EFFECT OF PROBIOTICS AND WALKING STRESS ON SOME PHYSIOLOGICAL AND HEMATOLOGICAL PARAMETERS OF HASSANI GOATS

Abdel-Fattah, M.S.; Y.M. Shaker; A.L.S. Hashem and A.A. Azamel Animal and Poultry Physiology Dept. Animal and Poultry production Division, Desert Research Center, El-Mataryia, Cairo, Egypt.

ABSTRACT

In endeavor to relieve the walking stress burden on Hassani goats during summer and winter seasons in El-Shalateen-Halaieb-Abo Ramad triangle. Probiotics (10g/h/d, Biovet - YC) were supplemented to the goats' diet. Twenty male Hassani goats, from the experimental flock of the Hedrba station belonging to Desert Research Center, were subjected to walk 10 km in 4 hours daily. The walking stress trial lasted for four days. Ten Hassani goats were fed a diet supplemented with probiotics for 28 days before and during the walking trials followed by 2 days for recovery. Meteorological data in terms of ambient temperature (AT) and relative humidity (RH) were recorded at 08.00 and 14.00 hrs. Additionally, thermo- cardio- respiratory responses in terms of rectal (RT), skin (ST) temperatures, respiration (RR) and heart (HR) rates were daily recorded before and after the walking trial. Likewise, hematocrit percentage (Ht), hemoglobin concentration (Hb), erythrocytes count (RBC's) were determined in blood and mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC) were calculated.

The results indicated that summer season had significant (P<0.01) higher values of RT, ST, Hb, PCV, RBC's and MCV and non-significant higher values of RR and HR than those of winter season. However, the values of MCH and MCHC in winter exceeded significantly (P<0.01) those in summer. Concerning the walking stress effects, the results revealed significant increments in the mean values of thermo- cardiorespiratory responses, PCV, MCV, MCHC (P<0.01) and Hb (P<0.05) but non-significant decrease in MCH value.

Probiotics supplementation during walking reduced significantly the mean values of RT, RR (P<0.05) and ST (P<0.01) while a non-significantly reduction was observed in HR value. Moreover, probiotics caused significant (P<0.01) increases in Hb and Ht values and non-significant increases in RBC's, MCV and MCH. However, there was a non-significant reduction in MCHC values. It could be concluded that probiotics supplementation for walking stressed goats during summer and winter seasons might be an avenue to minimize the walking perils facing the Hassani goats raised under the harsh conditions of the El-Shalateen-Halaieb-Abo Ramad triangle.

Keywords: Hassani goats, Probiotics, Walking, Thermo- cardio- respiratory responses, Hematological parameters

INTRODUCTION

El- Shalateen- Halaieb- Abo Ramad triangle, as a subtropical region, is located in the southeastern of the eastern desert of Egypt and has a vital strategic importance to the country. It looks like a triangle with a bottom side of about 300 km parallel to 22° latitude (the Egyptian- Sudanese borders). The source of income of most inhabitants of this region depends mainly on ranges

animals due to the aridity, since the resources of conventional agricultural activities are not available (El- Shaer et al., 1997).

The native rangelands constitute the only feed resources in the triangle region all the year round. The annual rainfall varies greatly from year to year in rate, distribution and duration. Animals in this area are subjected to several constraints; long drought period, scarcity of natural range plants. In the arid and semi- arid areas, animals frequently have to walk long distances between grazing areas. The distance animals have to walk in search of feed varies according to prevailing climatic conditions. Experimental evidence of the effects of walking stress on goats around the year is lacking, despite the fact that they are an important livestock resource and live in large numbers in semi-arid areas. The goat production makes a major contribution to the inhabitant's economy.

Therefore, the objective of this study was to eliminate the effects of walking stress on thermo- cardio- respiratory responses and hematological parameters of Hassani goats raised under such desert conditions during summer and winter seasons through probiotics supplementation.

MATERIALS AND METHODS

This study was undertaken in El- Shalateen- Halaieb- Abo Ramad triangle, Hedrba Valley Station which belongs to Desert Research Center (DRC) to investigate the effect of probiotics supplementation on thermo- cardio-respiratory responses and hematological parameters of goats subjected to walking stress during summer and winter seasons. Twenty male Hassani goats aged 18- 24 month and averaged 20.45± 0.35 kg body weight were subjected to four days walking stress for 10 km. Hassani goats were divided into two equal groups. The first group served as control while the second was fed a diet supplemented with probiotics (10 g/ head/ day; Biovet- YC, according to Fayed, 2001) for 28 days prior to the initiation of the walking trial and recovery period. Hassani goats were fed their nutrient requirements according to Kearl (1982).

Ambient temperature (AT, $^{\circ}$ C) and relative humidity (RH, %) were recorded in summer and winter seasons at 08.00 and 14.00 hrs. using digital thermo-hygrometer.

Rectal temperature (RT, °C) by using a standard clinical thermometer, respiration rate (RR, breaths/ min) by counting the flank movements in minute and skin temperature (ST, °C) by using an electronic digital telethermometer as well as heart rate (HR, beats/ min) by using stethoscope were daily recorded before and after walking stress.

Daily blood samples were withdrawn, from all animals into 10 ml heparinized tubes just before and immediately after exercising. Hemoglobin concentration (Hb) according to Drabkin and Austin (1932) as well as packed cell volume (PCV, %) were immediately determined in the fresh blood. The erythrocytes count (RBC's) was determined as described by Abdel Kader (1979). The means of corpuscular volume (MCV, fl), corpuscular hemoglobin (MCH, pg), corpuscular hemoglobin concentration (MCHC, %) were

J. Agric. Sci. Mansoura Univ., 33(8), August, 2008

calculated as follows: MCV (fl)=(PCV X 10)/ RBC's $X10^6$ /mm³, MCH (pg)= (Hb X 10)/ RBC's $X10^6$ /mm³ and MCHC, %= (Hb X 100)/PCV, (Jain,1993).

5- Statistical analysis:

Data were analyzed using General Linear Model Procedure (SAS, 1998).

RESULTS AND DISCUSSION

1- The meteorological data:

There are considerable diurnal and seasonal changes in AT. The average increase in AT from the morning (08.00 hr.) to the afternoon (14.00 hr.) was higher in summer season than that of winter being 5.87 and 3.25 °C, respectively (Table 1). However, the summer averages of AT were greater than that of winter averages by 10.63 and 13.25 °C in the morning and the afternoon, respectively.

On the contrary, the average relative humidity (RH%) showed inverse seasonal and diurnal trends to that of AT, being higher in the morning than the afternoon. The decreases in RH% value were higher in winter season (-10.37%) than that in summer season (-9.75%). In addition, considerable seasonal variations in RH% were observed. Mean values of RH% were higher in winter season than in summer season (Table 1).

In respect to the experiment location, in Hedrba Valley Station, El- Rayes (2005) reported similar trends of the changes in AT and RH% from the morning to the afternoon or from summer to winter.

Table (1): Mean values of meteorological data recorded during summer and winter seasons

Variable	Summer	Winter	Change ²		
Ambient temperature (AT; °C)				
08.00 h.	33.38	22.75	+ 10.63		
14.00 h.	39.25	26.00	+ 13.25		
Change ¹	+ 5.87	+ 3.25			
Relative humidity (RH;	%)				
08.00 h.	30.88	65.50	- 34.62		
14.00 h.	21.13	55.13	- 34.00		
Change ¹	- 9.75	- 10.37			
		7			

¹ Change due to the daytime

2- Thermo- cardio- respiratory responses:

Irrespective of the walking stress effects, the results demonstrated that summer season had higher mean values of thermo- cardio- respiratory responses than those recorded for winter season with differences being highly significant for RT and ST and non- significant for RR and HR (Table 2). Similar trends of RT, ST and RR were reported by El- Nouty *et al.* (1990) on Arabian goats, El- Ganaieny *et al.* (2001) and Shaker (2003) on Baladi goats, Shedeed (2005) on Syrian Gabali goats being higher in summer than that of winter. Nandy *et al.* (2001) and El-Rayes (2005) found seasonal differences in HR and the values were higher in summer than in winter.

² Change due to season

Practicing walking stress elevated significantly the means of all thermocardio- respiratory responses (Table 2). Kasa et al. (1995) recorded an increase in RT of Saanen goats as a result of exercise. Moreover, Kasa et al. (1999) reported that the RR increased after exercise in the Saanen and Toggenburg goats breeds.

Table (2): The least square means (±SE) of thermo-cardio- respiratory responses of Hassani goats as affected by walking stress and probiotics (Biovet- YC) during summer and winter seasons

Seasuris											
item		Summe	r		Winte	r	Ove	erall	physic al Mean	±SE	
	С	P	Mean	С	Ρ	Mean	С	Р			
Rectal temperature:			**			**		•	**		
Initial	39.28	39.15	39.22aA			38.46aB					
Walking	39.58	39.57	39.58bA	39.27	39.23	39.25bB	39.42bA	39.40bA	39.41b	0.024	
Recovery	39.18	39.17	39.18aA	39.07	39.08	39.08cB	39.13cA	39.13cA	39.13c		
±SE	0.048		0.033	0.0	48	0.033	0.033				
SXT NS	39.35	39.30		38.96	38.89					0.028	
T mean*							39.15A	39.09B		0.020	
S mean**			39.32a			38.93b				0.020	
Skin temperature	:		**			**			**		
Initial	36.03	36.01	36.02aA			32.93aB		34.26	34.47a		
Walking	36.86	36.90	36.88bA	36.79	36.35	36.57bA	36.82	36.63	36.72b	0.103	
Recovery	36.84	36.32	36.58bA	36.62	36.29	36.46bA	36.73	36.31	36.52b		
±SE	0.2	205	0.143	0.2	05	0.143	0.1	43			
SXT **	36.58	36.41		35.58	35.05					0.117	
T mean**							36.08A	35.73B		0.083	
S mean**			36.49a			35.32b				0.083	
Respiration rate:			**			**			**		
Initial	25.40		24.50aA					21.25	22.75a		
Walking	64.00	61.80	62.90bA	62.56	61.40	61.98bA	63.27	61.60	62.44b	0.692	
Recovery	34.50	34.30	34.40cA	39.60	37.60	38.60cB	37.05	35.95	36.50c		
±SE	1.3	85	0.980	1.385		0.980	0.978				
SXT **	41.30	39.90		41.74	39.30					0.799	
T mean*							41.52A	39.60B		0.565	
S mean **			40.60			40.52				0.565	
Heart rate:			**			**			**		
Initial	73.60	72.70	73.15aA	68.45	68.40	68.42aB	71.03	70.55	70.78a		
Walking	74.40	72.40	73.40aA	75.00	73.40	74.20bA	74.70	72.90	73.80b	0.453	
Recovery	67.20	69.60	68.40bA	71.10	69.40	70.25cB	69.15	69.50	69.33c		
±SE	0.907		0.641	0.9	07	0.641	0.6	41			
SXT ^{ns}	71.73	71.56		71.52	70.40					0.524	
T mean ns							71.73	70.98		0.370	
S mean ns			71.65			70.96				0.370	
a non cianificar			- 0.05			0.04		C4-	1		

ns, non-significant probiotics group *, P< 0.05

**, P< 0.01 ... C, Control group P,

probiotics group S, season T, treatment
Means in a certain item having different letters differ significantly (P<0.05).

Entin and Rawson (1999) reported that at the onset of exercise animals increased ventilation to match or exceed the metabolic requirement. Galal et al. (1988) found in Damascus and Barki goats and their crosses that walking 7 km under direct AT increased significantly their RT. Ahmed and Abdelatif (1992) reported that RR increased in desert rams following exercise. In addition, Oppong et al. (1990) reported that exercise produced significant elevations in RT and RR in lambs. Kumar et al. (2000) reported that the skin blood flow of male Murrah buffaloes increased after treadmill exercise with an average increase of 2-4 times over pre- exercise values.

The skin blood flow increase could be due to increase in body temperature as a result of exercise resulted from metabolic heat production. Wenger et al. (1975) reported that, blood flow is augmented as a function of core temperature and skin temperature. Similar impacts of walking stress were reported on different kind of animals; Evans et al. (1992) reported that the mean values of camel heart rate after exercise were 4.4 times the resting value. Kobeisy et al. (2004) recorded that RT, ST and RR of Saidi ewes raised as a result of exercise. Parrott et al. (1999) mentioned that exercising sheep for 20 minutes resulted in a rapid and pronounced (approximately 2 °C) RT rise. Bruckmaier and Blum (1992) found that the values of RT of male Simmental calves tended to increase during exercise. It is worthy to mention that, the summer walking stress had a greater effect on goats than winter walk. Theses significant differences due to the interaction heat stress X walking stress might be attributed to the AT increment from winter to summer (Table 1).

In attempt to relive these impacts of walking stress, probiotics supplementation reduced the mean values of thermo- respiratory responses for probiotics goats and non- significant reduction of HR mean values comparing with their control counterparts indicating the ability of probiotics to improve the thermal ability of treated animal under different stresses. These results would be confirmed by Huber et al. (1994) who suggested that the fungal metabolites influence the temperature control centers in cows. In harmony, cows fed diets with A. oryzae lowered their RT values than their controls (Huber and Higginbotham, 1985; Marcus et al., 1986 and Higgginbotham et al., 1993). In constancy, Campbell and Glade (1989) recorded lower heart rate during exercise workout for horse fed a diet with yeast compared to hores fed a diet without yeast. Thus, inclusion of yeast in diets of exercising horses seemed to improve their aerobic metabolic capacity, which may be related to the improved nitrogen retention or fermentation profile.

Apple et al. (1994) reported that with increasing exercise intensity, HR increases linearly in response to greater oxygen demand by exercising muscles. However, the decreases in thermo- cardio- respiration responses values were more pronounced in probiotics goats which might refer to its favourable effects of improving the thermal ability of treated animals. Similar results were reported by Higginboham et al. (1993). In addition, the ST values of goats in winter were lower than those of summer which might be due to the effect of low AT (Table 1). In harmony, Entin et al. (1998) reported that ambient temperature affected RT and ST of sheep during exercise.

In spite of the non-significant effect of the bi-interaction between season X treatment of between period X treatment (except of RT) and the tri-interaction

among season X period X treatment, the supplementary of probiotics resulted in reducing all mean values of the thermo- cardio- respiratory responses (Table 2). The obtained results would be supported by those reported by Higginbotham *et al.* (1994) and Bertrand and Grimes (1997). Moreover, Gomez- Alarcon *et al.* (1990 and 1991) revealed that probiotics reduce the RR during periods of hot ambient temperature.

3- Hematological parameters:

The mean values of hematological parameters (Hb, PCV and RBc's) and blood indices (MCV, MCH and MCHC) of which Hassani goats varied significantly from summer to winter, summer season had significantly (P<0.01) higher Hb, PCV, RBC's and MCV values, while MCH and MCHC values showed an inverse trend where winter values exceeded summer values (Tables 3 and 4).

Table (3): The least square means (±SE) of hematological parameters of Hassani goats as affected by walking stress and probiotics (Biovet-YC) during summer and winter seasons

		210100 10 , 00										
Item		Summer .				Winter				erali	Physic	±SE
	С	Р	Mean		С		P Mean		Р		Mean	195
Hb:			•	**				**			**	
Initial	10.52	10.64	10.5	8aA	10.12	10.2	21	10.22aB	10.32	10.48	10.40a	
Walking	10.54	10.68	10.6	1aA	10.24	10.4	11 .	10.32bB	10.39	10.55	10.47a	0.030
Recovery	10.15	10.30	10.2	3bA	10.14	10.2	27	10.20aA	10.15	10.28	10.22b	
±SE	0.0	60	0.	042	0.060		0.042	0.042				
SXT	10.41	10.54			10.17	10.3	22					0.035
T mean**	10.41	10.54	-		10.17	10			10.29A	10.43B		0.03
S mean**			10.	47a				10.25b				0.025
1.14.				<u> </u>		L_		**				
Ht:	24.00	22.00			27.10	27.6	20	27.39aB	20.54	30.25		
Initial		32.90			27.18		_		29.54		29.90a	0.00
Walking		31.80	_	_	29.56	29.9		29.73bB	29.78	30.85	30.31a	0.234
Recovery	31.60				30.00	30.9	1 0_	30.45bB	30.80	31.85	31.33b	
±SE	0.4	61	0.	326	0.461		0.326	0.318				
SXT ^{fis}	31.17	32.50			28.91	29.4	17					0.266
T mean**									30.04A	30.98B		
S mean**			31.	83a				29.19b				0.188
RBC's:				<u> </u>							•	
Initial	8.29	8.35	8.3	32	7.65	-7.8	7	7.76	7.97	8.11	8.04ab	
Walking	8.26	8.30	8.2		7.85	7,9		7.91	8.06	8.14	8.10a	0.040
Recovery	8.21	8.06	8.1		7.69	7.8		7.78	7.95	7.96	7.96b	
±SE	0.0	080	0.056		0.080		0.056	0.0	55			
SXT*	8 252	8.23a			7.73b	7.90)c					0.046
T mean**	U.23a	J.23a				7.30			7.99	8.07		3.0-40
S mean**			8.2	5a			_	7.82b		5.57		0.033
J			U						. 0. 04			

ns, non-significant

*, P< 0.05

**, P< 0.01 S. season

C, Control group
T, treatment

P, probiotics group

Hb, hemoglobin concentration RBC's, red blood cells

Ht, hematocrit RBC's, red blood cells

Means in a certain item having different letters differ significantly (P<0.05).

Table (4): The least square means (±SE) of blood indices of Hassani goats as affected by walking stress and probiotics (Biovet-

YC) during summer and winter seasons

Item		Summer		Winter		Ove	erall	Physical	±SE	
	С	Р	Mean	С	Р	Mean	С	P	Mean	ISE
MCV:			**						**	
Initial	38.51	39.41	38.96aA	35.63	35.06	35.34aB	37.07	37.24	37.15a	
Walking	36.34	38.33	37.33bA	37.67	37.56	37.91bA	37.00	37.95	37.47a	0.355
Recovery	38.57	40.70	39.64aA	39.07	39.32	39.19aA	38.82	40.01	39.41b	
±SE	0.7	00	0.459	0.7	700	0.459	0.484			
SXT	37.80a	39.48b		37.45a	37.32a					0.404
T mean **							37.63	38.40		0.286
S mean**			38.64a			37.38b				0.200
MCH:										
Initial	12.70	12.75	12.72	13.27	13.11	13.19	12.99	12.93	12.96	
Walking	12.77	12.87	12.82	12.06	13.08	13.07	12.91	12.98	12.94	0.078
Recovery	12.38	12.78	12.58	13.20	13.07	12.13	12.79	12.92	12.86	
±SE	0.154		0.109	0.154		0.109	0.106			
SXT ^{ns}	12.62	12.80		13.18	13.08					0.089
T mean **							12.42	12.94		0.063
S mean**			12.71a			13.13b				0.003
MCHC:			**						**	
Initial	33:02	32.35	32.68aA	37.35	37.45	37.40aB	35.18	34.60	35.04a	
Walking	35.21	33.64	34.42bA	34.72	34.84	34.78bA	34.97	34.24	34.60a	0.287
Recovery	32.28	31.46	31.87aA	33.93	33.90	33.61cB	33.10	32.38	32.74b	
±SE	0.567⁵		0.401	0.5	0.567		0.391			
·										
SXT "s	23.50	32.48		35.33	35.20					0.327
T mean **							34.42	33.84		0.232
S mean**			32.99a			35.26b				0.232
ns, non-signi	ficant	*, P	< 0.05**,	P< 0.01		C, Cor	ntrol g	roup		Ρ,

ns, non-significant probiotics group

*, P< 0.05**, P< 0.01 S. season

T. treatment

MCV, mean corpuscular volume

MCH, mean corpuscular hemoglobin MCHC, mean corpuscular hemoglobin concentration

Means in a certain item having different letters differ significantly (P<0.05).

In agreement, Jain (1993) and Juma et al. (2001) reported higher blood parameters (Hb, PCV and RBC's) in goats in the hot summer than in winter. El-Nouty et al. (1990) stated that the rise in AT in summer (from 21.8-24.8 °C in spring to 31.6-35.8 °C in summer) was associated with a significant increase in PCV of goats. Similarly, Smith and Sherman (1994) reported in adult Indian goats that PCV was higher in summer than in winter leading to higher Hb and RBC's count. Sarwer and Majeed (1997) observed that PCV, Hb and RBC's were positively correlated to each other while MCH and MCHC were positively correlated. Moreover, PCV were negatively correlated with MCHC and MCH. However, the mean values of Ht and Hb of experimental goats were within the normal range reported for goats form 22 to 38 (%) with an average of 28 (%) for Ht and from 8 to 12 (g/dl) with an average of 10 (g/dl) for Hb (Jain, 1993).

Subjection Hassani goats to walking stress caused slight increases in Hb, Ht, RBC's and MCV values in both experimental groups during summer and winter seasons and it caused decreases in MCH and MCHC values (Tables 3 and 4). The increments in Hb, Ht and RBC's values in winter due to practising walking were greater than those in summer. Badawy et al. (2003) revealed that the hematological parameters (Hb, Ht and RBC's) were increased in sheep and goats due to practising walking and added that goats were slightly affected by forced walking comparing with sheep. Bruckmaier and Blum (1992) reported that HB and Ht increased during treadmill. Moreover, Apple et al. (1994) recorded increases on HB and Ht values in exercising lambs. The increment in Hb, Ht and RBC's values might be an attempt to increasing O2 carrying capacity to increase the metabolic rate under walking stress conditions. With sympathetic neural activation during exercise, the spleen contracts and discharges erythrocytes into the circulation and increases hematocrit (Detweiler, 1984).

The spleen is an important reservoir of erythrocytes called upon when the body has a greater need for oxygen in the tissues. Increases in hematocrit and hemoglobin concentrations are critical mechanisms enabling the ruminants to increase oxygen transportation to exercising muscles (Kuhlmann *et al.* 1985). Mundie *et al.* (1991) reported a 44% increase in Hb concentration during maximal exercise in sheep. Furthermore, Bird *et al.* (1981) found that hematocrit and hemoglobin increased with seconds of commencing treadmill exerciser and concluded that these increases were due to splenic discharge of erythrocytes. In consistency, Kobeisy *et al.* (2004) reported that HB increased as a result of exercise in Saidi ewes.

Providing probiotics during walking stress resulted in increasing the hematological parameters and blood indices mean values as the probiotics goats exceeded the values of their controls counterparts (Tables 3). These increments in the hematological parameters were higher in winter than in summer. These results would be explained as the supplementation of probiotics resulted in better iron salt absorption from the small intestine also probiotics were found to produce vitamins group B, affecting positively blood forming processes (Kander, 2004). Similarly, Zomborszky et al. (1998) reported that the RBC's had increased by 36.67 and 22.08 %, respectively in Suffolk ewes and ewe lambs fed thermolysed brewer's yeast. Moreover, Bomba et al. (1998) and Miller et al. (1982) noted an increase in hemoglobin level and the erythrocyte count in piglets receiving Lactobacillus sp. However, there were no significant differences between the experimental groups in hematological parameters and blood indices mean values (Tables 3 and 4).

CONCLUSION

From the forementioned results, it could be concluded that providing probiotics in diets of goats raised under the harsh conditions of the El-Shalateen- Halaieb- Abo Ramad triangle would improve their thermal ability through controlling the changes might occur in thermo- cardio- respiratory responses and improving the hematological reactions are used from the walking stress during summer and winter seasons.

REFERENCES

- Abdel- Kader, G. (1979). Spot lights on histology. 3rd Ed. El- Nasr Modern Book Shop, Cairo Egypt.
- Ahmed, M. M. and A. M. Abdelatif (1992). Effect of shearing and exercise on heart tolerance, food utilization and blood constituents in desert sheep. Journal of Arid Environments, 23: 3, 301-307.
- Apple, J. K.; J. E. Minton; K. M. Parsons; M. E. Dikeman and D. E. Leith (1994). Influence of treadmill exercise on pituitary, adrenal secretions, other blood constituents and meat quality of sheep. J. Anim. Sc., 72: 1306-1314.
- Badawy, M. T. A.; H. A. Gawish; M. S. Abdel- Fattah and A. A. Azamel (2003). Certain hemo-biochemical changes due to exercise and water deprivation stresses of sheep and goats under drought conditions. J. Agric. Sci. Mansoura Univ., 28 (7): 5307-5316.
- Bertrand, J. A. and L. W. Grimes (1997). Influence of *tallow* and *Aspergillus* oryzae fermentation extract in dairy cattle rations. J. Dairy Sci., 80: 1179-1184.
- Bird, A. R., K. D. Chandler and A. W. Bell (1981). Effect of exercise and plane of nutrition on nutrient utilization by the hind limb of the sheep. Aust. J. Biol. Sci. 34: 541.
- Bomba, A.; S. Gancarcikova; R. Nemcova; R. Herich; R. Kastel; A. Depta; M. Demeterova; V. Ledecko and R. Itnan (1998). The effect of lactic acid bacteria on intestinal metabolism and profile of gnotobiotc pigs. Dtsch. Tierarztl. Lehr. 105, 384-389.
- Bruckmaier, R. M. and J. W. Blum (1992). Responses of claves to treadmill exercise during beta- adrenergic agonist administration. J. Anim. Sci., 70: 2809-2811.
- Campbell, M. and m. J. Glade (1989). Effects of dietary yeast culture supplementation during the conditioning period on heart rates and lactic acid production by horses exercised on a treadmill. In: Proc. 11th Equine Nutr. Physiol. Symp. (Okla. St. Univ. Stillwater, OK) pp. 72. U.S.A.
- Detweiler, D. K. (1984). Normal and pathological circulatory stresses. In: Swenson, M. J., (Ed.) Dukes' Physiology of domestic animals (10th Ed.) pp. 207. Cornell University Press, Ithaca. U.S.A.
- Drabkin, D. L. and Austin (1932). Spectrophotometric studies: Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J. of Biological Chemistry, 719 Cit. In Practical Hematology, (1975).
- El-Ganaieny, M. M.; F. I. Khattab; A. S. Abdou and S. A. Hekal (2001). Hair coat characteristics in Baladi goats in relation with thermoregulation during the yearly seasons. Egyptian J. Anim. Prod., 38 (2): 111-127.
- El-Nouty, F. D.; A. A. Al-Haidary and S. M. Basmeel (1990). Physiological responses, feed intake, urine volume and serum osmolarity of Arabi goats deprived of water during spring and summer. AJAS, 3:331 336.
- El-Rayes, M. A. H. A. A. (2005). Effect of some seasonal environmental conditions on the reproductive performance of female Baladi goats. M.

- El-Rayes, M. A. H. A. A. (2005). Effect of some seasonal environmental conditions on the reproductive performance of female Baladi goats. M. Sc. Thesis, Department of Agricultural Science, Institute of Environmental Studies & Research, Ain Shams Univ., Cairo, Egypt.
- El- Shaer, H. M.; H. M. Kandil; H. M. Abou El-Nasr and H. S. Khamis (1997). Features and constrains of animal resources development in Shalateen-Halaib region. Egyptian J. Nutrition and Feeds (Special Issue): 121 128.
 - Entin, P. L. and R. E. Rawson (1999). Arterial blood gas tensions during exercise in neonatal lambs. Respiration Physiology, 117- (2- 3): 161-169.
- Entin, P. L.; D. Robertshow and R. E. Rawson (1998). Thermal drive contributes to hyperventilation during exercise in sheep. J. Appl. Physiol., 85 (1): 318-325.
- Evans, D. L.; R. J. Rose; P. K. Kinght; D. Cluer; G. Mqannefield; W. R. Allen; A. J. Higgins; I. G. Mayhew; D. H. Snow and J. F. Wade (1992). Physiological responses during an incremental treadmill exercise test in the camel. In: Proceedings of the First international Camel Conference, Dubai, 2nd 6th February, 223-227. U.S.A.
- Fayed, Afaf M. (2001). Effect of using Yea- Sacaromyces cervisia on performance of sheep and goats in Sinai. Egyptian J. Nutrition and Feeds. 4 (2): 67-80.
- Galal, E. S. E.; M. B. Aboul-Ela and M. M. Shafie (1988). Ruminant production in the dry subtropics: Constraints and potentials proceedings of the international symposium on the constraints and possibilities of ruminant production in the dry subtropics, Cairo, Egypt, 5-7 November 1988. (EAAP publication No. 38, 1989).
- Gomez- Alarcon, R. A. G.; C. Dudas and J. T. Huber (1990). Influence of Aspergillus oryzae on rumen and total tract digestion of dietary components. J. Dairy Sci., 73: 703.
- Gomez- Alarcon, R. A. G.; J. T. Huber; G. E. Higginbotham; F. Wiersma; D. Ammon and B. Taylor (1991). Influence of feeding *Aspergillus oryzae* fermentation extract on the milk yields, eating patterns and body temperatures of lactating cows. J. Anim. Sci., 69- 1733.
- Higginbotham, G. E.; D. L. Bath and L. J. Butler (1993). Effect of feeding Aspergillus oryzae extract on milk production and related responses in a commercial dairy herd. J. Dairy Sci., 76: 1484.
- Higginbotham, G. E.; C. A. Collar; M. S. Aseltine and D. L. Bath (1994). Effect of yeast culture and *Aspergillus oryzae* extract on milk yield in a commercial dairy herd. J. Dairy Sci., 77: 343.
- Huber, J. T. and G. E. Higginbotham (1985). Influence of feeding Vitaferm, containing an enzyme- producing culture from *Aspergillus oryzae* performance of lactation cows. J. Dairy Sci., 68 (Suppl. 1): 122.
- Huber, J. T.; J. G. Higginobotham; R. A. Gomez-Alarcon; R. B. Taylor, K. H. Chen; S. C. Chan and Z. Wu (1994). Heat stress interactions with protein, supplemental fat and fungal cultures. J. Dairy Sci., 77: 2080.
- Jain, N, C. (1993). Essentials of veterinary hematology. Chapter 2. Lea & Febiger, Philadelphia. U.S.A.

- Juma, K. H.; M. K. Asofi and A. A. H. Al-Khazraji (2001). Haematology and blood biochemistry of endogenous goats of Iraq. Dirasat Agric. Sci., 28: 146-158.
- Kander, M. (2004). Effect of bifidobacterium sp. on the health state of piglets, determined on the basis of hematological and biochemical indices. J. Vet. Medicine, Vol. 7, (2).
- Kasa, I. W.; M. K. Hill; C. J. Thwaites and N. D. Baillie (1995). Effects of treadmill exercise on physiological responses in Saanen goats, Small Ruminant Research (16); 129- 132.
- Kasa, I. W; C. J. Thwaites and M. K. Hill (1999). Effects of treadmill exercise on sweating in three breeds of goats. Aust. Vet. J. Vol. 77, No. 10
- Kearl, L. C. (1982). Nutrient requirement of ruminants in developing countries. Utah Agri. Exp. Sta. Utah State University, Logan, U. S. A.
- Kobeisy, M. A., I. A. Soliman and M. A. Abdulaziz (2004). Influence of chromium supplementation on thermo- respiratory responses and some blood parameters of sheep exposed to exercise under direct sunlight. Egyptian J. Anim. Prod. 41, Suppl. Issue, N.v., 405-410.
- Kuhlmann, W. D., D. S. Hodgson and M. R. Fedde (1985). Rspiratory, cardiovascular, and metabolic adjustments to exercise in the Hereford calf. J. Appl. Physiol., 58: 1273.
- Kumar, P.; S. V. Singh; R. C. Upadhyay and A. A. Aggarwal (2000). Skin blood flow during pre and post treadmill exercise in buffaloes. Indian J. of Anim. Sci., 70 (2): 178- 179.
- Marcus, K. M.; J. T. Huber and S. Cramer (1986). Influence of feeding Vitaferm during hot weather performance of lactating cows in a large dairy herd. J Dairy Sci., 69 (Suppl. 1): 188.
- Miller, E. R.; G. L. Waxler; P. K. Ku; D. E. Ullcey and C. K. Whitehair (1982). Iron requirements of baby pigs reared in germ- free or conventional environments on a condensed milk diet. J. Anim. Sci., 54, 106-115.
- Mundie, T. G., A. J. Januszkiewicz, D. B. Rayburn, D. G. Martin and G. R. Ripple (1991). Effect of conditioning and maximal incremental exercise on oxygen consumption in sheep. Am. J. Vet. Res. 52: 109.
- Nandy, D. K.; Kumar, Puneet.; Singh, Khub.; P. Kumar and K. Singh (2001). Reproductive behavior of goat in different seasons. International Journal of Animal Sciences, Vol. 16 (1): 167 170.
- Oppong, A. K.; R. V. Bsudinette; S. Laube and J. R. Sbine (1990). Metabolic and physiological responses to submaximal intermittent exercise in neonatal lambs. In: Proceedings of the Australian Society of Animal Production, 18: 324-327.
- Parrott, R. F.; D. D. Lloyd and D. Brown (1999). Transport stress and exercise hyperthermia recorded in sheep by radiotelemetry. Animal Welfare, 8: 1, 27-34.
- Sarwar, A. and M. A. Majeed (1997). Interrelationships between 30 parameters of blood in normal one humped camel in summer. International Journal of Camel Practice and Research, 4: 1, 35-39.India.
- SAS (1998). Statistical analysis system, STAT/ user's guide, release 603 ed. SAS Institute, Cary NC. U. S. A.

- Shaker, Y. M. (2003). Studies on physiological and reproductive performance of goats under different housing systems in newly reclaimed area. Ph. D. Thesis, Fac. Agric., Cairo Univ., Giza, Egypt.
- Shaker, Y. M.; S. A. Kandil and A. A. Azamel (2005). Physiological and hematological responses of Baladi goats to tree-sheltering in summer. 56th Annual Meeting of the European Association for Animal Production (EAAP), June 5-8, Uppsala, Sweden, Abstracts book, pp. 107.
- Shedeed, H. A. (2005). Some physiological parameters in sheep and goats and their relation to skin characteristics and tanning. M. Sc. Thesis, Fac. Agric., Ain Shams Univ., Cairo, Egypt.
- Smith, M. C. and D. M. Sherman (1994). Goat Medicine. Malvern, P.A. ed., Pub. Lea & Febiger, pp. 620. U.S.A.
- Wenger, C. B.; M. F. Roberts; J. A. J. Stolwijk and R. E. Nadel (1975). Fore arm blood flow during body temperature transient produced by leg exercise. Journal of Applied Physiology, 38: 58-63.
- Zomoborszky, K. M.; Z. Zomoborszky; S. Tuboly; A. Lengyel and E. Horn (1998). The effect of thermolysed brewer's yeast of high nucleotide content on some blood parameters in Sheep. Wool Technology and sheep Breeding, 46: 3, 255-261.
- تأثير البروبيوتك وإجهاد المشى على القياسات الفسيولوجية وبعض مكونات السدم للماعز الحسائي
- محسن شاكر عبد الفتاح، يسرى محمد شاكر السيد، أحمد لطفى السيد هاشم و عبد الحميد أحمد أزامل
- قسم فسيولوجيا الحيوان والدواجن- شعبة الانتاج الحيواني والدواجن- مركز بحوث الصحراء-المطرية- القاهرة

فى محاولة لتخيف العب الفسيولوجي على ذكور الماعز الحساني الناتج عن اجهاد المشى الثناء موسمي الصيف والشتاء في مثلث الشلاتين – حلابب – أبورماد، تمت إضافة البروبيوتك إلى علائقها في تجربة حقلية لمدة ٣٤ يوم حيث اختير عشرون ذكر ماعز حساني من القطيع التجريبي بمحطة بحوث حدربة التي تقع على الحدود المصرية السودانية والتابعة لمركز بحوث الصحراء. قسمت الحيوانات الى مجموعيتن متساويتين: المجموعة الأولى غنيت على عليقة تحتوي على البروبيوتك البروبيوتك (مجموعة مقارنة) بينما المجموعة الثانية غنيت على عليقة تحتوي على البروبيوتك (بيوفيت - YC بمعدل ١٩حم/ راس/ يوم) لمدة ٢٨ يوم قبل وأثناء وبعد التعرض الإجهاد المشي. حيث تم دفع الحيوانات للمشي لمسافة ١٠ كيلومتر في أربعة ساعات يوميا لمدة أربعة أيام متتاليسة أعقبها يومان فترة راحة الإعادة الحيوانات لحالتها. تم تسجيل البيانات الارصائية وهمي درجة درارة البيئة و الرطوبة النسبية مرتين يوميا (٨ صباحا ، ٢ ظهرا) كما تسم تسجيل القراءات الفسيولوجية (درجة حرارة كل من المستقيم والجلد بالإضافة الى معدل التنفس ومعدل صربات الفسيولوجية (درجة حرارة كل من المستقيم والجلد بالإضافة الى معدل التنفس ومعدل صربات الهيموجلوبين، عدد كرات الدم الحمراء وباستخدام معادلات حسابية تم حساب كلا مس متوسط حجم كريات الدم الحمراء، متوسط تركير الهيموجلوبين داخل كريات الدم الحمراء، متوسط تركير الهيموجلوبين داخل كريات الدم الحمراء، متوسط تركير الهيموجلوبين داخل ...

* أوضحت النتائج أن فصل الصيف سجل قيم أعلى عن فصل الشتاء لكل من درجة حرارة المستقيم والجلد - تركيز هيموجلوبين الدم- نسبة الهيماتوكريت- عدد كرات الدم الحمراء-

- أوضحت النتائج أن فصل الصيف سجل قيم أعلى عن فصل الشتاء لكل مسن درجة حسرارة المستقيم والجلد تركيز هيموجلوبين الدم- نسبة الهيماتوكريت- عدد كرات الدم الحمسراء- متوسط حجم كريات الدم الحمراء (P<0.0¹) و كل من معدل النتفس- معدل ضربات القلب بشكل غير معنوى. وفي المقابل فأن فصل الشتاء سجل قيما أعلى عن فصل الصيف لكل من متوسط كمية الهيموجلوبين داخل كريات الدم الحمراء- النسبة المنويه لمتوسسط تركيسز الهيموجلوبين داخل كريات الدم الحمراء المنضغطة (P<0.01).
- أدى الأجهاد الناتج عن المشى الى زيادة كل من درجة حرارة المستقيم والجلد معدل التنفس وضربات القلب- تركيز الهيموجلوبين- نسبة الهيماتوكريت- متوسط حجم كريسات السدم الحمراء- متوسط تركيز الهيموجلوبين داخل كريات الدم الحمراء المنضغطة (P<0.01) كما زاد عدد كرات الدم الحمراء بشكل معنسوى (P<0.05). بينما انخفض متوسسط كمية الهيموجلوبين داخل كريات الدم الحمراء ولكن بشكل غير معنوى.
- "إضافة البيروبيوتك الى علائق الماعز الحسانى أثناء التعرض لاجهاد المشى ادى الى إنخفاض معنوى لكل من درجة حرارة المستقيم ومعدل التنفس (P<0.05) وكذلك درجة حرارة الجلد (P<0.01) بينما لم يكن الانخفاض فى معدل ضربات القلب معنويا. علاوة على ذلك أدت اضافة البروبيوتك أدى الى زيادة معنوية (P<0.01) فى تركيز الهيموجلوبين ونسبة الهيماتوكريت وكذلك زيادة غير معنوية فى عدد كرات الدم الحمراء، متوسط حجم كريات الدم الحمراء، متوسط كمية الهيموجلوبين داخل كريات الدم الحمراء المنضغطه، كما أظهرت النتائج انخفاض غير معنوى فى متوسط تركيز الهيموجلوبين داخل كريات الدم الحمراء المنضغطة،
- الخلاصة: خلصت التجربة الى ان أستخدام البروبيوتك في علائق الحيوانات الصحراوية المتأثرة باجهاد المشى أثناء موسم الصيف والشتاء من الممكن ان يكون احد السبل لتقليل الاثار الضارة لاجهاد المشى اثناء عملية الرعى والتي تواجه الماعز الحساني المرباة تحست الظروف البيئية القاسية لمثلث حلايب- شلاتين- أبو رماد اقصى جنوب شرق الصحراء الشرقية لمصر.