.6±0.894 ⁵ | 12.0±0.0 b | 2.425 | | | | | | | | Sex-ratio ♀/♂ | 0.63404 | 0.60117 ^a | 0.54358 | 0.49433 | 0.56563 | 0.54620 | 0.56415632 | | | | | | | Each data = X'±SD #### Abdel-Rahman, Soheir I. et al. Also, post-oviposition period varied according to faba bean varieties. It lasted from 0.6 days (Giza 40) to 1.8 days (Giza 3). Number of eggs per female was about the same in case of Giza (40), Giza (3), Nubaria (1), Masr (2) and Masr (1), while the greater number of eggs per female was found in case of Giza (2) with a mean of 36.4 eggs. Adult female longevity could be arranged in two categories, the first group of Giza (40) and Giza (3) with the mean of 15.2 and 14.8 days, respectively. While the rest of four varieties the mean ranged between 9.6 to 12.0 days. There is no significant difference between the six faba bean varieties on female/male sex ratio, which is about 1:1. Obtained results shown in Table (3) revealed that no significant between the number of eggs, number of immature stages and six different faba bean varieties with low level of artificial infestation. On he other hand, there are significant between different immature stages, laid eggs per female and different faba bean varieties with high level artificial infestation. According to faba bean varieties, the greater number of eggs laid per female was noticed in Masr (3) variety (46.7) followed by Nubaria (1) (33.6), then Masr (1) (25.9), Giza (2) (18.5), Giza (3) (10.45) and finally Giza (40) (9.20) eggs per female. Moving larvae has the greater numbers in varieties Masr (1), Masr (2), and Nubaria (1), while the least numbers was noticed in variety Giza 40. The previous same trend was noticed in quiescent larvae, moving proto and deutonymphs, quiescent proto and deutonymphs, adult female as well as adult male. The first 3 inspection were about the same in all stages moving nymphs (1,2), quiescent nymphs (1&2), female and male, while the latter 3 inspections were about the same but differs from that of the first one. The results are agreement with those obtained by Kasim and Younes (2000), they found that three bean cultivars (502/785/84, 812/84, 812/824/92 and 814/767/92) were considered tolerant to mite infestation. Mohamed (2004) studied the population dynamics of phytophagous mite, Tetranychus cucurbitacearum on different growth stages of faba bean. He recorded two-peaks during the season. Ahmed (2005) studied the population dynamics of phytophagous and predaceous mites associated with faba bean (Vicia faba). The predacious mite reached to the highest level of abundance in March, while the population phytophagous mites reached it is peak in April. Azouz (2005) studied the population fluctuation of spider mite, Tetranychus arabicus (T. urticae) and T. cucrbitacearum on faba bean (V. faba). He found that T. urticae increased to exhibit a peak during the first week of April, whereas the infestation of T. cucrbitacearum started in few number early in February and still low number until the end of season. Also, Gahzi (2006) studied the infestation of spider mites on faba bean plant at Gharbia Governorate. Table (3): Effect of two levels of artificial infestation with *Tetranychus urtic*ae Koch on faba bean varieties on | | popula | uon aei | isity allu | ueve | iohillei | itai stayt | 55 UI 5 | Sidel I | HILES II | 261111-1 | iciu u | allS | | | | |---------|-------------|------------------------------|------------|--------------|-------------|---------------------|------------------------------|-------------|------------|------------|--------------|---------------|------------------------------|-------------|-------------| | Numbers | Levels | | | Varieties | | | | | | Inspection | | | | | | | | 2/plant | 4/plant | control | Giza
(40) | Giza
(3) | Nobariah
(1) | Masr
(2) | Masr
(1) | Giza (2) | 1 | 2 | 3 | 4 | 5 | 6 | | NE | 23.664 | 20.528 ^b
6.817 | 28.1239 | 9.208
d | 10.449 | 33.625 | 46.796°
9.64 | 25.972 | 18.579 | 33.505 | 20.324 | 24.083
abc | 9.641 | 20,083 | 16.13 | | L | 3.764 | 3.456°
0.8009 | 4.25 | 1.907 | 1.977
c | 4.315 | 4.889 ^{ab}
1.733 | 5.895 | 3.958
b | 4.986 | 4.102
abc | 4.468
ab | 1.133 | 3.0232 | 2.769 | | QL | 1.178 | 1.595 ^a
0.4826 | 1.914 | 1.468 | 0.713 | 1.639 | 1.861 ^b
0.683 | 3.380 | 1.394 | 2.4072 | 2.167
ab | 2.162
ab | 1.482 ^{bc}
0.683 | 1.245 | 0.911 | | N1, 2 | 4.938 | 4.447 ^a
1.098 | 4.324 | 2.324 | 2.25
c | 4.0 <mark>37</mark> | 3.884 ^{bc}
1.553 | 7.866 | 7.056 | 5.310 | 4.889 | 5.917 | 4.982 ^a
1.553 | 3.139 | 3.181 | | QN1,2 | 2.762
ab | 2.563 ^b
0.667 | 3.389 | 1.565 | 1.458 | 2.551 | 2.972 ^{bc}
0.943 | 5.162 | 3.718 | 3.579 | 3.134
ab | 3.505 | 2.949 ^{ab}
0.943 | 1.815 | 2.444
bc | | Ŷ | 1.734
ab | 2.014 a
0.544 | 1.264 | 0.537 | 1.736
ab | 2.148
ab | 2.394°
0.769 | 1.139 | 1.889 | 2.741
a | 1.824
b | 2.056 | 1.264 ^{bc}
0.769 | 1.29
bod | 8.843 | | ं | 0.838 | 0.845 ⁶
0.269 | 1.206 | 0.296 | 0.778
b | 1.037 | 1.093 ^b
0.38 | 1.00
b | 1.574 | 1.398
a | 1.315
ab | 0.972
bc | 0.824 ^{cd}
0.300 | 0.546 | 0.722 | Same figures means not significant NE = Number of eggs L= Larva QL= Quiescent larvae N1,2= Proto and deutonymphs moving stages QN1,2= Proto and deutonymphs quiescent stages \bigcirc = Female \bigcirc = Male ## **REFERENCES** - Ahmed, A. F. L. (2005): Population dynamics and incidence for resistance to two spotted red spider mite. 3rd Scientific Conference of Agric. Scie., Assuit Oct., 271-287. - Amer, A. I. M. (2003): Ecological and biological studies on certain mites infesting cotton, other field crops and associated predators. M. Sc. Thesis Fac. Agric., Al-Azher Univ., 131 pp. - Azouz, H. A.A. M. (2005): Ecological and biological studies on some mites associated with cotton and some field crops in Beni-Suef Governorate. Ph. D. Thesis, Fac. Agric. Al-Azhar Univ., 181 pp. - Farrag, A. M.; M. K. Megali and H. Nadia H. (1998): Survey of mites inhabiting cucurbitaceous and leguminous vegetables in Qaliobia and Giza Governorates. Egypt. J. Agric. Res., 76 (1): 63-68. - Gahzi A. M. E. (2006): Studies on certain important mites associated with some field crops. Ph. D. Thesis Fac. Agric. Al-Azhar Univ. 160 pp. - Kasim, Y. and A. Younes (2000): Population dynamic and relative susceptibility of twelve bean cultivars to infestation by *Tirionyza congesta* (Becker) and *Tetranychus arabicus* Attah. Under field condition. Egypt J. Appl. Sci., 15 (9): 336-347. - Megali, Magda, K. (1997): Relative susceptibility of some snap bean cultivars to infestation by mites and aphids with reference to yield, yield components and hairs density. Egypt J. Appl. Sci., 12 (11): 267-277. - Mohamed, O. M. O. (2004): Ecological and biological studies on some mites associated with field crops in new reclaimed areas at Sharkia Governorate. Ph. D. Thesis Fac. Agric. Al-Azher Univ., 231 pp. - Sherif, M. R.; I. I. Mesbah and G. N. Gamal (1994): Survey and population densities of insects and mites associated with Faba bean at Kafr El-Sheikh region. Agric. Res. Tanta Univ., 20 (3): 553-560. - تجارب نصف حقلية ومعملية لدراسة قابلية بعض أصناف الفول البلدي للإصابة بالعنكبوت الأحمر ذو البقعتين Tetranychus urticae Koch سهير إبراهيم عبد الرحمن ، عبلة عبد الوهاب إبراهيم و سليمان مسعود سليمان معهد بحوث وقاية النباتات مركز البحوث الزراعية الدقى –جيزة - أجريت هذه التجارب لدراسة مدي قابلية ٦ أصناف من الفول البلدي للإصابة بالعنكبوت الأحمــرذو البقعتين وذلك عن طريق العدوي الصناعية لنباتات زرعت فــي أصـــص (semi-field) حيــث أجريــت العدوي الصناعية عند مستويين للإصابة ٢، ٤ إناث بالغة لكل إصبيص به ثلاث نباتات. - كما أجريت دراسات بيولوجية معملية للعنكبوت الأحمر على السنه أصناف من الفول البلدي. أوضحت الدراسات البيولوجية أن فترة الأطوار الغير كاملة لكل من الأنثي والذكر استغرقت ٦ أيام عند التربية على الأصناف مصر (١)، مصر (٢)، جيزة (٢) ولكنها اختلفت عند التربية على الأصناف الأخرى جيزة (٤٠)، جيزة (٣)، نوبارية (١). - كما أنَّ مرحلة وضعُ البيض تَاثَرَتُ بوضوح تبعاً لنوع العائل حيث كانت طويلة مع جيــزة (٤٠)، جيزة (٣)، جيزة (٢) وذلك بمتوسط ١١٤، ١١،٠٠ أيام على الترتيب وكانت قصيره مـــع الأصــناف نوبارية ١ (٧,٨ يوم)، مصر ١ (٧,٠ يوم) وأخيرا مصر ٢ (٧,٠ أيام). - وكأنت خصوبة الإناث مُتقاربه مع جميع الأصناف عدا الصنف جيزة (٢) حيث كان معدل وضع البيض عاليا مما يدل على حساسية الصنف الشديدة للإصابة. - ومن التجارب النصف حقلية أوضحت الدراسة أنه لا توجد فروق معنوية بين عدد البسيض وعسدد الأطوار الغير كاملة على جميع الأصناف بالنسبة لمستوي الإصابة الأقل ولكن كان هناك فرق معنوي علسي مستوي العدوي الصناعية الأعلى بالنسبة لتعداد البيض والأطوار الغير كاملة.