Annals Of Agric. Sc., Moshtohor, Vol. 46(1): Ho. 87-99, (2008).

SALT TOLERANCE IN SOME OLIVE CULTIVARS AS AFFECTED BY SPRAYING WITH SOME GROWTH REGULATORS 1- EFFECT ON GROWTH, LEAF CHLOROPHYLL A & B AND SOME LEAF PHYSIOLOGICAL PROPERTIES. BY

Abd El-Latif, F.M.
Fac. of. Agric., Moshtohor, Benha Univ., Egypt.

ABSTRACT

The effect of some growth regulators on growth, leaf chlorophyll a & b content and some physiological properties of three clive cultivars transplants, irrigated with saline solution at 6000 ppm with SAR6 and two chloride level (Cl:SO₄) ratio were irrigated. PP₃₃₃ at 500 ppm, BA at 20 ppm and CCC at 1000 ppm were used in this study to give more explanation about the protect against salt injury during 2002 & 2003 seasons. The results which could be deducted of this study are Coronaidi cv. was the superior one with all the investigated growth measurements, dry weight of plant organs, leaf chlorophyll (A & B) content and L.O.P. & L.R.T. while Aghizi cv. was the inferior as well as Manzanillo was in between in addition, salt concentration at SAR 6 or high Cl:SO₄ ratio in saline solution significantly decreased all the investigated growth measurements, plants organs dry weights, leaf chlorophyll A & B contents as compared with control transplants (tap water)

Moreover, growth regulators (PP₂₁₈, BA and CCC) solely foliar spray treatment caused a significant increase of growth measurements (stem & total plant length, no. of leaves & no. of leterals/plant, leef area & satimilation gree/plant), plant organs dry weights and leaf physiological properties (L.S.G., L.R.T. and transpiration rate). On the contrary, leaf camotic pressure (L.O.P.) and hard leaf character (H.L.C.) took the other way around during the study.

INTRODUCTION

Agricultural expansion needs a great amount of suitable irrigation water which already is not sufficient to meet all the expected demands. For that the possibility of using saline water for irrigation specially underground water is of great value; but till now it is still very limited, because this water contain a considerable amount of harmful salts. The applicability of saline water for irrigation is first of all dependent upon the concentration, composition of salts dissolved therein, and upon the degree to which plants are salt tolerance. Since, the olive cultivars plantation may be located principally in the new reclaimed lands (arid and simi-arid zones), this will arise some problems with salinity of soil or the source of irrigation. Salinity affects plant growth differentially.

The need for overcoming the adverse effects of salinity on plants had lead several invest-tigators to test some growth substances. On American and European grape seedlings Sharf et al., (1985) mentioned that both BA and CCC significant decrease stem length of the two grape varities and increased leaves, stem and total plant dry weight over plants irrigated with saline solutions. On tomato, Knavel, (1969) reported that CCC and BA treated plants were more drought resistant and tended to decrease the water loss or increase the efficiency of water movement through leaf tissues.

The present study was carried out to investigate the effect of one concentration (6000 ppm with SAR6 and 2 levels of Cl:SO₄ ratio) in the irrigated water on growth, leaf

chlorophyll A & B and leaf physiological properties in 3 olive cultivars transplants with the hope to find out the regulation of salinity

by application of PP₃₃₃, BA and CCC to plants grown in sandy soil under saline conditions was also studied.

MATERIALS AND METHODS

The present investigation was conducted during two successive seasons, 2002 and 2003 at Sheik-Khalifa Farm, Al-Ain U. A. E. Uniform and healthy one-year-old (Olea europea L.) transplants of three olive cultivars namely "Coronaiki; Manzanillo and Aghizi Shami" were the plant material used in this study. In both seasons and during 2nd week of March these plants were planted in pots of 30 cm. in diameter that have been filled with specific weight of media consisting of polling soil and sand at equal propositions. Irrigation was done every other two days by providing each pot with 34 liter of tap water until May 13 during first and second seasons. The following treatments were used:

- 1- Control (tap water).
- 2- Saline solution with 6000 ppm; SAR6 and low Cl:SO₄.
- 3- Saline solution with 6000 ppm; SAR6 and high Cl:SO₄
- 4- Saline solution with 6000 ppm; SAR6 and low Cl:SO₄ + PP₃₃₃ at 500 ppm.
- 5- Saline solution with 6000 ppm; SAR6 and high Cl:SO₄ + PP₃₃₃ at 500 ppm.
- 6- Saline solution with 6000 ppm; SAR6 and low Cl:SO₄ + BA at 20 ppm.
- 7- Saline solution with 6000 ppm; SAR6 and high Cl:SO₄ + BA at 20 ppm.
- 8- Saline solution with 6000 ppm; SAR6 and low Cl:SO₄ + CCC at 1000 ppm.
- 9- Saline solution with 6000 ppm; SAR6 and high Cl:SO₄ + CCC at 1000 ppm.

The different treatments were arranged in a complete randomized design where each treatment was replicated three times with two pots/each replicate. The different saline solutions were prepared as shown in Table (1) to be applied at that time starting from May 1st till the experiment was terminated in November, during the two seasons of study. Transplants in each treatment were applied with saline solution every four days at the rate of 3/4 liter/pot Foliar spray with either tap water or any of the three

growth regulators i.e. paclobutrazol (pp₃₃₃); benzylamino adenine (BA) and cycocel (ccc) at the rate of 500, 20 and 1000 ppm, respectively was applied each four times starting from (June 15th till September 15th) during the first and second seasons. "Tween 20" as a surfactant at 0.1 % was added to all foliar spray solution.

The accumulated salts were removed every 2 weeks from the pots by irrigation with tap water, followed by rewatering with salt solution the next day. Control treatment was applied only with tap water at ¾ liter four days apart.

- Investigated measurements:

I- Vegetative growth:

Stem length, total plant length, number of leaves/plant, number of laterals, leaf area and total foliage area/plant as assimilation area/ transplants (cm²) was calculated on the base of number of leaves/plant x average leaf area, the method was described by Motskobili, (1984) and followed by Mohsen et al., (1987).

Thereafter, transplanting were divided into three portions: stem, roots and leaves. Oven dried at 70° C till constant weight. organ plant dry weight of leaves, stem and root were calculated.

II- Photosynthetic pigments: leaf photosynthetic pigments were determined which were extracted by pure actone. The optical densities of pigments were measured colorimetrically at 662 and 644 mm for chlorophyll A & B, respectively. Pigments contents were calculated according to Wettstein (1957).

III- Leaf physiological properties:

III-1. Leaf relative turgidity (L.R.T.)

L.R.T. was estimated according to the following equation described by Elmistron and Hiller (1937) and followed by Nomir (1994).

Table (1): Preparation of different saline solutions used.

							S	alt adde	d per lit	er*						
Saline solutions	Ca	Cl ₂	Mg	SO ₄	K	a	K ₂	SO ₄	Na ₂	SO ₄	N:	ıCl	**	CI	SO ₄	CI/SO ₄
	gm	meq	gm	meq	gm	meq	gm	meq	gm	meq	gm	meq	SAR	meq/l	meg/l	ratio
6000 ppm, SAR6, Low Cl	1.11	20	1.2	0.2	0.03	0.453	1.85	21.264	1.35	19.07	0.46	7.79	6	28.2	60.334	0.467
6000 ppm, SAR6, high Cl	1.67	30	0.6	10	0.44	5.838	1.65	8.96	0.45	6.338	1.2	20.51	6	56.35	35.292	1.596

* Salts added in grams were estimated as anhydrous form.

** SAR = Meq Na

$$\sqrt{\frac{Ca + Mg}{2}}$$

III-2. Leaf succulence grade (L.S.G.); was estimated according to the following equation.

Leaf water content (mg.)*
L.S.G. =
$$\frac{}{}$$
 x 100
Leaf area (dec.)²

* Leaf area content (in g.) =

F. weight – dry weight of the leaves at the end of experimental

Number of leaves at the end of experimental According to Nomir (1994).

III-3. Hard leaf character (H.L.C.).

It was estimated according to the following equation:

The method was suggested by Youssef (1990).

III-4. Determination of leaf osmotic pressure (in bar).

Leaf osmotic potential was estimated according to Gusov (1960).

III-5. Transpiration rate

T. R. was estimated according to Attia (2002).

* Statistical analysis:

All obtained results were subjected to analysis of variance and significant different-ces among means were determined according to Snedecor and Cochran (1972). In addition, significant differences among means were distinguishing according to the Duncan's multiple range test (Duncan, 1955).

RESULTS AND DISCUSSION

Effect of foliar sprays with PP₃₃₃, BA and CCC on saline stressed transplants of three olive cultivars:

In this regard specific effect of three investigated factors namely, i.e., olive cultivar (Coronaiki; Manzanillo and Aghizi Shami), sprayed with some growth regulators (PP₃₃₃ at 500 ppm, BA at 20 ppm and CCC at 1000 ppm) and chloride levels (low & high) of saline solutions 6000 ppm with SAR6 and their possible combinations on salinity stressed olive transplants were studied pertaining the response of the following parameters.

I- Vegetative growth measurements:

Data obtained during both 2002 and 2003 experimental seasons regarding the specific effect of the three investigated factors involved in this study i.e., olive cultivars; sprayed growth regulators, Cl:SO₄ ratio and interaction effect of their combinations are presented in Table (2).

A- Specific effect:

Concerning the specific effect of the olive cultivar, it is quite evident that Coronaiki cultivar transplants had statistically the tallest stem, total plant length, highest number of both leaves and laterals/plant followed in a descending order by Manzanillo, while the reverse was detected with those of Aghizi transplants during the two seasons. These results are in agreement with the findings of Hasan (2005).

Referring the specific effect of sprayed growth regulators, treatments, data from Table (2) show that growth measurements parameters of three olive transplants, irrigated with the saline solutions gave a significant decrease in all growth measurements. These results are in agreement with that reported by Pokroveskaya (1954 and 1957) showed that in glycophytes both cell division and cell elongation were inhibited with increasing salinity. Antipov (1958) showed that the smaller size of alfalfa grown

in saline areas, determiner more by a decrease in cell number than cell size. However, Nieman (1965) concluded that the number of cells per nut leaf area Phaseoulus vulgaris L. tended to remain constant through most of the growth period in both the control and the salt stunted leaves. Meiri and Poliakoff-Mayber (1971) revealed that salinity reduced the total leaf area and delayed the development of new leaves bean plants. In addition, spraying both PP₃₃₃ at 500 ppm and BA at 20 ppm as well as CCC at 1000 ppm to the olive transplants significantly improved the average stem length, total plant length, number of leaves /plant and number of laterals/plant of three olive cultivars as compared to plants irrigated with saline solutions during 2002 and 2003 seasons, as presented in Table (2). Data also show that CCC foliar spray at 1000 ppm gave the highest values of stem length, total plant length, no. of leaves/plant and no. of laterals /plant followed by BA at 20 ppm foliar spray, meanwhile the PP33 foliar spray treatment appeared to be less effective than the abovementioned ones. These results are in agreement with those reported by El-Deen et al., (1979) on olive seedlings and Sharaf et al. (1985) on American and European grape seedlings. in addition, the specific effect of chloride level (Cl:SO4 ratio) on vegetative growth parameters, it could be observed from data in Table (2) that the higher Cl:SO4 ratio resulted in a significant decrease in all growth parameters under study. Simi results were also found by Hasan (2005) on olive transplants.

B- Interaction effect:

As for the interaction effect of variance combinations between olive cultivars, sprayed growth regulators and chloride level on stem length, total plant length, no. of leaves/plant and total plant length of olive transplants, data in Table (2) indicated obviously that the highest values of four growth parameters were closely related to Coronaiki transplants irrigated with 6000 ppm saline solution of SAR6 and lower Cl:SO4 ratio as well as sprayed with CCC at 1000 ppm. However, the lowest values of four vegetative growth parameters were detected

by irrigation Aghizi transplants with 6000 ppm saline solution of SAR6 with higher Cl:SO₄ ratio.

II- Leaf area (cm²), total assimilation area (dec²)/plant and chlorophyll A & B content. A- Specific effect:

With regard to specific effect of oliv cultivars, data in Table (3) showed that au parameters followed typically the same trend of response. Hence; Coronaiki had statistically the highest values of average leaf area, assimilation area/plant and chlorophyll A & B contents as compared to the analogous ones of two other olive cultivars. Moreover, Aghizi olive cultivar ranked 2nd while Manzanillo olive cultivar recorded the lowest values in this respect. These are results in agreement with that reported by Hasan (2005) on olive cultivars. In addition, the specific effect of sprayed growth regulators on average leaf area, assimilation area and chlorophyll A & B contents, data obtained revealed that the 3 growth regulators significantly increased the four parameters as compared to control (unsprayed salts stressed transplants). However, CCC foliar spray at 1000 ppm exerted the most stimulus effect followed in a descending order by BA at 20 ppm and PP133 at 500 ppm during the study. Moreover, the specific effect of Cl:SO4 ratio of saline solution used for irrigation on leaf area, assimilation area/plant, chlorophyll A & B content, it could be noticed that the higher ratio resulted in a decreasing significantly the four parameters under study.

B- Interaction effect:

Referring the interaction effect of various combinations between the 3 investigated factors, data showed obviously available response. Herein combination between Coronalid transplants irrigated with 6000 ppm salt solution of SAR6 and lower Cl:SO₄ ratio as well as sprayed with CCC at 1000 ppm exhibited statically the highest values of four parameters. On the contrary, unsprayed any of olive cultivars transplants and irrigated with 6000 ppm saline solution of SAR6 with either lower or higher Cl:SO₄ ratio exhibited the lowest values during the study.

Table (2): Effect of some growth regulators foliar spray on some growth measurements of three olive cultivars transplants irrigated with 6000 ppm, SAR6 and two levels of Cl:SO₄ saline solution during 2002 and 2003 seasons.

$\overline{}$	Cultivars		Stem leng	gth (cm.)		N	lumber of l	eaves/plan	ıt		Number o	f laterals		To	otal plant l	ength (cm.	.)
Treatment	s	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*
									200	2							
Control (tap water)	59.32a	55.32b	48.30c	54.31A	103a	93.0c	99.0b	98.3A	3.987a	3.120d	3.960b	3.689A	106.7a	98.69b	86.43c	97.26A
Control	Low CL	38.14k	37.531	29.47г	34.65D	49.24s	47.15t	43.82v	45.85E	1.390q	1.067t	0.833v	1.220E	55.36m	50.86o	41.92q	48.59E
Control	High CL	36.97m	37.25lm	28.55s	34.039	47.22t	45.82u	41.82w	45.83E	1.277r	1.001u	1.750w	1.220E	52.94n	50.09ор	40.37r	40.37E
PP ₃₃₃	Low CL	45.94e	39.72j	35.03o	37.79C	86.39g	82.77i	70.35k	70.35D	2.527h	2.633g	2.0751	2.040D	77.48f	66.70i	60.211	64.09D
1 1 333	High CL	39.25j	36.41n	30.42q	37.790	66.55n	63.34p	52.70r	עכנ.ט/	2.277k	1.500p	1.227s	2.0401	66.69i	60.471	53.01n	04.072
BA.	Low CL	48.33c	47.08d	34.80o	41.20B	88.40e	87.27f	84.36h	76.51C	2.993e	2.343j	1.577o	2.112C	79.13e	78.24ef	60.551	66.07C
DA.	High CL	44.58f	39.53j	32.86р	41.200	68.011	66.99mn	64.05o	/0.51C	2.443i	2.0851	1.232s	2.1120	68.89h	60.401	49.21p	00.070
ССС	Low CL	46.75d	43.95g	38.19k	41.31B	89.92d	87.93e	86.24g	77.93B	3.250c	2.832f	2.0841	2.371B	83.60d	72.34g	61.021	66.61B
	High CL	42.31h	41.78i	34.860	41.310	73.61j	67.26m	62.60q	//.935	2.0831	2.000m	1.975n	2.5/16	64.60j	63.64k	54.49m	00.01D
Mea	nn**	46.09A	43.39B	36.08C		74.70A	71.28B	67.22C		2.470A	2.065B	1.857C		72.82A	66.83B	56.36C	
Maa	n***	Lov	W	Hi	gh	Lo	W .	Hi	gh	Lo	₩	Hi	gh	Lo	W.	Hi	gh
Mica	II	43.1	9A	40.	51 B	79.9	2A	67.0	66B	2.44	15A	2.12	28B	71.9	5A	65.	11 B
									200	3							
Control (tap water)	61.12a	56.31b	49.62d	55.68A	120.0a	105.0d	120.0a	115.0A	3.679a	3.780a	3.814a	3.758A	107.2a	97.93Ъ	85.79d	96.98A
Control	Low CL	40.831	40.19m	30.17t	36.20E	57.20t	53.79w	47.17y	51.29E	1.5271	1.303mn	1.027o	1.236E	59.221	57.21m	45.33p	52.38E
Condo	High CL	38.64o	37.75p	29.61u	30.20E	54.67v	51.29x	43.65z	31.29E	1.333m	1.250n	0.973o	1.250E	56.29m	52.81o	43.44q	32.301
PP ₃₃₃	Low CL	46.95f	45.42g	37.28q	41.94D	93.63h	85.08j	73.04p	75.58D	2.625e	2.583ef	2.250h	2.266D	82.36e	76.18g	66.36j	71.08C
1 1 333	High CL	43.97i	43.28j	34.75s	41.540	76.19n	69.91r	55.66u	/3.300	2.473g	1.973i	1.693k	2.2000	73.35h	71.49i	56.73m	71.000
BA.	Low CL	50.11c	46.94f	40.33m	43.49B	107.7c	98.86f	90.64i	88.22C	2.786d	2.527fg	2.462g	2.339C	77.66f	73.07h	65.91j	68.15D
DA.	High CL	45.00g	41.72k	36.86q	43.475	80.591	79.20m	72.35q	00.220	2.250h	2.233h	1.777j	2.3390	70.89i	66.09j	55.29n	00.13D
CCC	Low CL	48.36e	47.17f	39.75n	43.22C	110.2b	102.8e	98.70g	89.75B	3.527c	2.713d	2.473g	2.457B	88.32c	77.19f	63.98k	71.92B
	High CL	44.45h	43.96i	35.61r	43.22C	84.35k	76.17o	66.29s	07./3B	2.250h	2.000i	1.777j	2.43/B	73.80h	71.26i	56.98m	11.520
Mea	ın**	46.60A	44.75B	37.11C		87.17A	80.23B	74.17C		2.494A	2.262B	2.027C		76.57A	71.47 B	59.98C	
		Lov		Hi	ah.	Lo	(MV	Hi	gh	L	w	Hi	øh	L)W	H	igh
Maa	n***				8 ¹¹		**		5"				8				

^{*; **} and *** means refer to specific effect of foliar spray with growth regulators, olive cvs. and Cl:SO₄ ratio, respectively. Values within the same column or row for any of three investigated factors were individually differentiated by capital litter's while for the interaction small letters were used, as means followed by same letter/s were not significantly difference.

Table (3): Leaf area (cm.); total leaf (assimilation) area and chlorophyil (A & B) of 6000 ppm, 6-SAR saline solution irrigated olive transplants as influenced by specific and interaction effects of olive cvs., foliar spray with some growth regulators, Cl:SO4 ratio and their combinations during 2002 and 2003 experimental seasons.

	Cultivars		Leaf are	a (cm.)		Tota	d leaf (ass	milation) a	rea		Chloropl	hyll (A)			Chloropl	ıyll (B)	
Treatment	S	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*
									200	2							
Control (1	tap water)	3.430b	3.005cd	4.65a	3.695A	353.4b	279.5c	460.4a	364.4A	1.420b	1.362c	1.565a	1.449A	0.893a	0.763Ъ	0.668c	0.775A
Control	Low CL	2.000kl	2.113i-k	1.603n	1.852D	98.55ij	99.69i	70.31k	85.03D	0.873gh	0.710k-n	0.743j-l	0.758D	0.273ij	0.243j	0.257j	0.253E
Control	High CL	1.663mn	1.703mn	2.03kl	1.0321	78.59k	78.10k	84.96jk	92.03D	0.837h	0.677mn	0.707k-n	บ./วอม	0.260j	0.240j	0.243j	U.253E
PP ₃₃₃	Low CL	2.807d	3.177c	2.163h-k	2.627B	242.6e	263.0d	152.2h	186.0C	0.910fg	0.777ij	0.827hi	0.782C	0.353gh	0.320hi	0.340gh	0.318D
FF 333	High CL	2.253g-j	2.430e-g	2.930d	Z.GZ / D	150.0h	154.0h	154.5h	190.00	0.760jk	0.660n	0.760jk	U. /62C	0.327g-i	0.270ij	0.297h-j	η-219μ
BA.	Low CL	2.980d	2.603e	2.077jk	2.425C	263 👊	227.2f	175.3g	187.3C	1.210d	0.933ef	0.970e	0.889B	0.530d	0.320hi	0.450e	0.3620
DA.	High CL	2.287g-i	2.280g-i	2.323gh	Z423C	155.5h	152.8h	148.9h	18/.3C	0.773ij	0.6971-n	0.750j-l	U.007D	0.320hi	0.260j	0.294h-j	0.3620
CCC	Low CL	2.590ef	2.933d	1.843lm	2.494C	233.0ef	258.0d	159.0h	193.8B	0.843h	0.730j-m	0.753j-1	0.720E	0.557d	0.380fg	0.420ef	0.403B
	High CL	2.373g	2.407fg	2.817d	2,4340	17 4.7 g	162.0gh	176.4g	173.00	0.727j-m	0.547o	0.717j-n	0.720E	0.383fg	0.333gh	0.347gh	0.4031
Mea	ın**	2.487C	2.517A	2.493B		194.47A	196.0B	175.77C		0.9287A	0.788C	0.866B		0.433A	0.348B	0.368B	
Man	n***	Lo	W	Hi	gh	La	,,,,,	Hi	gh	L	DW/	Hiş	gh	Lo	rw .	Hi	igh
IVICA	.a.x	2.66	5A	2.5	72B	222	44	184	.3B	0.97	75A	0.86	4B	0.45	1A_	0.39	93B
									200	3			-				
Control (tap water)	3.650b	3.002f	4.220a	3.624A	437.2b	315.3e	506.4a	419.6A	1.623a	1.465b	1.628a	1.572A	0.763a	0.682c	0.732b	0.726A
Control	Low CL	2.230p	2.477m	1.807t	2.152E	127.6 n	133.3m	85.3p	110.4E	0.933i	0.837lm	0.897j	0.854C	0.463g	0.327m	0.370jk	0.3660
Condo	High CL	1.897s	2.087r	2.413no	2.132E	103. 8o	107.1o	105.4o	110.4E	0.860k	0.770n	0.827m	0.0540	0.413i	0.270o	0.353kl	0.5000
PP ₃₃₃	Low CL	2.153q	3.600b	2.5431	2.834C	201.7i	306.4f	185.8k	212.5D	0.970g	0.920i	0.950h	0.834D	0.497f	0.440h	0.483f	0.3810
1 1 333	High CL	2.797i	2.733jk	3.180e	2.0570	213. 2h	191.1] k	177.11	212.01	0.783n	0.663r	0.717p	V.65-1D	0.303n	0.277o	0.287no	0.5010
BA.	Low CL	2.933g	3.480c	2.250p	2.757D	314.9e	344.lc	203.9i	245.4C	1.127c	1.023f	1.063e	0.880B	0.600d	0.493f	0.550e	0.456B
DA.	High CL	2.403o	2.717jk	2.770ij	#.131 D	193.7j	215.3h	200.5i	243.40	0.747o	0.637s	0.680q	v.oov.D	0.450gh	.277o	0.367jk	V.430B
CCC	Low CL	2.997f	3.347d	2.460mm	2.884B	330.3d	344.1c	242.9g	260.1B	1.120c	0.770n	1.080d	0.855C	0.440h	0.380j	0.403i	0.3760
	High CL	2.937g	2.710k	2.853h	2.00 1D	247.8g	206.5i	189.2jk	200.1D	0.847kl	0.563t	0.750o	V.033C	0.360kl	0.333m	0.343lm	J. 70C
Mea	nn**	2.665C	2.906A	2.722B		241.1A	249.4B	210.7C		1.001A	0.850C	0.955B		0.477A	0.387C	0.432B	
7.5	n***	Lo	W	Hi	gh	L	ж	Hi	g h	L	OWV	Hi	gh	Lo	W	Hi	igh
N/Log																	14B

^{*; **} and *** means refer to specific effect of foliar spray with growth regulators, olive cvs. and Cl:SO₄ ratio, respectively. Values within the same column or row for any of use investigated factors were individually differentiated by capital litter's while for the interaction small letters were used, as means followed by same letter/s were not significantly difference.

III- Leaves, stem, root and total plant dry weights:

A- Specific effect:

Concerning the specific effect of olive cultivars, data in Table (4) showed that all parameters followed typically the same trend. Hence; Coronaiki transplants had the greatest values of leaves, stem, root, and total plant dry weights, while, Manzanillo transplants had the lightest values and Aghizi cultivar was in between during the study. These results are in agreement with El-Said et al., (1995) and Hasan (2005). In addition, the specific effect of sprayed growth regulators, data in Table (4) display that PP₃₃₃ at 500 ppm, BA at 20 ppm and CCC at 1000 ppm sprayed solely increased obviously the leaves, stem, roots and total plant dry weights rather than analogous ones of the unsprayed salt olive transplants during both seasons of study. However, CCC was more effective than either BA or PP333 and the increase exhibited by its application in, leaves stem, roots and total plant dry weights over the unsprayed salt stressed olive plants were significant during 1st and 2nd seasons. This result is in agreement with the findings of Sharaf et al., (1985) on American and European grape plants, who found that spraying BA and/or CCC reduced the salinity damage and increased leaves, stem, root and total plant dry weights. Moreover, the specific effect of chloride levels of saline solution used in irrigation in dry weights of plant organs, it is quite clear that dry weights of plant organs were significantly decreased by increasing Cl:SO₄ ratio in irrigation water during the study. These results go in line with that found by Hasan (2005) on Coronaiki, Manzanillo and Aghizi transplants.

Foliar spray of Taimor and Alphonso mango seedlings with CCC at 500 ppm alleviated effectively the adverse effect of salinity (Ahmed and Ahmed, 1997), while CCC at 100 ppm slightly increased cucumber seedlings growth Kazin and Khalied (1983). Maximos et al., (1991) reported that Fig cv. El-Suttani were sprayed twice (May and July) with CCC or paclobutrazol each at 500 or 1000 ppm. At 500 ppm both growth regulators increased growth parameters (the number of leaves/plant, plant height, number of laterals

and dry weights of (leaves, stems and roots) compared with control, but at 1000 ppm growth was retarded.

B- Interaction effect:

As for the interaction effect of three investigated factors on dry weights of plant organs, data presented in Table (4) showed obviously available response of these measurements to the different combinations during the study. The highest values of plant organs dry weights of olive cultivars were detected by that combination representing spraying CCC at 1000 ppm to irrigate Coronaiki transplants with saline water SAR6 and low Cl:SO₄ ratio. Meanwhile, the lowest increase in dry weight plant organs over unsprayed salt stressed olive transplants were detected by those Aghizi transplants irrigated with 6000 ppm of SAR6 and higher chloride levels during the study.

IV- Leaf physiological properties:

In this respect 5 leaf physiological properties namely: leaf osmotic pressure (L.O.P.), leaf relative turgidity (L.R.T.), leaf transpiration rate (L.T.R.), leaf succulence grade (L.S.G.) and hard leaf character (H.L.C.) of salt stressed transplants belong to three olive cultivars (Coronaiki, Manzanillo and Aghizi) in response to foliar spray with 3 growth regulators (PP₃₃₃ at 500 ppm, BA at 20 ppm and CCC at 1000 ppm) were invest-tigated. Data obtained during 1st and 2nd seasons regarding the specific and interaction effects of olive cultivars, sprayed growth regulators, chloride levels and their combinations are presented in Tables (5 & 6).

A-Specific effect:

Data obtained during both seasons as shown in Tables (5 & 6) revealed that Coronaiki cv. had significantly the greatest values of (L.O.P.); (L.S.G.) and L.R.T. followed in a decreasing order by Manzanillo and Aghizi olive cultivars during 2002 and 2003 seasons. The reverse was true, regarding transpiration rate and (L.L.C.) values compared to that previously discussed with (L.O.P.), (L.S.G.) and (L.R.T.), where Aghizi transplants had significantly the highest values, while Coronaiki cv. had the lowest ones. This results is in agreement with the

Table (4): Dry weights of plant organs (leaves, stems and must unit) and actal plant (gm), of 6000 ppm, 6-SAR saline soften irrigated olive transplants as influenced by specific and interaction effers of other coss, follow specimental seasons.

	Cultivars	Dry	wagit of	Less (gr	1)))	D	waght o	f stem s (gm	L)	Dr	y weight o	f roots (gm	.)	Tota	l plant dry	weight (g	m.)
[reatments	5	Coronalki	Maura	Agliai.	Minus."	Commaki	Masza.	Aghizi.	Меан*	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*
									200	2							
Control (t	tap water)	13.63a	12.50c	136%	IS ANA	12.002a	11.58a	10.70b	11.43A	13.39a	10.32b	9.67c	11.13A	42.03a	34.46c	33.99d	36.83A
Control	Low CL	3.960g	2.707/h	3.85%g	324/5	5.563hi	5.493h-j	4.760k	4.952E	5.290hi	4.070mm	3.463ор	3.892E	14.81m	12.27p	12.07p	12.09E
Control	High CL	3.820g	2.497h	265	3.24//2.	5.223i-k	4.890k	3.7831	4.934E	4.1171-n	3.390o-q	3.020q	3.07ZE	13.160	10.78q	9.453r	12.09E
PP ₃₃₃	Low CL	8.740d	7.560e	8.76DE	6,500	6.637f	5.983gh	5.703hi	5.612D	5.720fg	4.843jk	3.717n-p	4.501D	21.10h	18.39j	18.18j	17.19D
1 1 333	High CL	6.1 70f	4.143g	65 48		5.947gh	5.280a-k	4.1201	3.0121	5.550gh	3.820no	3.357pq	4.3010	18.21j	13.240	14.02n	17.170
BA.	Low CL	8.994d	7.610c	7.135df	7.39SC	7.055 od	6.630f	5.647hi	6.468C	9.640c	6.930e	4.373lm	6.089B	26.60e	21.17h	17.15k	19.95C
DA.	High CL	7.050cf	6.700f	6 38 3df	M. M. S. S. L.	75.3dc	6.257fg	4.737k	4.400L	7.600d	4.497k1	3.497op	9.067D	22.22g	17.45k	15.12m	19.930
CCC	Low CL	9.327d	8.2634	9.2404	2003	8 323c	7.427c	6.633f	6.811B	6.650e	6.013f	5.030ij	5.388C	24.30f	22.30g	20.94h	20.29B
	High CL	7.250 cf	6.730f	7.083df		7.14Bc	6.380fg	4.957jk	9.0115	5.613f-h	5.203h-j	3.820mo	3.3000	20.01i	18.31j	15.861	20.256
Mea	Ln**	7.660A	6.555C	7.3112		7.377A	6,6388	5.671C		7.963A	5454B	4.439C		22.49A	18.71B	17.42C	
Mea		La		76	.	I.a		Hi	gh	L	>₩	Hi	gh	Lo	M	Hi	gh
IVICA		8.44	1A	7.1568		7.485A		6.706B		6.60)8A	5.79	1B	22.6	5A	19.89	
									200	3							
Control (t	tap water)	14.13a	13.23b	13.9th	II.TSA	12.93a	11.79b	9.69c	11.47A	10.17a	8.73c	9.21b	9.376A	37.23a	33.75b	32.80c	34.60A
Control	Low CL	3.730a	3.25%	3.25‰	3.7475	6.250g	5.357jk	4.223mn	4.995E	5.303f	3.543i	2.940j	3.615E	15.28n	12.16r	10.46s	11.84E
Condo	High CL	3.163o	2.26/p	3.67/kg		5.52/nj	4.7131	3.900o	4,7/JE	4.693g	3.040j	2.173k	3.0132	13.38q	10.62s	9.150t	11.04
PP ₃₃₃	Low CL	9.903cd	7.327	2.36g	1470	6210g	6.137g	5.193k	5.445D	4.687g	4.433g	3.113j	3.961D	20.80g	17.90j	16.651	16.90D
333	High CL	6.973k	5.5 83 =	62674		6.010gh	5.120k	4.00mo	3.7732	4.647g	3.990h	2.893j	3.7010	17.63jk	14.69o	13.76p	10.50
BA.	Low CL	9.743d	8.093h	2 <i>77</i> 3	Samc.	7.649c	6.007世	4.630l	5.624C	6.960d	4.647g	4.537g	5.002B	24.34d	18.75i	17.39k	18.710
DA.	High CL	733i	7.257j	7.4175		5.71 0 ki	5.267jk	4.490lm	3.0240	5.957e	3.943h	3.967h	J. 702	19.46h	16.471	15.87m	10.710
CCC	Low CL	10.12c	9.500e	8.617AF	8.Z/68	8.2674	7.790e	4.7501	6.380B	4.717g	4.660g	4.417g	4.220C	23.10e	21.95f	17.78j	18.88B
	High CL	7. 480 j	6.6531	7.25%		6.99f	5.940gh	4.5431	4.JOVB	5.223f	3.230j	3.072j	4.220C	19.69h	15.82m	14.91o	10.000
Mes	an**	8.115A	7.00SC	7.403		7.182A	6.4588	5.047C		5.817A	4.868B	4.036C	1	21.21A	18.01B	16.53C	
	444	L			7	L		Hi	gh	L	W	Hi	gh	L)W	Hi	igh
M	Mean***		8.761A		7.57.8		7.124A		6.442B		5.472A		4.996B		21.36A		

^{*; **} and *** means refer to specific effect of failure squares with growth angulatters, alive evs. and Cl:SO₄ ratio, respectively. Values within the same column or row for any ratio receives individually differentiated by capital litter's while farthe interaction small letters were used, as means followed by same letter/s were not significantly difference.

Table (5): Leaf osmotic pressure (L.O.P.), leaf relative turgidity (L.R.T). and Transpiration rate (mg H₂O/gm F.W./h) of 6000 ppm, 6-SAR saline solution irrigated olive transplants as influenced by specific and interaction effets of olive cvs., foliar spray with some growth regulators, C1:SO₄ ratio and their combinations during 2(g 2002 and 2003 experimental seasons.

Mear	n***	20.55		Hi 22.0		Lo 67.9		Hi ₂ 60.6		Lo 0.71		Hi 0.64	
Mea	n**	23.59A	23.04B	22.32C	-L	68.15A	63.02B	54.59C		0.494C	0.706B	0.769A	
	High CL				L				ļ				
ccc	Low CL	23.13g 24.60e	23.17g 24.47e	21.92ij 22.74gh	23.34B	71.33h 53.97q	69.36i 53.55r	61.61n 51.78s	60.27D	0.690h 0.480i	0.817e 0.690h	0.837d 0.730g	0.707C
27.1.	High CL	23.62f	22.23ij	22.05ij	20.5015	64.31k	55.50p	51.27t	2.070	0.417lm	0.777f	0.907b	3., 401
BA.	Low CL	19.73k	19.53k	18.411	20.93D	74.38f	68.59j	62.971	62.84C	0.590i	0.863c	0.923b	0.746B
4 4 333	High CL	22.92g	22.30hi	21.75j	21.070	81.54d	62.18m	50.92t	U3.U/B	0.430kl	0.703h	0.760f	V.U/2D
PP ₃₃₃	Low CL	21.90ij	19.53k	22.92g	21.89C	82.55c	79.40e	57.83o	69.07B	0.487j	0.777f	0.873c	0.672D
Condo	High CL	36.13a	35.81a	33.77b	34.03A	45.24v	43.32w	38.62y	43.37E	0.287p	0.373n	0.410m	U.JOOE
Control	Low CL	31.15c	31.08c	29.16d	32.85A	46.41u	45.02v	42.94x	43.59E	0.333o	0.437k	0.487j	0.388E
Control (ta	ap water)	9.14m	9.27m	8.14n	8.85E	93.65a	90.30b	73.38g	85.78A	0.732g	0.915b	0.993a	0.880A
		2300				52.0	200						
Mear	n***	20.0		22.2	<u> </u>	62.88A		58.10B		0.700A		0.665B	
		Lov		Hi	σh	Low		High		Low		Hi	<u></u> σh
Mea		23.60A	22.37B	21.16C		63.72A	58.46B	53.41C	 	0.485C	0.706B	0.800A	
ccc	Low CL High CL	25.23f	21.62i 24.08g	20.34j 24.23g	22.87B	65.81h 57.12m	60.42j 52.40o	60.59j 48.59r	57.49D	0.583k 0.507lm	0.833g 0.777i	0.903d 0.853f	0.743C
	High CL	21.62i 21.74i	20.48j	20.34j		60.26jk	53.05n	51.87p	}	0.5231	0.803h	0.897d	}
BA.	Low CL	20.34j	19.17k	17.941	19.98D	67.00f	66.42g	60.00k	59.77C	0.577k	0.873e	0.983a	0.776B
	High CL	22.72h	21.62i	20.21j		72.72d	64.03i	50.35q	ļ	0.507lm	0.777i	0.803h	
PP ₃₃₃		21.63i	19.17k	19.03k	20.73C	74.33c	65.57h	59.601	64.43B	0.493mn	0.767i	0.893d	0.707D
High CL		35.99a	34.46b	32.74c		45.16t	43.14v	38.43x		0.240r	0.313p	0.420o	
Control		31.74d	31.54d	26.59e	32.18A	45.74s	43.80u	39.68w	42.66E	0.283q	0.280q	0.483n	0.337E
Control (t	أخسست	11.36m	9.18n	9.06n	9.87E	85.33a	77.30b	71.60e	78.08A	0.653j	0.932c	0.965b	0.850A
							200						
Treatments	5	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*
Cultivars			L.O	.P.		<u> </u>	L.R	T.		Transpira	tion rate (n	ig H2O/gm	1 F.W./h)

^{*; **} and *** means refer to specific effect of foliar spray with growth regulators, olive cvs. and Cl:SO4 ratio, respectively. Values within the same column or row for any of three investigated factors were individually differentiated by capital litter's while for the interaction small letters were used, as means followed by same letter/s were not significantly difference.

Table (6): Leaf succulence grade (L.S.G.) and hard leaf character (H.L.C.) of 6000 ppm, 6-SAR saline solution irrigated olive transplants as influenced by specific and interaction effets of olive evs., foliar spray with some growth regulators, Cl:SO4 ratio and their combinations during 200 g 2002 ar and 2003

	Cultivars	Leaf s	succulence	grade (L.S	.G.)	hard	l leaf chara	ict e r (H.L.C	;.)			
Treatments		Coronaiki	Manza.	Aghizi.	Mean*	Coronaiki	Manza.	Aghizi.	Mean*			
			2002									
Control (t	ap water)	0.850c	1.315a	0.969b	1.045A	0.200j	0.200j	0.180k	0.193E			
Control	Low CL	0.390jk 0.290m		0.500gh	0.406E	0.450d	0.507Ъ	0.400e	0.472A			
High CL		0.470g-i	0.477gh	0.310lm	0.400E	0.453d	0.583a	0.440d	U.4 / ZA			
PP ₃₃₃	Low CL	0.683e	0.580f	0.983b	0.750B	0.403e	0.370fg	0.367gh	0.378D			
High CL		0. 734de	0.800c	0.717de	U.730B	0.477c	0.363fg	0.287i	0.3760			
BA. Low CL		0.478gh	0.417ij	0.523g	0.520C	0.357fg	0.477c	0.327h	0.403B			
High CL		0.743d	0.500gh	0.460hi	0.5200	0.417e	0.487c	0.353g	0.4030			
CCC	Low CL	0.393jk	0.373jk	0.60 3 f	0.434D	0.360fg	0.370fg	0.357fg	0.386C			
High CL		0.383jk	0.493gh	0.353kl	ערטריט	0.410e	0.447d	0.373f	0.5000			
Mea	n**	0.569C	0.583A	0.602B		0.392B	0.423A	0.343C				
Mea	***	Lo	₩	H	gh	Lo	W.	Hi	zh			
MES		0.62	3B	0.6	38A	0.35	5B	0.37	8A			
					20			*Impl				
Control (ap water)	0.960b	0.993a	0.843c	0.932A	0.2101	0.2201	0.190m	0.207D			
Control	Low CL	0.357m	0.253q	0.410k	0.349D	0.327g	0.410b	0.280ij	0.360A			
Condoi	High CL	0.3771	0.407k	0.290p	0.0470	0.353ef	0.450a	0.337fg	0.5007			
PP333	Low CL	0.620g	0.517i	0.747d	0.639B	0.290i	0.363de	0,247k	0.296C			
* * 949	High CL	0.717e	0.697f	0.537m	010071	0.277	0.350ef	0. 250k	0.2500			
ÐΑ	Low CL	0.357m	0.290p	0.430	0.364C	0.290i	0.360de	0.270	0.327B			
BA. High CL		0.403k	0.393kl	0.310a	0.3040	0.337fg	0.3936	0.310h	V:34/B			
CCC Low CL		0.350m	0.280p	0.427	0.358C	0.310h	0.340fg	0.2901	0.333B			
High CL		0.360m	0.400k	0.333n	1 0.336C	0.347ef	0.375d	0.337fg	V.333B			
	- 6 d	0.500A	0.470C	0.481b		0.305B	0.362A	0.279C				
Mei	10	0.00012						High				
	n***	Lo	w	Н	igh	Lo	W	Hi	gh			

^{*; **} and *** means refer to specific effect of foliar spray with growth regulators, olive cvs. and Cl:SO₄ ratio, respectively. Values within the same column or row for any of three investigated factors were individually differentiated by capital litter's while for the interaction small letters were used, as means followed by same letter/s were not significantly difference.

findings of Hasan (2005) on the same olive cultivars. In addition, the specific effect of sprayed growth regulators (PP333, BA and CCC) on five leaf physiological properties, Tables (5 & 6) displays that irrigation olive transplants with saline solution at 6000 ppm resulted in an obvious increase in (L.O.P.) and (H.L.C.) of leaf olive cultivar during both seasons. Such increase was significant as compared to those of tap water irrigated transplants. Analogous results were obtained by Hasan (2005) on three olive cultivars. Meanwhile, both (L.O.P. & H.L.C. responded specifically to the sprayed growth regulators, where, L.O.P. & H.L.C. were significantly decreased by any of 3 sprayed growth regulators i.e., PP₃₃₃, BA and CCC treatments. However, CCC showed the most reduction values descendingly followed by PP333, BA during both seasons. On the contrary, (L.S.G.) leaf transpiration rate and L.R.T. in response to spray with three growth regulators took the other way around whereas they resulted in a significant increase in L.S.G., transpiration rate and L.R.T. during both seasons of study. Moreover, the specific effect of Cl:SO₄ ratio

of saline solution used for irrigation on leaf physiological properties, it could be observed from data in Tables (5 & 6) that the higher ratio resulted in a significant increase in (L.S.G, L.O.P. & H.L.C.) while transpiration rate and L.R.T. decreased during two seasons of study. These results are in agreement with the findings of Hasan (2005) on 3 olive cultivars.

B- Interaction effect:

With regard to the interaction effect of various combinations between 3 studied factors on leaf physiological properties, Tables (5 & 6) displayed the more pronounced response of specific effect of sprayed growth regulators rather than the analogous one of either Cl:SO₄ ratio or olive cultivar reflected clearly on interaction effect of these investtigated factors. Anyhow, the foliar sprayed salt of stressed transplants Coronaiki (especially lower Cl:SO₄ ratio) with any of growth regulators under study increased transpiration rate and L.R.T. but decreased L.O.P. & H.L.C. during the study.

REFERENCES

Ahmed, A.H. and Ahmed F.F. (1997). Effect of saline water irrigation and cycocel on growth and uptake of some elements of Taimour and Alphonso mango seedlings. Annals of Agric. Science, Moshtohor 35 (2): 905-908.

Antipov, I.N. (1958). Water relations of some cultured grains grown on salinized soils. Fizol Rest., 5:282-285

Attia, S. A. (2002). Studies on growth of olive plants under salt stress. Ph. D. Thesis, Fac. of Agric. Cairo. Univ. Egypt.

Duncan, D.B. (1955): Multiple range and multiple F. tests. Biometrics, 11: 1-42.

El-Deen, S.A.; Wassif, M.M. and Fadl, M.S. (1979). Effect of salinity on olive seedling growth, Agric. Res. Rev. (Hort.), 57: 260-269.

Elmistron, C.W. and Hillyer, J.C. (1937). Relative turgidity and soluble solids in leaves. Proc. Amer. Soc. Hort. Sci., 86: 569-574.

El-Said, M.E.; Emtithal, H. E.; Hamoda, A. and Sari El-Deen, S. A. (1995). Studies on

the susceptibility of some olive cultivars to salinity. Zagazig J. Agric. Res. 22. (2) 505-520.

Gusov, N.A. (1960). Some methods in studying plant water relations of citrus. Proc. Ame. Soc. Hort. Sci., 32: 273-276.

Hassan, A. A. (1998). Effect of drought on fruit seedlings, M. Sc. Fac. of Agric. Al-Azahar Univ. Cairo, Egypt.

Kazim, A. A. and Khaliel, A. (1983). Effect of saline water and CCC on germination and seedling growth of cucumber. Punjab-Hort., 8. (23): 95-99.

Knavel, D. E. (1969). Influence of growth retardants on growth, nutrients content and yield of tomato grown at various fertility levels. J. Amer. Soc. Hort. Soc. 94: 32-34.

Maximos, S.; Abo-Rawash, M.; Behairy, Z and Bashear, R. (1991). Studies on the effect of irrigation and some growth retardants on fig transplants. 1- Effect on vegetative growth. Annals of Agric. Sci. Cairo36 (1): 171-181.

Meri, A.A. and Poljokoff-Mayber, J. A. (1971). Response of been plants to sodium chloride and sodium sulphate salinization. Ann. Bot. 35: 837-847.

Mohsen, A.M.; El-Mosallamy, H.M. and El-Hefnawy, S.M. (1987). Some anatomical features of guava seedlings in response to soil moisture and soil salinity. I. Leaf

structure. Zagazig Agric. Res. 14 (1): 1-22. Motskobili, N.A. (1984). Assimilation area of Satsuma in relation to mineral nutrition and its effect on productivity. Subrtropickeski. VNILL 83-90. 5: Mokharadze Georgian SSR (Hort. Abst. 55:2979).

Nomir, S. A. (1994). Physiological studies on kaki. Ph.D. Thesis, Fac. of Agric. Zagazig Univ., Egypt.

Pokrovskaya, E. I. (1954): Metabolism of salt on saline soils. Avtoreferat Kandidatskoi dissertatsii, Moskva, (c.a. 1962)

Pokroveskay, E.L. (1957). Some data on the oxido reductive processes in halophytes in "Pamymati akad N. A. Maksimova Izdatel. Stvo. Akad. Nauk. SSSR (c.a 1972).

Sharaf, M. M.; Zeinab, H. B.; Khamis, M. A. and A.Z., Abd El-Aziz, (1985). Salt tolerance in American and European grape seedlings as affected by some growth regulators. The Tenth international

Congress for statistics, Computer Science social and Demographic, research 30 March-

10 April (1985), pp. 203-231. Snedecor, G.W. and Cochran, W.G. (1972): Statistical Methods. 6th ed. The Iowa state. Univ. Press, Amer, Iowa, U.S.A. PP. 593.

Wettstein ID. (1957). Chlorophyll, letal und der submikrosvopische Formmesh Sell -

der – plastiden. Cell Res. 12: 427 – 4333. Youssef, N.F.; Fatma, A.K. and Sari El-Din. A.S. (1991). Effect of salinity levels and phosphorus applications on growth of guava seedlings. Egyptian J. Appl. Sci., 6: 239-251.

مقاومة بعض أصناف الزيتون للملوحة بالرش ببعض منظمات النمو. ١) التأثير على النمو ومحتوى الورقة من الكلوروفيل وبعض الصفات الفسيولوجية للورقة

فزاد محمد حيد اللطيف الجندى عسم البساتين - كلية الزراعية - جامعة بنها - مصر

 اجریت هذه الدراسة خلال موسمی ۲۰۰۲، ۲۰۰۳ بمزرعة الثنیخ خلیفة - العین - الإمارات العربیة المتحدة. علی ثلاث أنواع من شتلات الزیتون (کروناکی، مانزینللو، العجیزی) عبسر سینة، بهدف

• رش السُتلات بأي من منظمات النمو (السيكوسيل، البنزيل ادينين والباكلوباترزول) أدت إلى إحداث زيادة معنوية في كل القياسات الرضرية (طول الساق، طول النبات الكلي، عدد الأوراق/نبات، عدد التفرعات الجانبية/نبات، متوميط معاحة الورقة، معاحة الإوراق/نبات والوزن الجاف لأجزاء النبات المختلفة وكذلك زيادة الصنفات الفسيولوجية للورقة (غضاضة الأوراق (L.S.G.)، الجهد المائي للورقة (L.R.T)، ومعدل النتح) بينمآ أظهرت كل من الصَّغطُ الأسموزي للأوراقُ L.O.P. وصَّلابة الأوراق H.L.C. نتائج مصَّادة.