STUDIES ON THE EFFECTS OF Bacillus thuringiensis AND NUCLEAR POLYHEDROSIS VIRUS (NPV) FOR CONTROLLING THE COTTON LEAFWORM Spodoptera littoralis (NOCTUIDAE: LEPIDOPTERA) Abed-El Wahab, I. S.; Samia Z. Sayed and M.M. Aly Plant Protection Res. Instit., Agric. Res. Cent. Dokki, Giza, Egypt. ### ABSTRACT Effects of Bacillus thuringiensis and nuclear Polyhedrosis virus (NPV) mixture on certain biological aspects of Spodoptera littoralis were evaluated. Both of 2nd and 4th larval instars of *Spodoptera littoralis* were used for that purpose. The mixture of both *Bacillus thuringiensis* (Dipel 2X) and nuclear Polyhedrosis virus (NPV) were slight effective against 2nd and 4th larval instars of *Spodoptera littoralis*. Generally the *Bacillus thuringiensis* treated leaves was more effective than other one of nuclear Polyhedrosis virus (NPV) in the respect of larval, pupal mortality and larval; pupal and adult duration. This Bacillus thuringiensis (Dipel 2X) and nuclear Polyhedrosis virus (NPV) also reduced the fecundity of alive females and of the treated larvae of the 4th larval instar of *Spodoptera littoralis*. #### INTRODUCTION The use of insecticides may lead to biological imbalance due to the destruction of species, which attack the harmful insects. Besides the destruction of beneficial pollinator insects such as honey bees and others. The cotton leafworm, Spodoptera littoralis (Boisd.) is considered as one of the most serious insect pests of many different Egyptian crops, where the pest attacks in heavy damage in all different parts of the host plants. The pesticidal and biological activities of Bacillus thuringiensis were extensively studied by several researchers, i.e. Abdel-Aziz and S. Hanan (2000); Abdel-Halim (1993); Abdel-Halim et al. (1997); Abou-Bakr, H. (1997); Aly, et al. (2000); Belisle, et al. (1990); Bernhard, et al. (1997); Broza, M. and Sneh, B. (1994); Butani, et al. (1997); Chaufaux, et al. (1997); Dabi, et al. (1988); El-Sayed, A.K. and Lotfy, N. M. (1990); Gadallah, et al. (1990); Morris, et al. (1996); Peng, et al. (1992) Therefore, the present work is carried out to determine the effect of *B. thuringiensis* and nuclear Polyhydrosis virus (NPV) on certain biological aspects in *Spodoptera littorals*. This can be attained by determining their possible latent effects on certain biological aspects. ### MATERIAL AND METHODS # Laboratory experiments: These experiments were carried out to study the effects of nuclear polyhedrosis virus (NPV) and Bacillus thuringiensis (B.T.) on different biological aspects of Spodoptera littoralis at different concentration of them .Oral administration was under taken by feeding the second and fourth instar larvae of S. littoralis on castor leaves. The effects of the mixture of these compound also were assessed. The tested biological aspects of Spodoptera littoralis were larval mortality, deformed larvae, larval duration, pupation, pupal mortality, deformed pupae, pupal duration, emerged moths, fecundity, eggs hatchability and moth longevity. #### Insect culture: The original culture of Egyptian cotton leafworm, Spodoptera littoralis (Boisd.) were obtained from Plant Protection Research Institute in Dokki, Giza, Egypt which reared on castor bean leaves. The culture was maintained at 28+2 °C and 55+5 % R.H. The progeny of these insects together with occasional fresh supplies of eggs, formed the basis of a culture designed to provide insects used in the present investigation. Mortality was corrected according to Abbott's formula (1925) before probit analysis. ## The tested compounds: Two compounds were tested solely and together, they were:- ## Polyhedrosis virus: The production, preparation, formulation, testing and application of a microbial pesticide according to Mckinley (1985) rate of 5×10^{12} / feddan. (300 gm /200 L. water) feddan. #### Bacterial bioinsecticide: *B. thuringiensis* var . Kurstaki as Dieple $2x (32 \times 10^3 \,\text{IU/ mg.})$. The compound was used at the rate of 300 gm powder. (300 gm /200 L. water). Statistical analysis: The entire assays were repeated two times each and the results were combined for statistical analysis. The results are presented as percentages, although actual means numbers of insects were used for statistical tests. Statistical significance was determined by analysis of variance (T-test at P.0.05) using the software package Costat. Results are recorded as mean ± standard deviation (SD) according to Snedecor,(1971). ## RESULTS AND DISCUSSION Effect of, B. thuringiensis and nuclear Polyhedrosis virus (NPV) mixture on certain biological aspects of Spodoptera littoralis treated in 2nd larval instar. When 2nd larval instar of *Spodoptera littoralis* were fed on castor oil leaves treated with the mixture of *B. thuringiensis* (*Bacterial pathogen*) and nuclear Polyhedrosis virus (NPV), many biological aspects were affected (Tables 1, 2 and 3). It is clear from the previous Tables, that the percentages means of larval mortality increased by increasing the mixture concentrations. The general averages of the two tested seasons in Table 3.A, were 60, 44.5, 36.5, 27 and 11.5 % at the concentrations of 100, 75, 50. 25 and 12.5 % of the mixture respectively, compared to no mortality percentages in control treatment. On the other hand, the general deformed larvae percentage mean were 2.5, 2, 2, 2.5 and 2 % at concentrations of 100, 75, 50. 25 and 12.5 % respectively, compared to undeformed larvae in control treatment. According to the data presented in table (1, 2 & 3), it is clear that a significant prolongation in larval duration periods of *S. littoralis* insect were noticed by decreasing of the tested Bacterial and viral mixture concentrations the general obtained larval duration were 10.6 ± 0.54 , 10.8 ± 0.58 , $11.2 \pm$ 0.64, 11.6 \pm 0.62 and 12.2 \pm 0.63 at concentrations of 100, 75, 50. 25 and 12.5 % days respectively (Table 3B), compared control (16 days). Table (1): Effect of *B. thuringiensis* (Diple 2X) and nuclear ployhedrosis virus (SNPV) mixture on certain biological aspects of 2nd instar of *Spodoptera littoralis* (Boisd) during 2004 at different concentrations of the compound. | (A) | | | , | | , | | , | |-----------|-----------------------------|-------------------------|------------------|----------------------------|--------------------------|--------------------------|--------------------------| | Concent. | Larval
Mortality
in % | ormed
Larvae
in % | Pupation
in % | Pupal
Mortality
in % | Deform.
Pupae
in % | Emerged
Moths
in % | Deform.
Moths
in % | | A+B 100% | 65% | 4% | 31% | 6% | 0% | 20% | 5% | | A+B 75% | 43% | 1% | 56% | 6% | 4% | 42% | 4% | | A+B 50% | 35% | 2% | 63%5 | 8% | 0% | 49% | 6% | | A+B 25% | 25% | 3% | 72% | 9% | 4% | 55% | 4% | | A+B 12.5% | 10% | 3% | 87% | 10% | 5% | 67% | 5% | | Untreated | 0% | 0% | 100% | 0% | 0% | 100% | 0% | | (B) | | | | | | | |-------------|--------------------------------|-------------------------------|------------------------------------|---------------|--------------|----------------------| | Concent. | Larval
Duration
in(days) | Pupal
Duration
in(days) | Fecundity
no. of egg
/female | Hatch.
in% | Long | oth
evity
ays) | | A . D | mean±S.E. | mean±S.E. | Mean±S.E. | FC 629/ | 11.7 | 9.11 | | A+B
100% | 11.4
(± 0.50) | 6.4
(± 0.24) | 316
(±51.35) | 56.63% | (±0.43) | (± 56) | | A+B | 11.8 | 7 | 426 | 66% | 11.72 | 9.15 | | 75% | (± 0.58) | (± 0.44) | (±53.99) | | (±0.45) | (±0.56) | | A+B | 12 | 7.8 | 537 | 66.6% | 11.75 | 9.1 | | 50% | (± 0.54) | (± 0.2) | (±164.17) | | (± 0.47) | (±0.58) | | A+B | 12.4 | 8 | 675 | 69.03% | 11.77 | 9.21 | | 25% | (± 0.67) | (± 0.31) | (±135.15) | | (±0.48) | (±0.66) | | A+B | 13 | 8.2 | 980 | 72.04% | 12 | 9.23 | | 12.5% | (± 0.77) | (± 0.37) | (±248.18) | | (±0.53) | (±0.72) | | Intreated | 16 | 9.8 | 2499 | 97.47% | 9.28 | 8.85 | $A = (NPV) 5x 10^{12} PIB / larvae$ F (5%) = 6.420 B = B.thuringiensis (Diple 2X) IU LSD = 1.824 Also pupal stage, which resulted from treated 2nd larvae instar of *S. littoralis*, with this mixture were affected as shown in Tables (1, 2 & 3). The general percentages averages of pupation were increased by decreasing the concentrations of mixture. The pupation averages were 37.5, 53.5, 61.5, 70.5 and 86.5 % at mixture concentrations of 100, 75, 50. 25 and 12.5 % respectively, compared to 100 % pupation in control treatment (Table 3A). While, the mean percentages of pupal mortality were 5.5, 5, 5.5, 7 and 10 % at the previously mentioned concentrations respectively, compared to no mortality for the control. Also, the mean percentage of deformed pupae were reduced to 0, 4, 0, 2 and 5 % at the concentrations of 100, 75,50, 25 and 12.5 % respectively, compared to no deformed pupae for the control larvae (Table 3A). Table (2): Effect of *B. thuringiensis* (Diple 2x) and Nuclear Ployhedrosis virus (SNPV) mixture on certain biological aspects of 2nd instar of *Spodoptera littoralis* (Boisd) during 2005 at different concentrations of the compounds. | Concent. | Larval
Mortality
in % | Deformed
Larvae
in % | Pupation in % | Pupal
Mortality
in % | Deform.
Pupae
in % | Emerged
Moths
in % | Deform
Moths
in % | |-----------|-----------------------------|----------------------------|---------------|----------------------------|--------------------------|--------------------------|-------------------------| | 4+B 100% | 55% | 1% | 44% | 5% | 0.0% | 33% | 6% | | 4+B 75% | 46% | 3% | 51% | 4% | 4% | 40% | 3% | | 4+B 50% | 38% | 2% | 60% | 3% | 0.0% | 51% | 6% | | A+B 25% | 29% | 2% | 69% | 3% | 0.0% | 60% | 4% | | A+B 12.5% | 13% | 1% | 86% | 10% | 5% | 68% | 3% | | Untreated | 0.0% | 0.0% | 100% | 0.0% | 0.0% | 100% | 0% | | Concent. | Larval
Duration
in(days) | Pupal
Duration
in(days) | Fecundity
no. of egg
/female | Hatch. | Long | oth
jevity
ays) | |-----------|--------------------------------|-------------------------------|------------------------------------|--------|----------|-----------------------| | | mean±S.E. | mean±S.E. | Mean±S.E. | | <u> </u> | <u> </u> | | A+B | 9.8 | 4.8 | 516 | 57.6% | 10.6 | 8.21 | | 100% | (± 0.58) | (± 0.37) | (±99.45) | | (±0.35) | (± 51) | | A+B | 9.8 | 5.4 | 620 | 68.06% | 10.2 | 8.14 | | 75% | (± 0.58) | (± 0.24) | (±120.1) | | (±0.43) | (±0.51) | | A+B | 10.4 | 5.8 | 757 | 69.6% | 10.8 | 8.2 | | 50% | (± 0.75) | (± 0.37) | (±154.9) | | (±0.42) | (±0.52) | | A+B | 10.8 | 6.4 | 870 | 77.1% | 10.8 | 8.24 | | 25% | (± 0.58) | (± 0.24) | (±194.16) | | (±0.44) | (±0.67) | | A+B | 11.4 | 6.6 | 975 | 79.48% | 11.2 | 8.22 | | 12.5% | (± 0.50) | (± 0.24) | (±210.35) | | (±0.51) | (±0.76) | | Untreated | 16 | 8.6 | 2250 | 99.28% | 9.9 | 8.6 | NB:-A = (NPV) 5x 10¹² PIB / larvae F (5%) = 5.448 B = B.thuringiensis (Diple 2X) IU LSD = 1.002 Data in table (3B), also show a significant effect of mixture of *B. thuringiensis* and nuclear Polyhedrosis virus (NPV) on the duration of the pupae produced from treated 2^{nd} larval instar of *S. littoralis*. The pupal duration were 5.6 ± 0.30 , 6.2 ± 0.34 , 6.8 ± 0.28 , 7.2 ± 0.27 and 7.4 ± 0.30 days at the concentrations of 100, 75, 50. 25 and 12.5 % respectively, compared to 9.2 days obtained by the larvae in control treatment. In the case of adults resulted from treated 2^{nd} larval instar of *S. littoralis*, the percentages means of emerged, deformed moths, fecundity and eggs hatchability were greatly affected (Table 1, 2, 3). The general mean percentages averages in (table 3 A) of emerged moths were 26.5, 41, 50, 57.5 and 67.5 % at the previously mentioned concentrations respectively as compared to 100 % emerged moths for control. While the deformed moths were 5.5, 3.5, 6, 2 and 4 % respectively. The fecundity of females and eggs hatchability were affected, due to treatments of 2^{nd} larvae instar with mixture of *B. thuringiensis* and nuclear Polyhedrosis virus (NPV). The eggs mean number / female were 416 \pm 75.4, 523 \pm 87.04, 647 \pm 159.53, 772.5 \pm 164.65 and 977.5 \pm 229.26 at the previously mentioned concentrations respectively compared to 2374.5 eggs / female for control. Adult longevity also were affected by the treatment; whereas females longevity were 11.15 \pm 0.39, 10.96 \pm 0.44, 11.27 \pm 0.44, 11.28 \pm 0.46 and 11.6 \pm 0. days and that of males were 8.66 \pm 0.53, 8.64 \pm 0.53, 8.65 \pm 0.55, 8.71 \pm 0.66 and 8.72 \pm 0.74 days at mixture concentrations of 100, 75, 50. 25 and 12.5 % respectively, as compared to 9.59 days for females and 8.73 days for males at control. Table (3):The general means of certain biological aspects of 2nd larval instar of *Spodoptera littoralis* affected by the mixture *B.thuringiensis* (Diple 2X) and Nuclear polyhedrosis virus (SNPV) throughout the two tested years (2004 & 2005) at different concentration. | Concent. | Larval
Mortality
in % | Deformed
Larvae
in % | Pupation in % | Pupal
Mortality
in % | Deform.
Pupae
in % | Emerged
Moths
in % | Deform
Moths
in % | |-----------|-----------------------------|----------------------------|---------------|----------------------------|--------------------------|--------------------------|-------------------------| | A+B 100% | 60% | 2.5% | 37.5% | 5.5% | 0% | 26.5% | 5.5% | | A+B 75% | 44.5% | 2% | 53.5% | 5% | 4% | 41% | 3.5% | | A+B 50% | 36.5% | 2% | 61.5% | 5.5% | 0% | 50% | 6% | | A+B 25% | 27% | 2.5% | 70.5% | 7% | 2% | 57.5% | 2% | | A+B 12.5% | 11.5% | 2% | 86.5% | 10% | 5% | 67.5% | 4% | | Untreated | 0% | 0% | 100% | 0% | 0% | 100% | | | Concent. | Larval
Duration
in(days) | Pupal
Duration
in(days) | Fecundity
no. of egg
/female | Hatch.
in% | | oth
jevity
ays) | |-----------|--------------------------------|-------------------------------|------------------------------------|---------------|---------|-----------------------| | | mean±S.E. | mean±S.E. | Mean±S.E. | | ÷ = - | | | A+B | 10.6 | 5.6 | 416 | 57.06% | 11.15 | 8.66 | | 100% | (± 0.54) | (± 0.30) | (±75.4) | | (±0.39) | (± 0.53) | | A+B | 10.8 | 6.2 | 523 | 67.03% | 10.96 | 8.64 | | 75% | (± 0.58) | (± 0.34) | (±87.04) | | (±0.44) | (±0.53) | | A+B | 11.2 | 6.8 | 647 | 68.1% | 11.27 | 8.65 | | 50% | (± 0.64) | (± 0.28) | (±159.53) | | (±0.44) | (±0.55) | | A+B | 11.6 | 7.2 | 772.5 | 73.06% | 11.28 | 8.71 | | 25% | (± 0.62) | (± 0.27) | (±164.65) | | (±0.46) | (±0.66) | | A+B | 12.2 | 7.4 | 977.5 | 72.76% | 11.6 | 8,72 | | 12.5% | (± 0.63) | (± 0.30) | (±229.26) | | (±0.52) | (±0.74) | | Untreated | 16 | 9.2 | 2374.5 | 98.37% | 9.59 | 8.73 | A = (NPV) 5x 10¹² PIB / larvae B = B.thuringiensis (Diple 2X) IU F (5%) = 5.125 LSD = 0.954 Effect of, *B. thuringiensis* and nuclear Polyhedrosis virus (NPV) Mixture of on cert, biological aspects on 4th larvae instar of *Spodoptera littoralis* treated in the 4th larvae instar: When 4th larvae instar of *Spodoptera littoralis* were fed on treated castor oil plant leaves with mixture consists of *B. thuringiensis and nuclear Polyhedrosis virus (NPV)* several biological factors of this insect were influenced as shown in tables (4, 5, 6). From the general averages data recorded in Table (6A) it is clear that, the mean percentage of larval mortality increased by increasing the tested concentrations of the mixture. The mortality averages were 55, 42, 35, 28 and 13.5 % at the concentrations of 100, 75, 50. 25 and 12.5 % respectively compared to zero mortality in control treatment. On the other hand the percentages of deformed larvae were 2.5, 0.5, 0, and 1.5 and 0.0 % by the tested concentrations of 100, 75.50, 25 and 12.5% respectively, compared to zero deformed larvae in control. From these results, (in table 6B) a significant prolongation in larval duration, were | | _ | | |---|---|-----| | | в | - 1 | | 1 | 0 | - 1 | | Concent. | Larval
Duration
in(days) | Pupal
Duration
in(days) | Fecundity
no. of egg
/female | Hatch. | Mo
Long
in(d | evity | |-----------|--------------------------------|-------------------------------|------------------------------------|--------|--------------------|---------| | | Mean ±S.E. | mean±S.E. | Mean±S.E. | L | ⊋ | ₫ | | A+B | 7.8 | 8 | 480 | 29.3% | 7.12 | 6 | | 100% | (± 0.86) | (± 0.44) | (±59.45) | l j | (± 0.34) | (± 23) | | A+B | 7.8 | 8 | 540 | 38.1% | 7.13 | 6.21 | | 75% | (± 0.66) | (± 0.70) | (±89.77) | l i | (± 0.34) | (±0.31) | | A+B | 8.6 | 8.4 | 660 | 51.13% | 7.53 | 6.62 | | 50% | (± 0.74) | (± 0.81) | (±182.29) | [[| (± 0.1) | (±0.72) | | A+B | 8.8 | 8.8 | 720 | 57.2% | 7.9 | 6.68 | | 25% | (± 0.67) | (± 0.74) | i (±154.73) | 1 1 | (± 0.33) | (±0.98) | | A+B | 9.2 | 8.8 | 840 | 64.5% | 7 | 6.99 | | 12.5% | (± 0.6) | (± 0.93) | (±223.75) | } | (±0.54) | (±0.23) | | Untreated | 9 | 8.9 | 2260 | 99.24% | 8.6 | 8.4 | A = (NPV) 5x 10¹² PIB / larvae B = B.thuringiensis IU F(5%) = 5.224 LSD = 1.335 Table (6) The general means of certain biological aspects of 4th larval instar of Spodoptera littoralis affected by the mixture B.thuringiensis (Diple 2X) and Nuclear polyhedrosis virus (SNPV) throughout the two tested years (2004 & 2005) at different concentration | (A) | | | | | | | | |-----------|-----------------------------|----------------------------|---------------|----------------------------|---------------------------|--------------------------|---------------------------| | Concent. | Larval
Mortality
in % | Deformed
Larvae
in % | Pupation in % | Pupal
Mortality
in % | Deformed
Pupae
in % | Emerged
Moths
in % | Deformed
Moths
in % | | A+B 100% | 55% | 2.5% | 42.5% | 7.5% | 0% | 29% | 6.5% | | A+B 75% | 42% | 0.5% | 57.5% | 6.5% | 5% | 42% | 4% | | A+B 50% | 35% | 0% | 65% | 7% | 0% | 53.5% | 4.5%_ | | A+B 25% | 28% | 1.5% | 70.5% | 5.5% | 2% | 60% | 3% | | A+B 12.5% | 13.5% | 0% | 86.5% | 5% | 4.5% | 74.5% | 2.5% | | Untreated | 0% | 0% | 100% | 2.5% | 0% | 97.5% | 0% | (B) | Concent. | Larval Duration in(days) | Pupal
Duration
in(days) | Fecundity
no. of egg
/female | Hatch. | | | |-----------|--------------------------|-------------------------------|------------------------------------|----------|---------|--------------| | Ĺ | mean±S.E. | mean±S.E. | Mean±S.E. | <u> </u> | | | | A+B | 6.8 | 7 | 497 | 43.3% | 6.71 | 5.04 | | 100% | (± 0.61) | (± 0.70) | (±58.95) | | (±0.23) | (± 0.27) | | A+B | 6.8 | 7 | 583 | 52.59% | 6.86 | 5.71 | | 75% | (± 0.51) | (± 0.62) | (±72.21) | | (±0.33) | (±0.44) | | A+B | 7.4 | 7.3 | 698.5 | 60.51% | 7.06 | 6.12 | | 50% | (± 0.52) | (± 0.72) | (±167.64) | | (±0.40) | (±0.53) | | A+B | 7.6 | 7.6 | 796.5 | 67.14% | 7.21 | 6.54 | | 25% | (± 0.67) | (± 0.62) | (±175.64) | | (±0.57) | (±0.54) | | A+B | 8.4 | 7.8 | 902.5 | 71.78% | 6.84 | 6.90 | | 12.5% | (± 0.64) | (± 0.75)_ | (±239.15) | 1 | (±0.48) | (±0.23) | | Untreated | 9 | 8.4 | 2250 | 98.66% | 9.1 | 8.8 | $A = (NPV) 5x 10^{12} PIB / larvae B = B.thuringiensis (Diple 2X) IU$ F(5%) = 9.777 LSD = 1.373 concentrations of the tasted bioinsecticidal compounds. In respect to adult stage, increasing concentrations led to decrease in female fecundity and adult longevity. All experiments proved that the effect of treatment with these compounds on the insect was higher when the treatments were carried out on the 2nd larval instar than in the 4th one. The general highest percentage of larval mortality was obtained when the larvae treated in the 2nd instar with the tested mixture consists of *B.thuringenal* and NPV. Concentration of 100 Table (4): Effect of *B. thuringiensis* (Diple 2x) and Nuclear Ployhedrosis virus (SNPV) mixture on certain biological aspects of 4th instar of *Spodoptera littoralis* (Boisd) during 2004 at different concentrations of the compounds. (A) Larval Deformed Pupal Deformed Emerged Deformed Concent. **Pupation** Mortality Larvae Mortality Pupae Moths Moths in % in % in% in % in % in % in % 3% 43% 7% 0% 31% 5% A+B100% 54% A+B 75% 40% 1% 59% 6% 4% 45% 4% 54% 6% A+B 50% 32% 0% 68% 8% 0% A+B 25% 23% 1% 76% 7% 4% 62% 3% A+B12.5% 8% 0% 92% 8% 3% 76% 5% 0% Untreated 0% 0% 100% 5% 0% 95% | B) | | | | | | | |-----------|---------------------------------|--------------------------------|------------------------------------|----------------|---------|-----------------------| | Concent. | Larval
Duration
in (days) | Pupal
Duration
in (days) | Fecundity
no. of egg
/female | Hatch.
in % | Long | oth
gevity
ays) | | 4.5 | mean±S.E. | mean±S.E. | Mean±S.E. | 75.000/ | ¥ | <u></u> | | A+B | 5.8 | 6 | 514 | 75.36% | 6.3 | 4.08 | | 100% | (± 0.37) | (± 0.97) | (±58.452) | | (±0.13) | (± 32) | | A+B | 5.8 | 6 | 626 | 67.09% | 6.6 | 5.21 | | 75% | (± 0.37) | (± 0.54) | (±54.65) | | (±0.32) | (±0.57) | | A+B | 6.2 | 6.2 | 737 | 69.9% | 6.6 | 5.63 | | 50% | (± 0.3) | (± 0.63) | (±152.99) | 1 | (±0.71) | (±0.35) | | A+B | 6.4 | 6.4 | 873 | 77.09% | 6.53 | 6.40 | | 25% | (± 0.67) | (± 0.50) | (±196.56) | | (±0.81) | (±0.16) | | A+B | 7.6 | 6.8 | 965 | 79.06% | 6.68 | 6.82 | | 1 2.5% | (± 0.68) | (± 0.58) | (±254.55) | | (±0.43) | (±0.24) | | Untreated | 9 | 8.2 | 2240 | 98.08% | 9.6 | 9.2 | NB:-A = (NPV) 5x 10¹² PIB / larvae B = *B.thuringiensis* IU F (5%) = 9.507 LSD = 1.872 Table(5): Effect of *B. thuringiensis* (Diple 2x) and Nuclear Ployhedrosis virus (SNPV) mixture on certain biological aspects of 4th instar of *Spodoptera littoralis* (Boisd) during 2005 at different concentrations of the compounds. | (A) | | | | | | | | |-----------|-----------------------------|----------------------------|---------------|----------------------------|---------------------------|--------------------------|---------------------------| | Concent. | Larval
Mortality
in % | Deformed
Larvae
in % | Pupation in % | Pupal
Mortality
in % | Deformed
Pupae
in % | Emerged
Moths
in % | Deformed
Moths
in % | | A+B 100% | 56% | 2% | 42% | 8% | 0% | 27% | 7% | | A+B 75% | 44% | 0% | 56% | 7% | 6% | 39% | 4% | | A+B 50% | 38% | 0% | 62% | 6% | 0% | 53% | 3% | | A+B 25% | 33% | 2% | 65% | 4% | 0% | 58% | 3% | | A+B 12.5% | 19% | 0% | 81% | 2% | 6% | 73% | 0% | | Untreated | 0% | 0% | 100% | 0% | 0% | 100% | 0% | (B) | Concent. | Larval
Duration
in(days) | Pupal
Duration
in(days)
meari±S.E. | Fecundity
no. of egg
/female
Mean±S.E. | Hatch. | Moth
Longevity
in(days) | | |-----------|--------------------------------|---|---|--------|-------------------------------|---------| | | Mean ±S.E. | | | | Ý | ð | | A+B | 7.8 | 8 | 480 | 29.3% | 7.12 | 6 | | 100% | (± 0.86) | (± 0.44) | (±59.45) | | (± 0.34) | (± 23) | | A+B | 7.8 | 8 | 540 | 38.1% | 7.13 | 6.21 | | 75% | (± 0.66) | (± 0.70) | (±89.77) | | (± 0.34) | (±0.31) | | A+B | 8.6 | 8.4 | 660 | 51.13% | 7.53 | 6.62 | | 50% | (± 0.74) | (± 0.81) | (±182.29) | | (± 0.1) | (±0.72) | | A+B | 8.8 | 8.8 | 720 | 57.2% | 7.9 | 6.68 | | 25% | (± 0.67) | (± 0.74) | (±154.73) | | (± 0.33) | (±0.98) | | A+B | 9.2 | 8.8 | 840 | 64.5% | 7 | 6.99 | | 12.5% | (± 0.6) | (± 0.93) | (±223.75) | | (± 0.54) | (±0.23) | | Untreated | 9 | 8.9 | 2260 | 99.24% | 8.6 | 8.4 | A = (NPV) 5x 10¹² PIB / larvae B = B.thuringiensis IU F(5%) = 5.224 LSD = 1.335 Table (6) The general means of certain biological aspects of 4th larval instar of *Spodoptera littoralis* affected by the mixture *B.thuringiensis* (Diple 2X) and Nuclear polyhedrosis virus (SNPV) throughout the two tested years (2004 & 2005) at different concentration. (A) | (A) | | | | | | | | |-----------|-----------------------------|----------------------------|---------------|----------------------------|---------------------------|--------------------------|---------------------------| | Concent. | Larval
Mortality
in % | Deformed
Larvae
in % | Pupation in % | Pupal
Mortality
in % | Deformed
Pupae
in % | Emerged
Moths
in % | Deformed
Moths
in % | | A+B 100% | 55% | 2.5% | 42.5% | 7.5% | 0% | 29% | 6.5% | | A+B 75% | 42% | 0.5% | 57.5% | 6.5% | 5% | 42% | 4% | | A+B 50% | 35% | 0% | 65% | 7% | 0% | 53.5% | 4.5% | | A+B 25% | 28% | 1.5% | 70.5% | 5.5% | 2% | 60% | 3% | | A+B 12.5% | 13.5% | 0% | 86.5% | 5% | 4.5% | 74.5% | 2.5% | | Untreated | 0% | 0% | 100% | 2.5% | 0% | 97.5% | 0% | (B) | (6) | | | | | | | |-----------|------------------------------------|--|---|--------|--------------|------------------------| | Concent. | Larval Duration in(days) mean±S.E. | Pupal
Duration
in(days)
mean±S.E. | Fecundity
no. of egg
/female
Mean±S.E. | Hatch. | Lon | oth
gevity
days) | | A+B | 6.8 | 7 | 497 | 43.3% | 6.71 | 5.04 | | 100% | (± 0.61) | (± 0.70) | (±58.95) | | (± 0.23) | (± 0.27) | | A+B | 6.8 | 7 | 583 | 52.59% | 6.86 | 5.71 | | 75% | (± 0.51) | (± 0.62) | (±72.21) | | (±0.33) | (±0.44) | | A+B | 7.4 | 7.3 | 698.5 | 60.51% | 7.06 | 6.12 | | 50% | (± 0.52) | (± 0.72) | (±167.64) | | (±0.40) | (±0.53) | | A+B | 7.6 | 7.6 | 796.5 | 67.14% | 7.21 | 6.54 | | 25% | (± 0.67) | (± 0.62) | (±175.64) | | (±0.57) | (±0.54) | | A+B | 8.4 | 7.8 | 902.5 | 71.78% | 6.84 | 6.90 | | 12.5% | (± 0.64) | (± 0.75) | (±239.15) | | (±0.48) | (±0.23) | | Untreated | 9 | 8.4 | 2250 | 98.66% | 9.1 | 8.8 | A = (NPV) $5x \cdot 10^{12}$ PIB / larvae B = B.thuringiensis (Diple 2X) IU F(5%) = 9.777 LSD = 1.373 ### REFERENCES - Abbott, W. S. (1925): A method for computing the effectiveness of an insecticide. J . Econ . Entomol ., 18: 265 267. - Abdel-Aziz, S. Hanan (2000): Physiopathological studies on bacterial infection of cotton leaf worm, *Spodoptera littoralis*. M. Sc. Thesis, Fac. Sci., Ain Shams Univ. Egypt. - Abdel-Halim (1993). Bioactivity of four commercial *Bacillus thuringiensis* formulations on some phytophagous lepidopterous insect pests of vegetables. Annals Agric. Sci., Special issue, Egypt.545-553, 1990. - Abdel-Haleem, M. Sawsan (1997): Efficacy and residual effect of some microbial and chemical insecticides against larvae of the cotton leafworm, Spodoptera littoralis (Boisd.). Egypt. J. Biol. Pest Control, 7 (2): 73-78. - Abou-Bakr, H. (1997): Efficacy of different *Bacillus thuringiensis* formulations against the cotton leafworm, *Spodoptera littoralis* (Boisduval). Egypt. J. Biolog. Pest Control 7 (1): 7-11. - Aly, A. E.; Esmat, A. K.; Nawal, Z.; Amina, M. A. and Mona, B. R. E. (2000): Effect of *Bacillus thuringiensis*, a chemical insecticide and its mixtures against the unparasitized and parasitized *Spodoptera littoralis* (Boisd.) larvae. Egypt. J. Agric. Res., 78 (4): 1587-1600. - Belisle, B.W.;M. Shapiro;E.M. Dougherty; H.A.Rathburn; G.B. Godwin; K.M. Jeong; R.H.Chiarella and D.E.Lynn (1990) Gypsy moth nuclear polyhedrosis virus in cell culture a likely commercial system for viral pesticide production. Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20-24 August 1990, 1990, 12. - Bernhard, K.; Jarrett, P.; Meadows, M.; Butt, J.; Ellis, D.J.; Roberts, G.M.; Pauli, S.; Rodgers, P. and Burges, H.D. (1997). Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol., 70 (1): 59-68. - Broza, M. and Sneh, B. (1994): B. thuringiensis spp. Kurstaki as an effective control agent of lepidopteran pests in tomato fields in Israel. J. Econ. Entomol., 87(4): 923-928. - Butani, P.G.; M.N. Kapadia and G.J. Parsana (1997). Comparative efficacy and economics of nuclear polyhedrosis virus (NPV) for the control of *Helicoverpa armigera* (Hubner) on groundnut. Journal of Oilseeds Research. 14: 1, 85-87. - Chaufaux, J.; Muller-Cohn, J.; Buisson, C.; Sanchis, V.; Lereclus, D. and Pasteur, N. (1997). Inheritance of resistance to the Bacillus thuringiensis CrylC toxin in Spodoptera littoralis (Lepidoptera : Noctuidae). J. Econ. Entomol., 90 (4): 873-878. - Dabi, R. K.; Puri, M. K.; Gupta, H. C. and Sharma, S. K. (1988): Synergistic response of low rate of B. thuringiensis Berliner with sub-lethal dose of insecticides against Heliothis armigera (Hubner). Indian J. Entomol., 50 (1): 28-31. - El-Sayed, A.K. and Lotfy, N. M (1990) Effect of *Bacillus sphaericus* on *Culiseta longiareolate* (Macquart). Proc. Int. Conf. St., Comp. SC., Soc. Res. and Dem. 125-137. - Gadallah, A.I.; Emara, S.A.; Nagwa M. Hosein; El-Kordy, M.W. and Sawsan A. Abdel-Halim (1990). Bioactivity of four commercial Bacillus thuringiensis formulations on some phytophagous lepidopterous insect pests of vegetables. Annals Agric. Sci., Special issue, 545-553, 1990. - Mckinely. D.J. (1985): Nuclear polyhedrosis virus of Spodoprera littoralis boisd (Lepidoptera, Noctuidea) as an infective agent in its host and related indects. Ph. D. Thesis. University of London. - Morris, O. N.; Trottier, M.; Converse, V. and Kanagaratnam, P. (1996): Toxicity of *Bacillus thuringiensis* subsp. *aizawai* for *Mamestra configurata* (Lepidoptera: Noctuidae) J. Econ. Entomol., 89 (2): 359-365. - Snedecor, G.W. (1971). Methods of Statistical Analysis. Iowa State Univ. Press, Ames, Iowa, USA. - Peng, H.Y.; T.N. Xie; F. Jing; Y.L. Zhang and Y. Liu (1992) Study on new viral pesticide with high effect and without environmental pollution in China Biochemical-and-Biohysical-Research- Communications. 189:1, 680 - 683. - دراسة تأثير البكتريا و الفيرس النووى في مكافحة دودة ورق القطن (الليليات حرشفيات الاجنحه) - ادريس سلام عبد الوهاب، سامية زين سيد و محسن محمد على معهد بحوث وفاية النباتات – مركز البحوث الزراعية- الدقي – جيزة- مصر. - أجريت هذه الدراسة لدراسة تأثير مخلوط مع العركب الحيوي (فيرس البولي هيدرونس فيرس) وبكتريسا الديبل 2X على بيلوجية دودة ورق القطن. - تأثير مخلوط كل من الفيرس النووى (NPV) ، البكتريا (دايبل X۲) على العمر الثاني لحشرة دودة ورق القطن: الحيل مخلوط كل من الفيرس النووى (NPV) ، البكتريا (دايبل X۲) تأثيرا على يرقات العمر الشاني للسلالة الحساسة لحشرة دودة ورق القطن أسبودبترا ليتوراليس ، حيث أنة سجل معدل وفيات وصل السي (٣٠٠) عند أعلى تركير (٧٠٠%) سجل معدل وفيات وصل الى (٤٠٠ و ٣٦،٠%) عند تركير (٧٠٠٠%) مقارنتا ٠% وفيات في البرقات الغير المعاملة. - ب- كان مخلوط كل من الفيرس النووى (NPV) ، البكتريا (دايبل X۲) على العمرالثاني تأثير معنوي على قــصر عمر البرقات وصل ال(۲۰٫۱ بيوم)و أعمار عذارى وصلت اللي (۲۰۰يوم) وأعمار الذكور والإناث وصلت الســي (۲۰٫۱ ، ۱٬۱۰ ، ۱٬۱۰ بيوم) عند أعلى تركيز (۱۰۰%) بعد معاملة يرقات العمر الثاني البرقىلمشرة دودة ورق القطـــن مقارنتا (۱ بيوم : ۲ و ويوم : ۲۰٫۷ ، ۹۰٫۹ يوم) بالبرقات الغير المعاملة . - ح. وجد أن لنبات مخلوط كل من الفيرس النووى (NPV) ، البكتريا (دايبل X۲) على العمر الثاني تأثيرا فعالا على عدد البيض وصلت إلى (٩٠٠١) عند تركيـز عدد البيض وصلت إلى (٩٧٠٠) عند تركيـز (٠٠٠٠) في الإناث الناتجة عن معاملة العمـر الثـاني البرقىلمـشرة دودة ورق القطــن مقارنتــا (٣٣٧٤٥) بيضة/لانثى واحدة ٩٨.٢٧) بالبرقات الغير المعاملة. - تأثير مخلوط كل من الفيرس النووى (NPV) ، البكتريا (داييل X۲) على العمرالرابع لحشرة دودة ورق القطن : ا-كان مخلوط كل من الفيرس النووى (NPV) ، البكتريا (داييل X۲) تأثيرا على يرقات العمر الرابع للسسلالة الحساسة لحشرة دودة ورق القطن أسبودبترا ليتوراليس ، حيث أنة سجل معدل وفيات وصل السي (٥٥٠) عند اعلى تركيز (٧٠٠) سجل معدل وفيات وصل الى (٤٢ و ٣٥%) عند تركيز (٧٥ و٠٠%) مقارنتا ٥٠٠ وفيسات في الميرقات الغير المعاملة . - ب- كان مخلوط كل من الفيرس النووى (NPV) ، البكتريا (دايبل XY) على العمر الرابع تأثير معنوي على قسصر عمر اليرقات وصل ال(٢٠٨٠،يوم)و أعمار عذارى وصلت إلى (٧يوم) وأعمار الذكور والإنساث وصسلت اللسي (١٠٠٠، ٢٠/٠،يوم) عند أعلى تركيز (٢٠٠٠) بعد معاملة يرقات العمر الرابع اليرقىلمشرة دودة ورق القطان مقارنة (٩يوم: ١٨٠٤، ٨٠،يوم) باليرقات الغير المعاملة .