PROFITABILITY OF BALADI CALF FEEDLOTS UNDER DIFFERENT FATTENING SYSTEMS Amal K. El- Asheeri Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt ## SUMMARY Forty Baladi male calves with body weight of 225 - 275 kg were used to study the growth traits and profitability of two fattening systems through two experiments. The aim of the 1st was to study the effect of initial body weight (BW) on feedlot profitability, while the aim of the 2nd was to study the effect of final BW on the same traits of the 1st experiment. Calves were divided into two groups (G) based on their initial BW. G1 (n=18) had BW of 240.7 \pm 1.7 kg, which was lighter (P<0.0001) than G2 (G2, n=22; 260.5 ± 1.5 kg) In both groups calves were fed to a final weight of 400 kg and those did not reach this weight were allowed to grow for a maximum fattening period of 6 months in G1 and 5 months for G2. Growth traits were measured in terms of average daily gain (ADG) and fattening period, while benefit/cost ratio and net return (%) were calculated as economic ones. After the end of experiment 1, 18 calves were chosen randomly to grow up to 415 - 425 kg (C2) to be compared with the profitability of feedlot that marketing their calves at 400 kg (C1). Calves were fed based on their body weight on concentrate feed mixture, rice straw and green maize fodder, while kept tied under shed on a semi-open yard. Animals were weighed once monthly during the experimental period to monitor the changes in BW throughout the fattening period. In the first experiment of studying the effect of initial BW the overall means of final BW and ADG were 391.6 \pm 2.7 and 0.90 \pm 0.02 kg, respectively with no difference between G1 and G2. This however, fattening period was shorter (P<0.0001) in G2 by about 17 days. Overall means of gross margin, benefit / cost ratio and net return/head/cycle were L.E 525.3 \pm 26.1, 1.11 \pm 0.008 and, 10.7 \pm 0.008 % respectively with no significant difference between G1 and G2. Results of the second experiment indicated that increase of marketing BW over 400 kg had negative effect on growth traits and feedlot profitability. ADG of C2 was less (P<0.0001) than C1 by 16 % with an average of 0.780 \pm 0.03 and 0.929 \pm 0.03 kg, respectively. Benefit / cost ratio, net return (%) per fattening cycle and annual net profit (%) were 1.11 \pm 0.01 vs.1.05 \pm 0.01 (P<0.005), 10.7 \pm 1.3 vs. 4.95 % (P<0.004) and 26.5 \pm 2.8 vs. 9.6 \pm 3.1 %, respectively. In conclusion, initial body weight (between 225 and 275 kg) had no effect neither on growth traits nor feedlot profitability. Increasing marketing body over 400 kg decreases growth traits and feedlot profitability as well. Keywords: Baladi cattle, growth, gain, body weight, fattening #### INTRODUCTION Beef industry depends mainly on availability of specialized genotypes in addition to natural rangelands which is not the case in Egypt. Beef production system in Egypt depends mainly on fattening bovine Baladi, exotic breeds and buffalo male calves on concentrate feed mixture (feedlot) in two batches annually. This system is based on purchasing male calves with initial body weight of 200 - 250 kg to be fattened for six months aiming at reaching marketing weight of 400-450 Kg. Under these circumstances about 40% of the national demand of beef meat is produced (Ministry of Agriculture and Land Reclamation, 2006). Growth pattern is influenced by genotype (Morsy et al., 1984), age (Sadek et al., 1993), sex (Lawrence and Fowler, 1998), season of the year (Omar et al., 1993) and type and level of feeding (El-Bedawy et al., 2004). On the other hand, feedlot profitability is the output of average daily gain (Omar et al., 1993), economic return (Alsheikh et al., 2004) and feed conversion (Nigm et al., 1984). Limited investigations were conducted to evaluate the economic efficiency of feedlot system in Egypt, which is characterized by highly invested capitals and gain net return of 12% per fattening cycle (Alsheikh et al., 2004). Many studies were executed to describe growth aspects of Baladi calves throughout the fattening period either at experimental (Morsy et al., 1984 and Sadek et al., 1993); or commercial (Ashour et al., 2000, Omar et al., 1993 and Alsheikh et al., 2004) farm levels. The results of the previous studies showed a wide variation in average daily gain (600 - 1228 g/day) as reported by Askar and Ragab (1958); Kamar et al. (1961); Galal et al. (1973); Omar et al. (1993); El-Bedawy et al. (1996), Sadek et al. (1993), Alsheikh et al. (2004) and El-Bedawy et al. (2004). The great increase in the international price of yellow corn represents a real challenge for beef producers in Egypt. Thus, beef producers have to reform their producing systems towards increasing feedlot profitability. Testing different systems of fattening Baladi calves on feedlot profitability through reforming fattening period or marketing body weight was the aim of this study. ## MATERIALS AND METHODS The present study includes two experiments and carried out in the Experimental Farm Station, Faculty of Agriculture, Cairo University, Giza during year 2006. ## Experiment I #### Animals and management The aim of this experiment was to shorten fattening period by testing two different initial body weights (IBW) on the net return of feedlot. A total number of 40 Baladi male calves between 225 and 275 kg were purchased from the local market based on their phenotype, health feature and body confirmation to study the growth performance and feedlot profitability under two IBWs simulating the systems applied in commercial feedlots. Animals were purchased during June and upon receiving, they were treated against the internal and external parasites in addition to vaccination against endemic diseases. Calves were fed to a final weight of 400 kg according to NRC (1996) requirements on concentrate feed mixture, green maize fodder (15 kg/head/day) and rice straw. Calves were kept tied under shed on semi-open yards during the experimental period. Calves were fed individually and watered thrice daily between 08:00 and 17:00 hr. According to the initial BW, calves were divided into two groups; the 1^{st} group (G1=18) had BW between 225 and 249 with an average of 240.7 ± 1.7 kg, while the 2^{ad} group (G2=22) was heavier (P<0.0001) having BW between 250 and 275 and an average of 260.5 ± 1.5 kg. Animals were fed to reach 400 kg as final body weight, and those that did not reach the target BW were allowed to grow for 6 months in G1 and 5 months of G2. Calves were weighed monthly after 18 hrs fasting period. Growth (growth curve, ADG and fattening period) and economical traits (gross margin and benefit / cost ratio) per calf were calculated. # Experiment II: After the end of the experiment I, the same calves (n=40) were used in the 2nd experiment. Eighteen calves (C2) were chosen randomly to grow up to 415 - 425 kg to study the impact of marketing body weight on growth and economic traits compared with those with 400 kg body weight of (C1, n=22). # Economic measurements Fixed costs (administration, building and depreciation) were not considered assuming they are equal between the two systems of study. The economic analysis is based either on the invested capitals or running cost. # Technical coefficients The prices in this study were based on the average prices of 2006 - 2007 | • | U 1 | |--|-------------------------------------| | Concentrate feed mixture | = L.E 1450 / ton | | 2. Green maize fodder | = L.E 60 / ton | | 3. Rice straw | = L.E 109 / ton | | 4. Veterinary care cost | = L.E 50 / head / year | | 5. Labor | = L.E 20 / 50 heads / day | | 6. Purchasing price for 1 kg live weight | = L.E 14.5 | | 7. Selling price for 1 kg live weight | = L.E 13.75 | | 8. Produced manure / calf / year | $= 10 \text{ m}^3$ | | 9. Price of manure | $= L.E 15/m^3$ | | 10. Running cost | = Feeding + veterinary care + labor | | 11. Total variable cost (LE) | = Running cost + purchasing price | | | | # Experimental measurements The following measurements were estimated as: | Average daily gain (ADG) | = Difference between two successive | |--------------------------|---------------------------------------| | weight divided by 30.5 | • | | 2. Gross margin (L.E) | = Total income – total variable cost | | 3. Benefit / cost ratio | = Total income divided by total costs | | 4. Net return (%) | = Gross margin divided by total costs | | multiplied by 100 | - • | #### Statistical analysis Data were analyzed using the General Linear Model (GLM) procedure (SAS, 2001). Differences between means were assessed by t test. Data in percentages were transformed to the arcsine square—root to normalize errors before analysis. Model used was as follows: ``` Y_{ij} = \mu + G_i + e_{ij}, where, Y_{ii} = observation ``` $\mu = mean$ G_i = the effect of initial body weight, i= 1,2 G1= group with initial body weight of 225-250 kg; G2 =group with initial body weight of 250- 275 kg. e_{ij} = the experimental error The same model was used to analyze the second experiment replacing C instead of G: C_i = the effect of marketing body weight, i = 1,2 C1= group had marketing body weight of 390 - 400 kg; C2 = group had marketing body weight of 415 - 425 kg. ## RESULTS # Experiment I # 1. Growth performance Growth curve of Baladi calves under the present experimental conditions could be divided into three phases. The 1st extended for one month during which the growth curve had a semi concave shape. This shape had transformed to be linear during the 2nd phase and continued up to the 5th month, before having a semi convex shape during the 3rd phase (Figure 1). Figure 1. Growth curve and ADG (kg) of Baladi calves throughout the growth phases of the experimental period ADG was 0.59 ± 0.06 kg during the 1st months of fattening period reached its peak $(0.96 \pm 0.04$ kg) by the 3rd month. ADG sustained around that value up to the 5th months before decreasing to 0.84 ± 0.06 kg during the 3rd phase (Figure 1). The overall mean of ADG was 0.90 ± 0.02 kg (Table 1). By the end of the experiment calves reached 391.6 ± 2.7 kg through fattening period of 156.7 ± 2.4 day. The gained weight (about 140 kg) during the experimental period represents 57.6 % of the initial BW. | Table 1. Growth characteristics | (LSM | ± S.E) | of : | Baladi | calves | as | affected | by | |-----------------------------------|------|--------|------|--------|--------|----|----------|----| | initial body weight (Experiment I | | | | 1 | | | | | | Trait | G1 | G2 | Overall
mean | P value | |--------------------------|-----------------|-----------------|-----------------|---------| | Number | 18 | 22 | 40 | | | Initial body weight (kg) | 240.7 ± 1.7 | 260.5 ± 1.5 | 251.7 ± 1.1 | 0.0001 | | Final body weight (kg) | 392.3 ± 3.0 | 390.9 ± 2.7 | 391.6 ± 2.0 | 0.727 | | Fattening period (day) | 171.3 ± 3.9 | 144.9 ± 3.3 | 156.7 ± 2.4 | 0.0001 | | Average daily gain (kg) | 0.89 ± 0.03 | 0.90 ± 0.03 | 0.90 ± 0.02 | 0.814 | | Body weight gain (kg) | 151.6 ± 3.5 | 130.4 ± 3.2 | 139.9 ± 2.1 | 0.0001 | G1 had initial B.W between 225 and 249 kg, G2 had initial B.W between 250 and 275 kg # 2. Effect of initial body weight on growth and economical traits Results in table (1) indicate that, however G2 reached the final body weight in shorter (P<0.0001) period (18 % less) compared to G1, there was no difference between the two groups concerning ADG and feed efficiency. The increase (P<0.0001) of BW gain in G1 relative to G2 (+16.3 %) is attributed to its longer fattening period. However, fattening period was less (P< 0.0001) in G2 than in G1 by about 27 days (Table 1), in addition lower feeding (P<0.0001), and labor (P<0.0001) costs, there was no significant difference between the two groups in the total cost, total income and all economical traits (Table 2). It is worth to note that purchasing price of G2 (+ L.E 292) compensates the increase of feeding cost of G1. Under the experimental circumstances, feeding costs represented about 93 % of the running cost, while labor and veterinary care were 4.9 and 2.1%, respectively. # Experiment II C2 had longer (P<0.0001) fattening period (45%) and heavier (P<0.0001) marketing body weight (6.3 %) compared to C1. On the contrary, ADG was less (P<0.0007) in C2 relative to C1 by 16% (Table 3 and figure 2). Increasing marketing BW from 392 in C1 to 417 kg in C2 had extremely negative impact on economic traits of C2. Running costs were higher in C2 than C1 (Table 3), which resulted in an increase in total variable costs by 12.9 % relative to C1 (Figure 2). Outputs of C2 was higher (P<0.0001) than C1 by 17.5%, however gross margin (P<0.007), benefit/cost ratio (P< 0.005) and net benefit/ fattening cycle were less in C2 than C1 by 51, 5.4 and 53.3 %, respectively (Figure 2). Fattening period of C2 reduces the expected number of fattening cycles / year compared to C1 (Table 3). This consequently reduces the annual net return per total variable cost by about 17% (26.5 vs. 9.6 % for C1 and C2, respectively). ## DISCUSSION Slow growth pattern during the 1st phase of growth curve is most probably attributed to the physiological reaction of the calves to new managerial practice (micro-environment and management system) compared to that applied at small farm level. Changing growth curve during the 2nd phase is referred to the compensation of growth of calves after adaptation to the new managerial practices. Decreasing ADG during the 3rd phase agrees with the finding of Omar et al. (1993), and could be explained by reaching calves to sexual maturity stage (Payne and Wilson, 1999). Table 2. Economic traits (per head) (LSM \pm S.E) of Baladi calves as affected by initial body weight (kg). (Experiment I) | Traits | G 1 | G2 | Overall mean | P value | |------------------------|-------------|-------------------|------------------|---------| | Number | 18 | 22 | 40 | • | | Input (L.E) | | | | | | Calf | 3488.3±21.5 | 3780.7±19.5 | 3649.2±14.4 | 0.0001 | | Feeding | 1305.0±34.3 | 1089.8 ± 31.0 | 1186.7±23.0 | 0.0001 | | Labor | 68.6±1.44 | 57.8±1.30 | 62.7±0.97 | 0.0001 | | Veterinary | 25 | 25 | 25 | 0.0 | | Total variable cost | 4886.7±39.2 | 4953.2±35.4 | 4923.3±26.3 | 0.126 | | Outputs (L.E.) | | | | | | Manure | 70.5±1.5 | 59.4±1.4 | 64.4±0.99 | 0.0001 | | Calf's selling price | 5392.4±38.6 | 5377.6±34.9 | 5384.3±25.9 | 0.811 | | Total outputs | 5462.9±40.8 | 5436.9±36.9 | 5448.7±27.5 | 0.22 | | Economic traits | | | | | | Gross margin (L.E) | 576.1±38.9 | 483.7±35.2 | 525.3 ± 26.1 | 0.200 | | Benefit/ cost ratio | 1.12±0.009 | 1.10 ± 0.008 | 1.11 ± 0.008 | 0.161 | | Expected annual return | n* | | | | | Fattening cycles/yr ** | 2.1 | 2.5 | 2.3 | | | Return / cycle (%) | 11.8±0.009 | 9.8 ± 0.008 | 10.7±0.008 | 0.179 | | Return / year (%)*** | 24.8 | 24.5 | 24.8 | | ^{*} Calculated as number of animals / batch = 50 heads ADG (900 g, Table 1) obtained in the present study is less than that reported by Sadek et al. (1993), El-Bedawy et al. (1996 & 2004) and Alsheikh et al. (2004) (1024 – 1228 g), and higher than that reported by Askar and Ragab (1958); Kamar et al. (1961) and Omar et al. (1993) (600 -747 g). Meanwhile, the present result is in accordance with that reported by Galal et al. (1973) (881.0 g). Differences in age, management practices and season of growth may be the main reasons of variation in recorded ADG among the previous studies. The non-significant difference in growth traits of G1 and G2 is most probably attributed to the narrow difference in the initial body weight (about 20 kg, Table 1) and equal marketing body weight. The non-significant difference between G1 and G2 concerning the studied economic traits, is due to the no difference between intput and outputs. Benefit / cost ratio and annual net return of G1 and G2 (Table 2) indicated that initial body weight of 225 - 275 kg with fattening period of 5 - 6 months had no effect on the profitability of feedlot. Decreasing ADG with age progress (in experiment II) is due to reaching calves of C2 the sexual maturity after which animals need more energy to gain 1 kg live body weight (Lawrence and Fowler, 1998). This biological phenomenon is previously recorded as a result of turning physiological activity towards fat deposition (Lawrence, and Fowler, 1998). ^{**} Calculated as 365 day divided by fattening period. ^{***} Calculated as the number of expected fattening cycle / year multiplied by net return / cycle Increasing feeding cost of C2 (due to the lower ADG) is the main factor that reduces the benefit / cost ratio, and gross margin. The obtained net return / fattening cycle in G1 (11.8 %. Table 2) or in C1 (10.7 %, table 3) is close to that reported by Alsheikh et al. (2004, 12 %) under commercial farm condition. The drastic decrease in number of expected fattening cycles and annual net return / year of C2 (Table 3) draw the attention to that increasing marketing body over 400 kg minimizes feedlot profitability. This trend is close to that reported by El-Asheeri et al. (2008). In conclusion initial body weight (between 225 and 275 kg) and marketing body weight around 400 kg are the better to maximize feedlot return under Egyptian conditions. Table 3. Growth performance and economic traits (LSM ± S.E) of Baladi calves as affected by marketing body weight (Experiment 2) | as affected by marketing body weight (Experiment 2) | | | | | | | | |---|-------------------|-------------------|---------|--|--|--|--| | Traits | <u>C1</u> | C2 | P Value | | | | | | Number of calves | 22 | 18 | | | | | | | Growth characteristics | | | | | | | | | Fattening period (day) | 151.1 ± 5.4 | 219.2 ± 6.0 | 0.0001 | | | | | | Marketing body weight (kg) | 392.6 ± 2.2 | 417.4 ± 2.5 | 1000.0 | | | | | | Average daily gain (kg) | 0.93 ± 0.03 | 0.78 ± 0.03 | 0.0007 | | | | | | Economical characteristics | | | | | | | | | Iutput (L.E) | | | | | | | | | Calves | 3674.7 ± 38.2 | 3617.8 ± 42.3 | 0.32 | | | | | | Feeding | 1178.0 ± 50.9 | 1841.7 ± 56.3 | 1000.0 | | | | | | Labor | 60.5 ± 2.2 | 87.7 ± 2.4 | 0.0001 | | | | | | Veterinary care | 25.0 ± 0.6 | 32.6 ± 0.6 | 0.0001 | | | | | | Total variable cost (L.E) | 4937.9 ± 58.8 | 5577.0 ± 65.1 | 0.0001 | | | | | | Outputs (L.E) | | | | | | | | | Manure | 62.1 ± 2.2 | 90.1 ± 2.5 | 0.0001 | | | | | | Calf's selling price | 5397.6 ± 31.4 | 5740.0 ± 34.7 | 0.0001 | | | | | | Total Outputs (LE) | 5459.7 ± 31.4 | 5830.0 ± 34.7 | 1000.0 | | | | | | Economic traits | | | | | | | | | Gross margin (L.E) | 521.8 ± 63.1 | 252.9 ± 69.7 | 0.007 | | | | | | Benefit / cost ratio | 1.11 ± 0.01 | 1.05 ± 0.01 | 0.005 | | | | | | Expected annual return* | | | | | | | | | Number of fattening cycles/ year** | 2,4 | 1.7 | | | | | | | Net return / cycle (%)* | 10.7 ± 1.3 | 4.95 ± 1.4 | 0.004 | | | | | | Net return / year (%) *** | 26.5 ± 2.8 | 9.6 ± 3.1 | 0.0003 | | | | | C1: Claves that allowed to grow up to 400 kg C2: Claves that allowed to grow between 415 and 425 kg ^{*} Calculated based on the total variable cost ^{**} Calculated as 365 day divided by fattening period. ^{***} Calculated as the number of expected fattening cycle / year multiplied by net return / cycle Figure 2. Change (%) in growth (fattening period, FP and ADG) and economic (TC= total cost; TI, total income, GM= gross margin, B/C ratio= benefit / cost ratio and net return / cycle) of C2 relative to C1 ## **ACKNOWLEDGEMENT** The author would like to thank Dr. M. A. M. Ibrahim, Associate Professor, Animal Husbandry, Faculty of Agriculture, Cairo University for his sincere help in analyzing data. Gratitude is also extended to the experimental station of Faculty of Agriculture, Cairo University for offering the animals and the running cost of this experiment. # REFERENCES - Alsheikh, S. M., A. A. Younis, M. M. Mokhtar, 2004. Biological and economic assessment of fattening Egyptian native Baladi male calves in a newly reclaimed area. Egyptian J. Anim. Prod., 41, Suppl. Issue, Nov.: 85-91. - Ashour G, A. S. El-Naggar, M.M. Youssef and H.M. Mourad, 2000. Growth performance and metabolic profile of Egyptian cattle and Buffalo calves. Proceedings of 3rd Africa conference of animal agriculture and 11th Conference of Egyptian Society of Animal Production, Alexandria, Egypt, 6-9 November: 469-477. - Asker, A. A. and M. T. Ragab, 1959. Fattening Egyptian steers in Tahreer province. Alex. J. Agric. Research, 7: 157- - El-Asheeri, Amal, K. A. S. Sami and M. A. Radwan. 2008. Biological performance and economic indicators of fattened Baladi bullocks under two fattening systems. Egyptian J. Animal Production, 45, suppl. Issue, 69-77. - El- Bedawy, T. M., M. A. I. Salem and E. A. Badr, 1996. Effect of dietary fat on growth performance and carcass characteristics of finishing bulls. Egyptian Journal of Animal Production, 33(Supplement issue): 103-111. - El- Bedawy, T. M., M. A. I. Salem and A. S. Sami, 2004. Calcium soaps in low or high roughage rations: 2- Effect on growth performance, carcass characteristics and meat quality of growing finishing Baladi bulls. Egyptian J. Anim. Prod., 41(2): 61-71. - Galal, E., A. A. Younis, K. G. Attia and A. B. Awad, 1973. The performance of Egyptian native Baladi male calves during fattening. Egyptian J. Anim. Prod., 2: 71. - Kamar, G. A. R., A. L. Badreldin and H. Z. Abd El-Hady, 1961. Factors affecting gain in fattening Egyptian steers on clover. J. Anim. Prod., U. A. R., 19: 32. - Lawrence, T. L. H. and V. R. Fowler, 1998. Growth of Farm Animals. 2nd edition, Chapter 6, CAB International, UK. - Ministry of Agriculture and Land Reclamation, 2006. Census of animal wealth, Economics affair sector. - Morsy, M. A., A. A. Nigm, A. Mostageer and F. Pirchner. 1984. Some economic characteristics of the Egyptian Baladi cattle. Egyptian J. Anim. Prod. 42, 1-2: 273-285. - Nigm A. A., A. Mostageer, M. A. Morsy, M. A. I. Salem and F. Pirchner, 1984. Feed efficiency of beef production of Baladi and its crossbreds with central European cattle. Z. Tierzuchtg. Zuchtgsbiol. 101: 173-181. - NRC, 1996. Nutrient Requirements of beef cattle. National Research Council, National Academy Press, Washington, D. C. Seventh Revised Edition: Update 2000. http://www.nap.edu/catalog/9791.html - Omar, S.S., M.A. Houria and G. A. Baraghite, 1993. Studies on growth performance of male buffalo and bovine calves under commercial fattening farms in Menofiya province. Egyptian J. Anim. Prod., 30 (2):117-128. - Payne, W.J.A. and R. T. Wilson, 1999. An Introduction to Animal Husbandry in The Tropics. 5th edition, Chapter 19, Blackwell Science Ltd, UK - Sadek, R. R., M. A. Morsy, A. A. Nigm, M. A. M. Ibrahim and A. M. Sabry, 1993. The effect of grading up Baladi cattle with Friesian on meat production performance. Egyptian J. Anim. Prod., 30 (2): 143-160. - SAS (2001) SAS institute Inc., Cary, NC. USA. # أربحية تسمين العجول البلدية تحت نظم تسمين مختلفة # آمال كمال العشيرى # قسم الإنتاج الحيواتي- كلية الزراعة- جامعة القاهرة- الجيزة- مصر تم استخدام 40 عجل بقرى أوزانها بين 225-275 كجم الدراسة خصائص النمو وأربحية نظامين التسمين من خلال تجربتين. هدفت الاولى لدراسة تأثير وزن العجول عند بداية التجربة على اربحية عملية التسمين ، وفيها تم تقسيم العجول الى مجموعتين اعتماداً على وزن الجسم عند بداية التجربة. الاولى (5:) تضمنت 18 عجل بمتوسط وزن 240.7 ± 1.7 كجم وكان الفرق في الوزن بين المجموعة الثانية (5:) مستوى (0.00001) تمت تغذية العجول حتى وزن 400 كجم ، وتم استكمال مدة التسمين للعجول التي المصلوى (1.5 مستوى (1000001) مت تغذية العجول حتى وزن 400 كجم ، وتم استكمال مدة التسمين للعجول التي المحموعية نفترة أقصاها 6 شهور ل ج (5:) بناه المائد الصافى و مقابل فترة التسمين العائد الصافى و مقابل فترة التجربة الأولى ثم اختيار 18 على المورز النهائي على أربحية مزارع التسمين مقارنة بالمجموعة السابقة الني تم تسويقها على وزن 400 كجم ((5:)). ثم تغذية الحيوانات على مخلوط العلف المركز 14 % بروتين إضافة للدراوة وقش الارز على اساس وزن الجسم. أثناء التجربة لحساب العلف المركز في وزن الجسم وكان يتم وزن الحيوانات شهرياً خلال فترة التجربة لحساب التغير في وزن الجسم وكانت أهم النتائج: - آ. كانت متوسط الوزن النهائى و معدل الزيادة اليومية فى الوزن حوالى 391.6 ± 2.7 كجم ، 0.90 ± 0.00 كجم على الترتيب ، ولم يكن هناك فرقا معنويا بين ج $_1$ و ج $_2$ وإن كانت فترة التسمين أقصر فى ج $_2$ بحوالى 17 يوم. - 2. كان متوسط العائد بالجنية ، نسبة العائد / التكاليف ، العائد الصافي / الرأس / الدورة هو 525.3 ± 26.1 غلى الترتيب ولم يكن الفارق معنوى بين على الترتيب ولم يكن الفارق معنوى بين ج1 و ج2.2 غلى الترتيب ولم يكن الفارق معنوى بين ج1 و ج2. - 3. أشارت نتائج الجزء الثاني من التجربة أن زيادة وزن التسويق عن 400 كجم كان له تأثير سلبي على مظاهر النمو وأربحية المزرعة. - 4. كان متوسط الزيادة اليومية في m_2 أقل من في m_1 بحوالي 16 % بمتوسط قدرة 0.780 \pm 0.03 \pm 0.929 \pm 0.03 - كانت نسبة العائد / التكاليف ، % للعائد الصافى لدورة التسمين وكذلك % المعائد السنوى فكانت القيم 1.11 ± 10.7 مقابل 1.05 على مستوى (0.005) ، 1.7 ± 1.3 مقابل 4.95 ± 1.3 على مستوى (0.004) ، 2.8 ± 2.8 مقابل 4.9 ± 3.1 على مستوى (0.004) ، 2.8 ± 3.2 على المتوالي. والخلاصة ان استخدام العجول البقرى على وزن بداية يتراوح بين 225-275 كجم لم يكن له تأثير معنوى سواء على خصائص النمو أو على أربحية مزارع التسمين ، بينما زيادة وزن التسويق لأعلى من 400 كجم يؤثر سلباً على خصائص ومعدلات النمو ويقلل من أربحية مزارع التسمين .