NITROGEN FERTILIZATION MANAGEMENT FOR WHEAT (TRITICUM AESTIVURM) IRRIGATED WITH EL-SALAM CANAL WATER, SOUTH EAST OANTRA. SINAI

Ali, S. A. I, A.E. El-Sherbieny, S.M. Dahdouh and M.M. Mostaffa

Soil Science Dept., Faculty of Agriculture, Zagazig University.

Accepted 15 / 9 / 2008

ABSTRACT: Two field experiments were carried out at the area irrigated by El-Salam Canal, water during 2005-2006 season at two locations of South-East Qantara, Sinai Governorate, to study the effect of farmyard manure (FYM), mineral N- "sources, rates and the splitting of mineral N-" using on wheat (*Triticum aestivurm*, c.v. Satha 69). The first experiment was located at South East Qantara and the second one was performed at El-tena. The main results could be summarized as follows:

- 1) Yield of grains, and straw were increased by application of FYM experiments.
- 2) Application of ammonium nitrate 125 kg. fed⁻¹ in 8 splits along with FYM increased grain and straw yields under sprinkler irrigation system.
- 3) The 1000-grains weight increased by increasing nitrogen rate, using FYM and splitting application.
- 4) Grain protein yield increased by 22.7% up on using FYM under sprinkler irrigation system and 37.5% under surface irrigation system.
- 5) Using 8 splits of ammonium nitrate using 125 kg. fed⁻¹ gave by least increase in protein yield under sprinkler system.
- 6) Using 4 splits of calcium nitrate increased protein yield under surface irrigation system.

Key words: Wheat, FYM. nitrogen fertilization splitting, sprinkler irrigation.

INTRODUCTION

Wheat is the main cared crop for bread making in Egypt. There is a wide gap, between the amount of wheat produced in Egypt and that needed for consumption, and the deference must be imported from foreign countries. Some of these countries use cereal crops to produce fuel to face the increase in the prices of fuel. The Egyptian government decided to increase wheat production of as well as cultivation more land by cereal crops particularly on reclaimed lands

One of the largest projects of land reclamation in the east bank of Suies Canal depends on El-Salam Canal water. Such land in this area needs a efficient programmes of fertilization mainly with nitrogen.

Organic manures are recommended for enhancement of soil properties mainly the physical ones and for increasing soil fertility. On the other land, mineral N fertilizers, mainly nitrate N carriers, are costly and my lead to pollution of ground water.

The consumption of N fertilizers is using year after year due to the reclamation of new areas and/or using high yield varieties. One of the main ways to

overcome the shortage in the production of N fertilizers is using the organic manures such as farmyard manure

One of the most important and practical practices to increase the efficiency of N fertilizers is the addition of the recommended amounts as splits.

The current study was carried out to investigate the effect of nitrogen fertilizers rates, sources, splitting with and without adding farmyard manure under two irrigation systems sprinkler and surface.

MATERIALS AND METHODS

Two field experiments were carried out at the area irrigated by during, El-Salam Canal water 2005/2006 season at two locations to study the effect of farmyard manure "FYM"; nitrogen fertilizer, (sources, rates and splitting of nitrogen) using aestivam c.v., wheat (Triticum Sakha 69). The first experiment (under sprinkler irrigation) was located at El-Tena Plain region and the second one (under surface irrigation) was performed at South Oantara East area. Sinai Governorate.

Soil samples were collected before executing the experiments to

asses soil characteristics and results are shown in Table 1,A Water for irrigation was from El-Salam canal (a rather saline water) with the chemical composition recorded in Table 1b.

The experimental design was a randomized complete block, involving 4 factors, executed with three replicates. The plot area was 20 m^2 (4 ×5 m) in the first experiment and 30 m^2 (5 × 6 m) in the second one. The studied factors were as fallows:

- 1) Factor "A": Farmyard manure FYM at two rates 0 and $20\text{m}^3/\text{feddan}$.
- 2) Factor "B": Nitrogen source fertilizer: 3 sources; ammonium sulphate (AS), ammonium nitrate (AN) and calcium nitrate (CN).
- 3) Factor "C": Nitrogen rates; 75, 100 and 125 kg N fad⁻¹ in the first, experiment and 100, 125 and 150 kg N fed⁻¹ in the second experiment.
- 4) Factor "D": the number of splits of mineral N: 6,8 and 10 splits in the first experiment. 3,4 and 5 splits at the second experiment.

Thus the total number of treatment combinations were 54 (2 FYM × 3 Source × 3 Rates × 3 spillitings), executed in 3 replicates.

Seeding rate was 70 kg seeds fed⁻¹ executed on 15 November, 2005. All

normal agricultural practices were performed. The schedule of applying the N splits was as follows: (Splitting done after 1st, irrigation).

For the First Experiment (sprinkler irrigation)

- 1) 6 splits: every 10 days.
- 2) 8 splits: every 8 days.
- 3) 10 splits: every 6 days.

For the Second Experiment (surface irrigation)

- 1) 3 splits: every 20 days
- 2) 4 splits: every 15 days.
- 3) 5 splits: every 10 days.

After complete maturity, wheat were harvested and the yield of grains and straw were estimated by weighing the yield of 0.25 m² area.

Plant Analysis

Plant samples were taken to determine their content of N,P and K after drying at 70°C till constant weight. (Chapman and Pratt 1961).

Soil Analysis

- 1) Particle size distribution was carried out by the international pipette methods described by Piper (1950).
- Calcium carbonate was volumetrically determined using the calcimeter according to Piper (1950).

Table 1. Properties of the soils of the sites (locations), of the experiments farmyard manure and irrigation water.

_	(a) Soil.					1						
cation	Particle size distribution (%)	Soil	Hď	C*		,	Solut	ole ion	s me/1	00 soil		
	Sand Silt Clay	texture	<u></u>	EC dS/	Ca [↔]	Mg^{++}	K	Na^{+}	$CO_3^{=}$	HCO ₃	Cl	SO ₄
1	89.16 0.16 9.68	sand	8.68	1.90	2.5	2.5	0.1	2.00	0.0	0.2	2.5	4.40
2	79.02 1.78 19.20	Sand loam	8.33	1.12	5.5	2.5	0.1	9.15	0.0	0.2	10.3	6.75

*pH: 1: 2.5 soil water suspension; EC in 1: 2.5: water extract; Location 1 and 2 are El-Tena plain and South Qantara, Sinai

(b)	Irrig	ation	water.

Soluble ions mc/L									
Ca	Mg ⁺⁺	Na	K	CO,	HCO,	Cl	SO ₄	ds/m	
3.0	5.0	3.1	0.2	0.0	2.4	6.0	2.9	1.13	

(c)	Far	my	ard	mai	nure) .

рН	EC	TSS								
1:25	dS/m	(%)	Ca ⁺⁺	Mg ⁺⁺	Na	$\mathbf{K}^{^{\dagger}}$	CO,	HCO,	Cl	SO ₄
8.02	3.32	1.06	4.5	3.0	8.95	0.15	0.0	0.4	8.0	8.2

- 3) Organic matter content was determined by method of Walkley and Black (Black, *et al.*, 1965).
- 4) Soil reaction pH was determined in 1: 2.5 water suspensions by pH meter (Jackson, 1973).
- 5) Electrical conductivity EC, as well as soluble ions of the soil was done to 1: 2.5 soil: water W/V extract according to Richards (1969).

RESULTS AND DISCUSSION

The experiments were conducted during the season 2005/2006 at two locations of South-East Qantara Sinai Governorate to study the effect of Farmyard manure "FYM", nitrogen fertilizer sources "ammonium sulfate (AS), ammonium nitrate (AN) and calcium nitrate (CN)", nitrogen rates and splits. The first experiment was under sprinkler and the second was under surface irrigation.

Grain Yield:

Under sprinklers irrigation system

The majority of effects proved no stastical significance, However, results are discussed on the bases of comparing means.

The grain yield is recorded in Table "2-a". The grain yield ranged

between 953 and 3249 kg.fed⁻¹, the highest grain yield was obtained under the application of 125 kg N.fed⁻¹ as ammonium nitrate at 8 splits in combination with FYM. The lowest value was obtained under application treatment of 100 kg N. fed⁻¹ as ammonium sulphate and 6 splits without application of FYM. This means that the positive effect of FYM augmented the positive effect N mineral N-fertilizer. These results are similar to results obtained by Moselhy, (1995).

The obtained data revealed that FYM application as a general trend, increased grain yield by 38.4%. For nitrogen sources, the data indicated that ammonium nitrate increased the grain yield by 5.6% and 10.8% as compared by ammonium sulphate and calcium nitrate, respectively.

For nitrogen fertilizer rate, the data indicated that increasing nitrogen fertilizer application from 100 to 125 kg N.fed⁻¹ increased the grain yield by 16.9%, while increasing it from 100 to 150 kg N.fed⁻¹ decreased the grain yield by 2.6% and increasing the nitrogen rate from 125 to 150 N.fed⁻¹ decreased the grain yield by 9.7%.

For nitrogen rate splitting, the data indicate that increasing N splitting from 6 to 8 and 10 splits increased the grain yield by 8.4% and 1.9%, respectively.

In general, it may be recommended that the most effective treatment in application of ammonium nitrate at 125 and 8 splits combined with FYM.

Under surface irrigation system

Under this irrigation system, the N rates were 75, 100 and 125 kg N.fed⁻¹ and splitting by 3,4 and 5 splits. The only significant affect was due to N rate; the main effects of FYM, N-source, or splitting were not significant.

The grain yield was recorded in Table 2-b. The grain yield ranged between 2800 and 4788 kg fed⁻¹. The highest yield was obtained under application of 100 kg N.fed⁻¹ as calcium nitrate in 3 splits without FYM. The lowest was obtained by application of 100 kg N. fed⁻¹ as ammonium nitrate, 4 splits with FYM.

The obtained data revealed that the main effect of FYM application gave a non-significant decrease of 7.4% in grain yield.

For nitrogen sources, the data indicated that calcium nitrate

application gave slight greater yields of 3.5 and 6.0% as compared with ammonium sulphate and ammonium nitrate, respectively.

For nitrogen fertilizer rates, the data indicate that the main effect of increasing nitrogen rate from 75 to 100 and to 125 kg N. fed⁻¹ increased the grain yield significantly by 2.9 and 8.0, respectively.

For nitrogen splitting, the data showed no significant effect and the 6.2 and 7.4% increase given by the 5 splits over the 3 and 4 splits, respectively were not statistically significant. In general, there was a apositive significant trend of increase in grain yield of wheat due to increasing N fertilizer rates these results are in full agreement with those results of (Abdul Galil et al. 1980 and Abd El-Latif and El-Tuhamy 1986; El-Ghareib and El-Monoufi, 1988 and El-Bana and Aly, 1993, Maha Abd-Alla and Bassiouny. El-Naggar 1994. (1999), Metwally (2000), Abd El-Maksoud (2002), Rabei (2003), Abd El-Hameed (2004), Mostafa et al. (2004), Nassar et al. (2004), Salem et al. (2004), Mengel et al. (2006), Shaban and Helmy (2006) and Shaban and Abd El-Rhman (2007).

Table 2. Grain yield (kg fed⁻¹) as influenced by application of FYM, inorganic N sources, N rates and No of N-splits

(a) Sprinkler irrigation system

	(a) S	prinkl	ler irrig	ation s	ystem								
N*	N.			ut FYM				FYM				ı FYM	
Source	rate kg. fed ⁻¹	6	N splits	10	Mean	6	N splits	10	Mean	_6	N splits	. 10	Mean
AS	100	953	1734	1639	1442	2139	2607	2213	2320	1546	2171	1926	1881
	125	1525	2186	1760	1824	2643	2970	2380	2664	2084	2578	2070	2244
M	150	1334	1612	1760	1569	1853	2116	1718	1896	1594	1864	1739	1732
	ean	1271	1844	1720	1611	2212	2564	2103	2293	1741	2204	1912	1952
AN	100	1609	1747	2113	1823	2235	1969	1677	1960	1922	1858	1895	1892
	125	2031	1968	2431	2144	2535	3249	2366	2717	2283	2609	2399	2430
M	150	1543	1654	1713	1637	2379	2156	1740	2092	1961	1905	1727	1864
	ean	1728	1790	2086	1868	2383	2458	1928	2256	2055	2124	2007	2062
CN	100	1044	1463	1506	1338	2453	2021	2606	2360	1749	1742	2056	1849
	125	1537	1895	1680	1704	2034	2191	1796	2007	1786	2043	1738	1856
M	150	1539	1718	1612	1623	2599	1891	1904	2131	2069	1805	1758	1877
	ean	1373	1692	1599	1565	2362	2034	2102	2166	1868	1863	1851	1861
					M	can of l	N rate						
1:	00	1202	1648	1753	1611	2276	2199	2165	2283	1739	1924	1959	1874
	25	1698	2017	1957	1868	2404	2804	2181	2256	2051	2410	2069	2177
	50	1472	1661	1695	2293	2277	2054	1787	2166	1875	1858	1741	1825
	Mean	1457	1775	1802	1678	2319	2352	2044	2239	1888	2046	1923	1958
L.S.D at	0.05: (A	FYM;		B : N-Sc		C: N-r		D : N-	splitting)				
A B AB C	NS NS NS NS				BC ABC D AD		NS NS NS NS				AE CI AC BC	D CD	NS 5.9 NS 47.0
AC *:	NS NS $AS = An$	amaniu	m culnh	ate	BD	∆ mmoni	<i>NS</i> ium nitra	ate	CN = 0	_alcium		SCD .	46.0

Table 2. Cont.

Table A	2. Cont.												
	(b) S	Surface	e irriga	tion sy	stem.								
N*	N		Witho	ut FYM	1		With	FYM			Mear	ı FYM	
Source	rate		N split		Mean		N split	S	Mean		N split		Mean
Source	kg. fed ⁻¹	3	4	5	Mean	3	4	5	Mcan	3	4	5	Mican
. ~	75	3322	2542	3738	3201	4119	4568	3917	4201	3721	3555	3828	3701
AS	100	2672	3600	4690	3655	3277	3180	3654	3370	2976	3390	4172	3713
	125	3702	3306	3663	3557	4454	4324	4435	4404	4078	3815	4049	3981
M	[ean	3233	3150	4030	3471	3930	4024	4002	3992	3591	3587	4016	3732
	75 •	3738	3493	2875	3369	3415	3875	3589	3627	3576	3684	3232	3498
AN	100	3053	4187	4551	3930	3663	2800	3801	3421	3358	3493	4176	3676
	125	3565	3344	4047	3652	3650	4056	3916	3874	3608	370	3981	3763
M	lean	3452	3675	3825	3650	3576	3577	3769	3641	3514	3626	3797	3646
	75	3863	2861	4122	3615	3344	3899	3785	3676	3604	3380	3954	3646
CN	100	4788	3657	4439	4295	3489	4070	3398	3652	4138	3864	3919	3974
	125	4360	4335	3677	4124	3858	3468	4136	3821	4109	3902	3907	3972
M	l ean	4337	3618	4079	4011	3564	3813	3773	3716	3950	3715	3926	3864
					N	fean of	N rate						
	75	3641	2966	3579	3395	3626	4114	3764	3835	3634	3540	3671	3615
1	100	3505	3815	4560	3960	3476	3350	3618	3481	3491	3582	4089	3721
1	(25	3876	3662	3796	3778	3987	3950	4162	4033	3932	3806	3979	3905
G. 3	Mean	3674	3481	3978	3711	3697	3805	3848	3783	3685	3643	3913	3747
T	.S.D at 0.	05· (A	·FYM	[•	R· N	-Sourc		C: N-1	ate.	D· N	N-splitt	ina)	
			110	٠,	D. 13		•		aic,		•		MO
A		NS				BC		NS			ABD		VS
В		NS				ABC		NS		,	CD	Ì	VS

L.S.D a	t 0.05: (A: FYM;	B: N-Source;	C: N-rate;	D: N-splitting)	
A	NS	BC	NS	ABD	NS
В	NS	ABC	NS	CD	NS
AB	002.4	D	NS	ACD	NS
C	014.9	AD	NS	BCD	NS
AC	032.6	BD	NS	ABCD	NS

^{*:} AS = Ammonium sulphate,

AN = Ammonium nitrate

CN = Calcium nitrate

The increase in wheat grain yield due to splitting the added N doses was mentioned by (Eid et al., 1981; Baker et al., 1983, Abd El-All 986, Abdel-Raouf et al., 1988; Abd El-Maaboud 1991 and Megahed 1991), Basilious (1992), Dawood (1994), El-Sherbieny et al. (1998), Hanna and Abd El-El-Mottaleb (1998) and Mwafy (1999).

Straw yield:

Under sprinkler irrigation system

The straw yield was recorded and tabulated in Table 3-a. The straw yield ranged between 1199 and 3238 kg N fed⁻¹, The highest straw yield was obtained by application of 125 kg fed⁻¹ as ammonium nitrate in 10 splits in combination with of FYM. The lowest value was obtained under application treatment of 150 kg N.fad⁻¹ as ammonium sulphate in 10 splits without application of FYM.

The obtained data revealed that FYM application as a general trend, increased straw yield by 18.5%.

For nitrogen sources, the data indicated that ammonium nitrate application increased straw yield by 4.9 and 6.1% over yields given

by ammonium sulphate and calcium nitrate, respectively.

For nitrogen fertilizer rate, data indicate that increasing N rate from 100 to 125 kg N. fed⁻¹ increased straw yield by 1.9%, while increasing the rate from 100 to 150 kg N. fed⁻¹ decreased straw yield by 8.4%.

For nitrogen splitting, the data showed that 8 splits increased the straw yield by 2.9 and 6.4% as compared by 6 and 10 splits, respectively.

As a general trend, the application of ammonium nitrate by the rate of 125, 8 kg N fed⁻¹ and splits under using FYM increased the straw yield. These results are similar to results obtained by Moselhy (1995).

Under surface irrigation system

The straw yield was recorded in Table (3-b). The straw yield ranged between 3594 and 6558 kg N.fed⁻¹. The highest straw yield was obtained by application of 100 kg N.fed⁻¹ as ammonium sulphate and 5 splits without application of FYM. The lowest straw yield was obtained under application of 75 kg N.fed⁻¹ as calcium nitrate and 4 splits without application of FYM.

Table 3. Straw yield (kg fcd⁻¹) as influenced by application of FYM, inorganic N sources, N rates and No of N-splits

	(a) Sp	rinkle	r irriga	tion s	ystem								
N*	N		Withou	ut FYN	1		With	FYM				FYM	
Source	rate kg. fed ⁻¹	6	N splits	10	Mean	66	N split	s 10	Mean	66	N splits	10	Mean
AS	100 125	1435 2319	2195 2045	2566 2284	2065 2216	3060 2610	2904 2971	2743 2984	2902 2855	2248 2465	2549 2508	2654 2636	2484 2535
M	150 lean	2678 2144	2363 2201	1199 2016	2080 2120	2436 2702	2791 2889	2061 2596	2429 2729	2557 2423	2577 2545	1630 2306	2255 2425
AN	100- 125 150	2439 2310 2463	2944 2736 2062	2009 2000 2840	2464 2349 2455	2645 2815 3080	2543 2568 2567	2393 3238 2162	2527 2873 2603	2542 2563 2771	2744 2652 2315	2201 2619 2501	2496 2611 2529
M	ean 100	2404 1711	2581 2250	2283 2865	2423 2423 2275	2847 2499	2559 2512	2598 3117	2668 2709	2625 2105	2570 2381	2440 2991	2545 2492
CN	125 150	2284 2151	2631 2500	1857 1511	2257 2054	2427 2916	2712 2559	2877 2098	2672 2424	2355 2533	2672 2379	2367 1805	2465 2239
	ean	2048	2460	2078	2195 M	2614 (ean of		2697	2602	2331	2477	2388	2399
1	.00 .25	1862 2304	2463 2470	2480 2047	2268 2274	2735 2617	2653 2750	2751 3033	2713 2800	2298 2461	2558 2610	2615 2540	2490 2537
	.50 Mean	2431 2199	2309 2414	1850 2126	2197 2216	2810 2721	2539 2647	2107 2630	2486 2666	2621 2460	2424 2531	1979 2378	2341 2456
	at 0.05: (A			B: N-S	Source;	C : N	V-rate;		N-splitti				
A B AB	NS 0.000 0.050	05			BC ABC D		$0.03 \\ N_0 \\ 0.00$	S			ABD CD ACD		0.0404 0.0012 NS
C AC	NS NS	•			AD BD		0.00 N 0.01	S			BCD ÁBCD		NS 0.0042
*•	AS = A	mmon	ium sult	ohate.	AN=	Ammo	ium ni	trate C	N = Cal	cium ni	trate		

Table 3. Cont.

	(b) S	Surface	: irrigat	tion sys	tem								
N*	N		Withou	ut FYM			With	FYM			Mean	FYM	
Source	rate	_	N splits		Mean	_	N splits		Mean	_	N splits	3	Mean
504.00	kg. fed ⁻¹	3	4	5	Menn	3	4	5	Mean	3	4	5	Wickii
	75	5077	3886	4776	4580	4702	4847	5784	5111	4889	4367	5280	4845
AS	100	3750	4792	6558	5034	5259	5320	5261	5280	4504	5056	5910	5157
	125	4176	5329	4860	4788	5824	5804	5832	5820	5000	5566	5346	5304
M	ean	4335	4669	5398	4801	5261	5324	5626	5404	4798	4996	5512	5102
	75	5300	4386	4337	4674	4550	4493	4775	4606	4925	4439	4556	4640
\mathbf{AN}	100	4625	5362	5159	5049	5352	4116	4948	4805	4988	4739	5054	4927
	125	4832	5353	5091	5092	4786	5420	5659	5289	4809	5386	5375	5190
M	ean	4919	5033	4862	4938	4896	4676	5128	4900	4908	4855	4995	4919
~~.	75	4477	3594	5273	4448	4913	4236	4830	4659	4695	3915	5052	4554
CN	100	6335	6436	5258	6010	4377	4093	4430	4300	5356	5265	4844	5155
	125	5148	5442	5131	5240	5154	4326	4843	4774	5151	4884	4987	5007
iVi	can	5320	5157	5221	5233	4815	4218	4701	4578	5067	4688	4961	4905
						lean of l	N rate						
	75	4951	3955	4795	4567	4721	4525	5129	4722	4836	4240	4962	4680
1	00	4904	5530	5659	5364	4996	4510	4880	4795	4950	5020	5269	5080
	25	4719	5374	5028	5040	5255	5183	5445	5294	4987	5279	5236	5167
G. N	Mean	4858	4953	5160	4991	4991	4739	5151	4961	4924	4846	5156	4976
D + 0 0	5 (4 EV)		D. M	0	C.)	· · · · · · · ·	n.	N1 1244	· \				
	5: (A: FYN	4;	B: N-	Source;		۷-rate; ٔ		N-splitt	mg)		4.00		NC
A B	NS				B			IS IS			ABD		NS
	NS				D	BC		IS IS			CD ACD		NS NS
AB C	002.4 014.9				A			is			BCD		NS NS
ĂC	032.0				B	מ		'S			ABCD		NS
				•						٠,		•	110
*:	AS = I	Ammor	ium s ul p	onate,	AN = A	Ammon	ium nitr	ate CN	I = Calcii	ım nıtra	te		

For nitrogen sources, the data indicated that ammonium sulphate increased the straw yield as compared with ammonium nitrate and calcium nitrate.

Regarding nitrogen rate, the data indicated that increasing nitrogen rate increased straw yield.

For nitrogen splitting, the data indicate that splitting N rate to 5 splits increased straw yield greater than 3 or 4 splits, Moselhy, (1995), reported increased straw yield by increasing N rate. Also The results obtained by Gaber (1988) and Aly and Maha Abd-Alla and Bassiouny (1994) Moselhy (1995) showed an increase in wheat straw yield as a result of at increasing rates. Eid (1977), Abdel-Raouf *et al.* (1988) and Abd-Maaboud (1991), reported that splitting of N fertilizer increased straw yield of wheat.

1000-grains weight Under sprinkler irrigation system

Data for the 1000-grain weight are in Table 4a. The 1000-grain weight ranged between 38.83 and 56.67 g. The greatest value was obtained by application of 150 kg N/fed⁻¹ of calcium nitrate in 10 splits without using FYM; and the lowest value was obtained by 100 kg N/fed⁻¹ as ammonium sulphate in 6 splits with using FYM.

Application of FYM increased the 1000-grains weight by 3.3%.

For nitrogen sources, the data indicated that ammonium nitrate application increased the 1000-grain weight by 5.6% and 1.3% as compared with ammonium sulphate or calcium nitrate, respectively. For N fertilization rate, the data indicated that increasing N rate from 100 to 125 and 150 kg N/fed⁻¹ increased the 1000-grain weight by 3% and 2.9, respectively.

Regarding splitting of N, the data indicated that increasing N splitting from 6 to 8 and 10 splits increased the 1000-grain weight by 3.3% and 5.8%, respectively.

Under surface irrigation system

Data regarding the 1000-grain weight under surface irrigation system are tabulated in Table 4b. The 1000-grain weight ranged between 27.03 and 56.9. The greatest value was obtained under application of 100 kg N/fed⁻¹ of ammonium sulphate as 5 splits without suing FYM; and the lowest value was obtained under application of 75 kg N/fad⁻¹ and as ammonium sulphate as 4 splits without using FYM. Application of FYM increased the 1000-grains weight by an average 2.4%.

(a) Sprinkler irrigation system

*: AS = Ammonium sulphate,

N*	N		Withou	ıt FYM				FYM			Mean	FYM	
Source	rate		N splits		Mean		N splits		Mean		N splits		Mean
	kg. fed ⁻¹	6	88	10		6	8	10		6	8	10	
4.0	100	41.47	49.80	45.90	45.72	38.83	50.37	56.30	48.41	40.15	50.08	50.79	47.07
AS	125	47.73	47.17	54.50	49.80	50.33	53.67	47.40	50.47	49.03	50.42	50.95	50.13
	150	48.47	52.33	51.37	50.72	48.93	49.80	53.5 7	50.77	48.70	51.07	52.47	50.74
M	ean	45.89	49.77	50.59	48.75	46.03	51.28	52.33	49.88	45.96	50.52	51.46	49.32
	100	50.63	52.60	52.90	52.04	50.83	49.57	56.33	52.24	50.73	51.08	54.62	52.14
$\mathbf{A}\mathbf{N}$	125	57.00	52.47	53.23	54.23	52.03	49.93	54.77	52.24	54.52	51.20	54.00	53.24
	150	51.80	52.83	52.80	52.48	49.37	47.50	51.23	49.37	50.58	50.17	52.02	50.92
M	ean	53.14	52.63	52.98	52.92	50.74	49.00	54.11	51.29	51.94	50.82	53.54	52.10
	100	45.23	53.47	52.23	50.31	49.50	51.70	51.67	50.96	47.37	52.58	51.95	50.63
CN	125	49.67	51.80	48.40	49.96	55.67	49.13	51.57	52.12	52.67	50.47	49.98	51.04
	150	48.07	49.67	56.67	51.47	54.33	55.53	51.33	53.73	51.20	52.60	54.00	52.60
M	ean	47.66	51.64	52.43	50.58	53.17	52.12	51.52	52.27	50.41	51.88	51.97	51.42
					\mathbf{N}	lean of	N rate						
	00	45.78	51.96	50.34	49.36	46.39	50.54	54.68	50.54	46.08	51.52	49.95	49.95
	25	51.47	50.48	52.04	51.33	52.68	50.91	51.24	51.61	52.07	50.69	51.64	51.47
	50	49.44	51.61	53.61	51.56	50.88	50.94	52.04	51.29	50.16	51.28	52.83	51.42
G. 1	Mean	48.80	51.35	52.00	50.75	49.98	50.80	52.66	51.15	49.44	51.07	52.33	50.95
L.S.D a	t 0.05: (A	: FYM;		B: N-Sc	ource;	C: N-	rate;	D: N-	splitting))			
A	NŠ	•			BC		0.039				ABD		0.0404
\mathbf{B}	0.0005	5			ABC		NS				CD		0.0012
\mathbf{AB}	0.0509)			D		0.000	5			ACD		NS
C	NS				\mathbf{AD}		NS				BCD		NS
\mathbf{AC}	NS				BD		0.015	3			ABC		0.0042

CN = Calcium nitrate

AN = Ammonium nitrate

Table 4. Cont.

7 8 1	. ~	•			
In.	\ \ 111	ስላ ይተካ	IPPIAG	tian	evetom
1.7	, wu	IACC	111124	шон	system

′N*	N	Without FYM				With FYM					Mean FYM			
Source	rate kg. fed ^{-l}	3	N splits	5	Mean	3	N splits 4	5	Mean	3	N splits 4	55	Mean	
A C	75	52.57	27.03	51.47	43.69	51.03	49.23	51.30	50.52	51.80	38.13	51.38	47.11	
AS	100	49.20	55.10	56.57	53.62	52.07	51.07	55.20	52.78	50.63	53.08	55.88	53.20	
	125	49.27	58.17	53.03	53.59	54.13	56.07	48.87	53.02	51.70	57.27	50.95	53.31	
Mean .		50.34	46.87	53.69	50.30	52.41	52.12	51.79	52.11	51.38	49.49	52.27	51.20	
	75	52.50	47.40	51.17	50.36	53.73	56.13	59.07	56.31	53.12	51.77	55.12	53.33	
AN	100	54.30	49.40	54.50	52.73	52.80	51.87	51.60	52.29	53.55	50.63	53.05	52.41	
3.4	125	53.17	47.17	56.23	52.19	53.10	52.57	51.90	52.52	53.13	94.87	54.07	52.36	
IVI	can	53.32	47.99	53.97	51.76	53.21	53.52	54.19	53.64	53.27	50.76	54.08	52.70	
CN	75 100	53.53	52.37	55.77	53.89	50.90	48.87	54.30	51.36	52.22	50.62	55.03	52.62	
CIN	100 125	52.40	44.07 56.40	52.57 51.03	49.68	53.17 54.38	52.07 48.00	54.77	53.33	52.78	48.07	53.67	51.51	
М		52.37 52.77	50.40	53.12	53.27 52.28	52.82	49.64	54.17 54.41	52.18 52.29	53.38 52.79	52.20 50.29	52.60 53.77	52.73 52.28	
Mean		34.11	50.74	20.14		Acan of		74.41	34.49	34.13	30.23	33.11	32.20	
		50.05	42.25	70 00				* 4 00				~~ ~	=4 0=	
75		52.87	42.27	52.80	49.31	51.89	51.41	54.89	52.73	52.38	46.84	53.84	51.02	
100		51.97	49.52	54.54	52.01	52.68	51.67	53.86	52.73	52.32	50.59	54.20	52.37	
125 G. Mean		51.60 52.14	54.01 48.60	53.43 53.59	53.02 51.45	53.87	52.21 51.76	51.64	52.78	52.74	53.11	52.54	52.80	
G. 1	vican	32.14	40.00	33,39	31,43	52.81	31.70	53.46	52.68	52.48	50.18	3.53	52.06	
L.S.D at 0.05: (A: FYM; B			B: N-So	urce;	C: N-ra	ate;	D: N-splitting)							
A	NS			BC		0.008	89			ABD		NS		
В	NS		ABC		0.049	0.0454			CD		0.0334			
AB	NS D		0.003	39	ACD			NS						
€.	NS	NS AD		NS		BCD			0.00	0.0057				
AC	NS			BD		NS				ABCD.		0.02	255	
ж. А	S = Amm	ΑN	= Amm	onium n	itrato	CN = i	Calcium	nitrate						

 \star : AS = Ammonium sulphate, AN = Ammonium nitrate

For nitrogen sources, the data indicated that ammonium nitrate application increased the 1000-grain weight by 2.9 and 0.3% as compared by ammonium sulphate and calcium nitrate, respectively.

Concerning N fertilization rate, the data indicated that increasing N rate from 75 to 100 and 125 kg N/fed⁻¹ increased the 1000-grain weight by 2.6% and 3.5%, respectively.

Regarding N splitting, the data indicated that using 5 splits increased the 1000-grain weight than 3 or 4 splits.

As a general trend, the obtained data indicated that increasing the effect of N application confirm the results obtained by Khalil (1979) Baker *et al.* (1983) Salem (1984), Comaa and Ghanem (1985) Adel-Latif and Tuuhamy (1986); Maha & Basiouny (1994).

Also, Sedan et al. (1975), Eid (1977); Abd All (1986), Gaber (1988), Sadik (1990); Abd El-Maaboud (1991); Sajo et al. (1992); and Moselhy (1995) reported increased value of 1000-grain weight due to splitting N.

For N carriers, the results agree with those obtained by Eid (1977) who mentioned that 1000-grain weight of wheat was significantly increased due to N additions as AS or U compared by AN.

Grains protein content Under sprinklers irrigation system

Data for grain protein yield are recorded in Table 5a. The grain protein yield ranged between 20.02 and 82.83 kg.fed⁻¹. The greatest value of protein was obtained by the application of 125 kg fed⁻¹ of calcium nitrate in 8 splits using FYM. On the other hand, the lowest value was obtained under application of 100 kg fed⁻¹ as ammonium sulphate in 6 splits without using FYM.

With regard to the effect of FYM application, the data showed that using FYM increased grain protein by 22.7%.

Studying the effect of nitrogen sources, the data indicated that application of ammonium nitrate increased the grain protein yield by 16.8% and 27.06% as compared by ammonium sulphate and calcium nitrate, respectively. Application of ammonium nitrate increased the protein yield by 8% as compared by calcium nitrate.

For clarifying to the effect of nitrogen fertilization rate, the data indicated that application rate of 125 kg N/fad increased grain protein by 7.7% and 107% as compared with the rates 100 and 150 kg.fed⁻¹, respectively.

Table 5. Grain protein yield (kg fed⁻¹) as influenced by application of FYM, inorganic `sources, N rates and No of N-splits.

(a) Sprinkler irrigation system N With FYM Mean FYM Without FYM N× N splits N splits N splits rate Mean Mean Mean Source kg. fed-1 10 10 10 296.1 174.12 278.87 100 125.1 254.7 250.6 210.1 223.1 303.1 274.1 273.33 242.11 AS 278.1 125 139.1 288.4 242.0 223.2 252.7 339.2 242.3 195.94 313.80 242.14 250.63 150 142.0 267.2 291.6 233.6 247.5 282.1 207.5 245.7 194.74 274.66 249.52 239.64 Mean 188.27 135.4 270.1 261.4 222.3 241.1 308.1 248.6 265.9 289.11 255.00 244.12 100 247.1 212.3 314.3 257.9 272.4 287.2 263.1 274.2 259.76 249.73 288.66 266.04 AN 125 237.1 193.8 386.0 272.3 344.3 515.8 346.0 402.7 290.73 355.77 366.03 337.51 150 191.0 181.9 222.1 198.4 267.1 438.3 212.8 306.1 229.05 310.14 217.47 252.22 242.8 292.6 327.7 259.84 Mean 225.1 196.0 307.5 414.4 274.0 305.21 290.72 285.26 148.3 269.7 203.01 231.90 100 247.8 194.4 196.8 257.7 216.0 335.4 264.92 233.28 CN 200.01 219.75 125 236.4 178.0 212.6 209.0 163.6 261.5 211.4 212.2 212.01 210.59 132.3 150 226.6 238.2 199.0 322.2 243.6 214.6 260.1 227,28 235.05 226.41 229.58 Mean 172.3 240.3 253.8 247.3 215.1 201.6 247.9 210.10 228.90 234.45 224,48 Mean of N rate 100 173.5 238.2 253.1 221.6 251.1 268.8 298.2 272.7 212.29 253.50 275.64 247.14 125 204.2 220.1 280.2 234.8 253.6 372.8 266.6 297.7 228.89 296.44 273.39 266.24 150 155.1 225.3 250.6 210.3 270.0 321.3 211.6 270.6 217.02 273.28 231.13 240.48 G. Mean 177.6 227.9 261.3 222.3 320.9 258.8 280.3 219.40 261.2 274.41 260.05 251.29 L.S.D at 0.05: (A: FYM; B: N-Source: C: N-rate: D: N-splitting) 0.0000BC 0.0000A ABD 0.0000В 0.0000**ABC** 0.0000CD 0.0005 AB 0.0013 D 0.0000ACD 0.0000 \mathbf{C} 0.0002 AD 0.0000BCD 0.0009 AC0.0000BD 0.0000 ABCD 0.0000

^{*:} AS = Ammonium sulphate,

AN = Ammonium nitrate

41	× 4	~	^		•	. •		
(h	1	VIII	ተልሶው	Irr	าฮา	tinn	CV	stem
14			1440	** *	124	****	J 7	~~~

N*	N N		Withou	ıt FYM			With	FYM			Mean		
	rate ຸ		N splits		Mean		N splits		Mean		N splits		Mean
Source	kg. fed ⁻¹	3	4	5		3	4	5	1,1Can	3	44	5	Witan
AS	75	322.5	230.1	321.3	291.3	548.0	575.6	483.9	535.8	435.3	402.9	402.9	413.6
	100	207.2	365.6	175.4	249.4	280.1	338.6	299.1	305.9	243.7	352.1	237.3	277.7
	125	336.2	284.5	350.2	323.6	355.0	385.6	415.8	385.4	345.6	335.1	383.0	354.6
Mean		288.6	293.4	282.3	288.1	394.4	433.2	399.6	409.1	341.6	363.4	341.0	348.6
	75	310.6	422.0	299.0	364.9	323.9	356.8	392.5	357.7	317.3	424.4	342.3	361.3
AN	100	239.2	375.9	448.1	354.4	326.4	223.1	380.1	309.9	282.8	299.6	414.1	332.2
	125	301.0	292.6	294.4	296.0	371.8	219.8	291.1	294.2	336.5	256.2	292.8	295.2
IV.	Iean	283.6	386.8	344.8	338.4	340.7	266.5	354.5	320.6	312.2	326.7	349.7	329.6
	75	421.4	241.3	315.5	326.1	178.3	356.5	384.0	306.3	299.9	298.9	349.8	316.2
CN	100	411.5	371.4	397.9	393.6	360.4	363.7	261.2	498.4	386.0	622.5	329.6	446.0
	125	333.8	453.3	285.9	357.6	550.5	335.4	580.8	488.9	492.2	394.4	433.3	423.3
N	Tean	388.9	355.3	333.1	359.1	363.1	521.8	408.6	431.2	376.0	438.6	370.9	395.2
Mean of N rate													
75 35		358.5	321.1	309.6	327.4	350.1	429.6	420.1	399.9	350.8	375.4	364.9	363.7
100		286.0	371.0	340.5	332.5	322.3	478.4	313.5	371.4	304.2	424.7	327.0	352.0
125		323.7	343.5	310.2	325.8	425.8	313.6	429.2	389.5	374.8	328.6	369.7	357.7
G. Mean		320.4	345.2	320.1	328.5	366.0	407.2	387.6	386.9	343.3	376.2	353.9	357.8
L.S.D	at 0.05: (A	A: FYM	[;	B : N	-Source	rce; C: N-rate; D: N-splitting)							
A 0.0006				BC		0.0000				A	BD	0.0089	
B 0.0051				AB		0.0089					$\overline{\mathbf{D}}$	0.0140	
AB 0.0033				D	NS					CD	0.0210		
C NS				AD	NS					ČD	0.0038		
AC NS				BD		Ñ	S				BCD	0.0000	
*: A	S = Ammon	AN	l = Amm	onium ı	nitrate	CN:	= Calciur	n nitrate					

Regarding the effect of nitrogen splits, the data showed that using 8 splits increased protein yield by 25.1% and 5.5% as compared with 6 splits and 10 splits, respectively. Using 10 splits increased the protein yield by 18.5% as compared with 6 splits.

Under surface irrigation system

Value for grain protein yield shown in Table 5b ranged between 28.08 and 92.93 kg.fed⁻¹. The greatest value was obtained by application of 125 kg fed⁻¹ in the form of calcium nitrate in 5 splits with using FYM, and the lowest one was obtained under application of 100 kg.fed⁻¹ as ammonium sulphate in 5 splits without using FYM.

Regarding the effect of FYM application, the data showed that using FYM increased grain protein yield by 37.5%.

Concerning the effect of nitrogen source, the data indicated that application of calcium nitrate increased the protein yield by 13.8% and 19.9% as compared with ammonium sulphate and ammonium nitrate, respectively. Application of ammonium sulphate increased protein yield by 5.4% as compared with ammonium nitrate.

Studying the effect of nitrogen fertilization rate, the data indicated that application rates of 100 kg fed⁻¹

gave that highest values that given by 75 or 125 kg N/fed⁻¹.

With regard to the effect of nitrogen splitting, the data showed that using 5 splits increased protein yield by 3.1% as compared with 3 splits and 4 splits increased protein by 9.6% and 6.3% as compared with 3 and 5 splits, respectively.

The results obtained in this experiment showing the effect of N levels are in agreement with those obtained by Russel (1973), Below et al. (1981), Moselhy (1995), Kotb (1998), and Menget et al. (2006). Comparing the different N carriers effect on the grain protein content, similar results were obtained by Hassan and El-Soliti (1973), Eid (1977), El-Baisary et al. (1982) and Nour et al. (1989) and Mostly (1995).

REFERENCES

Abd El-All, A.M. 1986. Effect of some herbicides on the yield of wheat M.Sc. Thesis. Fac. Of agric. Mansovra Univ. Egypt.

Abd El-Hameed, A.M. 2004. The influence of N & P fertilization on yield and mineral composition of wheat plants under foliar, application with zubc and ascorbic acid. Zagazig J. Agric. Res, 31 (6): 2795-2811.

- Abd El-Latif, L.I. and M.K. El-Tuhamy 1986. Effect of nitrogen fertilization level and seeding rates on growth and yield of wheat. Annals. Sci., Fact. Agric.; Aim Shams Univ.; 31 (1): 265-272.
- Abd El-Maaboud, M.S. 1991. Study on the effect of nitrogen fertilization on yield and yield attributes of wheat in calcareous soil M.Sc. Thesis, Fac. Agric. Ain Shams Univ. Egypt.
- Abd El-Maksoud M.F. 2002. Response of some wheat cultivars to bio-fertilizer and nitrogen fertilizer levels. Zagazig J. Agric. Res. 29 (3): 891-925.
- Abd El-Raovf, M.S.; M.S. El-Sayed; H.M. Gheth; H.M. Soliman and M.S. Imam 1986. Yield response of some Semi, dwarf wheat varieties to NPK levels, Pro, 2nd, Conf. Agro. Alex; Egypt, 1.603-617.
- Abd Galil A.A.; A.A. Ibrahim; A.H. Salem and A.H. Bassiouny 1980. Yield of some dwarf wheat as influenced by level of nitrogen and rate and method of seeding. Zagazig, J. Agric. Res., 7 (1): 177-226.
- Baker, M.N.; E.A. El-Gharieb and W. Kadry 1983. Effect of levels and application systems of Nfertilization on wheat production. Annals Agric. Sci. Moshtohor 20 (1): 15-23

- Basilious, S.J. 1992. Response of two wheat cultivars (Giza 164 and Sakha 69) to rates and splitting of nitrogen fertilizer. Assiut J. of Agric. Sci. 23 (2): 165-177.
- Below, F.E.; L.E. Christensen; A.J. Reed and R.H. Hageman 1981. Availability of reduced N and carbohydrates for ear development of maize. Plant physiology, 68: 1186-1190.
- Black, C.A. 1965. "Soil Plant Relation ship" Socond Printing, U.S.A.
- Chapman, H.D. and P.F. Pratt (1961). Methods of analysis for soils, plants and waters. Div. Agric. Sci., Univ. of Califoria, USA.
- Dawood. R.A. 1994. Effect of row spacing's and timing of nitrogen application on yield and yield components of wheat. Assiut J. of Agric. Sci. 26 (2): 420-431.
- Eid, M.A.M. 1977. The effect of N carrier on the response of wheat to P application. M.Sc. Thesis. Soil Sciences, Fac. of Agric. Zagazig Univ. Egypt.
- Eid, M.T.; M.R. Hamissa; A.Serry; M. Abdel Samie; El-Banna and S.Omar 1981. Efficiency of nitrogen fertilizer applied to wheat as affected by time of application. Agric. Res. Rev., 59 (4): 125-133.

- El-Bana, A.Y.A. and R.M. Aly 1993. Effect of nitrogen fertilization levels on yield attributes of some wheat cultivars (*Triticum aestivum* L.) in a newly cultivated sandy soil. Zag. J. Agric, Res.; 20 (6): 1739-1749.
- El-Ghareib, E.A. and El-Monoufi 1988. Effect of seeding rates and nitrogen fertilization levels on the productivity of Giza 157 Egypt. wheat cultivar. Annals. Sci; Fac. Agric. Ain Shams Univ. 32- (2): 1031-1044.
- El-Naggar, E.M. 1999. Efficiency use of Bio and chemical fertilizers on wheat. Ph. D. Thesis, Fac. of Agric. Mansoura Univ. Egypt.
- Foth, H.D 1984. Fundamentals of soil Scienc. 7th, ed John. Wiley and Sons, Inc. New York.
- Gaber, E.M.A. 1988. Effect of seed rate and nitrogen application on wheat yield. Ph. D. Thesis. Soil Sciences Fac. Of Agric. Zagazig Univ. Egypt.
- Gomaa, M.A. and S.A.I. Ghacm 1985. The response of four wheat cultivars to nitrogen and fertilon Gombi fertilization. Zagazig. J. Agric. Res. 12. (2): 305-325
- Jackson, M.L. 1973. "Soil chemical analysis" Prentice-Hall Inc. Englewood Cliffs, New Jersey, USA.

- Khalid A.F.R. 2003. Nitrogen nutrition of field corps grown in sandy soils. M.Sc. Thesis. Soil Science Dept. Suez Canal University
- Khalil, O.H.S; A.M. Khorshid; K.F. Hegazi and E.H. Ghanen 1979. Newlines of wheat and the response to nitrogen fertilization. Agric. Res. Rev., 57 (8): 67-75
- Kotb, M.T.A. 1998. Response of wheat to bio-fertilizer and in organic N and P levels. Agric. Sci. Man soura Univ. 12: 4067-4078.
- Lotfollahi, M.A.M., Alston and G.K. McDonald 1997. Effect of nitrogen fertilizer placement on grain protein concentration of wheat under different water regimes. Australian J. of Agricultvaral- research 48 (2): 241-250.
- Maha, M. Abd-Alla and A.H. Bassiouny 1994. Response of wheat cultivars to nitrogen fertilization Egypt. J. Appl. Sci., 9 (6): 838-852.
- Megahed, M.A.M. 1991. Effect of some agricultural treatments on wheat. Ph. D. Thesis. Fact. Agric., Zagazig. Univ.
- Mengel, K.; B. Hutsch, and Y. Kane 2006. Nitrogen fertilizer application rates on cereal crops according to available and organic soil nitrogen. Europe. J. Agronomy 24: 343-348.

Mikkelsen, D.S. 1987. Nitrogen budgets in flooded soils used for rice production plant and soil. 75: 455-472.

SECTION AND ADDRESS.

- Misra, B.N. and R. Prasad. 2000. Integrated nutrient management for sustained production in a rice-wheat cropping system. Acta Agronomica-Hungarica, 48: (3): 257-26.
- Moselhy, N.M.M. 1995. Raising wheat under desert conditions in Egypt. Ph.D. Thesis, Argon. Dept. Fac. of Agric.; Zagazig Univ.
- Mostafa M.M.; M.N.E. Khalil; A.A. Sheha; A.M. Selim and E.S.M.K., Selim 2004. Response of wheat to various N-application under different irrigation systems in sandy soils, Zagazig Agric. Res., 31 (6): 2841-2860.
- Nanwai, R.K. B.D., Sharm and K.D. Taneja. 1998. Role of organic and inorganic fertilizers for maximizing wheat (Triticum aestivum) yield in sandy loam soils. Crep. Research, Hisar 16 (2): 159-161.
- Nassar, K.E.M.; M.M. El-Shouny and E.M.K. Behiry 2004. Improving quantity and quality of wheat in salt effected soils. Zagazig J. Agric. Res, 31 (6): 2861-2883.

- Piper, C.S. 1950. Soil and plant analysis. Inter. Science Publishers Inc., New York USA.
- Richards, L.A. 1959. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook, No. 60, U.S. Salinity Laboratory Staff. U.S. Dept. Agric. Washington, DC. U.S.A.
- Russel, E.W. 1973. Soil conditions and plant growth 10th, Ed, Longman Group Lt., London.
- Saber. A.S.M. 1999. Effect of Row spacing and splitting of nitrogen on wheat under sandy soil conditions. M.Se. Thesis. Agronuny Dept, Fac. of Agric. Zagazig University
- Sadek. I.M. 1990. Effect of seeding rates and time of nitrogen application on growth, yield and quality of wheat. Ph. D. Thesis Fac. Of Agric. Cairo Univ. Egypt.
- Sajo, A.A.; D.H. Scarisbrik and A.G. Clewer 1992. Effect of rates and timing of nitrogen fertilizer on the grain protein content of wheat (*Triticum aestirum* L.), grown in two contrasting seasons in south east England. Journal of Agric. Sci. 118 (3): 265-269
- Salem, F.C., M.Y. Gebrail. M.O. Easa and M. Abd El-Warth 2004.

Raising the efficiency of nitrogen fertilization for wheat plants under salt affected soils by applying some soil amendments. Minufiya J. Agric. Res. 29 4: 1039-1073.

Salem, M.S. 1984. Integrative study on nitrogen and cupper fertilization on wheat. Annals Agric. Sci., Moshtohor, 29 (1): 213-217.

Samir. G.M. 2000. Fertilizer use efficancy of wheat as affected by microbial inoculation and soil conditions. M.Sc. Thesis, soil Science Dept., Mansoura University.

Shaban, K. A. and A.H. Abd El-Rhaman 2007. Effect of mineral

nitrogen rates and bio rertilization on some soil properties and wheat productivity at Sahl El-Tina Plain. Minufiya J. Agric. Res. 32, (3): 933-943.

Shaban, K.A. and Am. Helmy 2006. Response of wheat to mineral and Bio N-fertilization under saline conditions. Zagazig. J. Agric. Res. 33. (6): 1189-1205.

Zeidan, E.M.; A.A. Ibrahim and A.A. Assey 1975. Response of Mexican and Egyptian wheat cultivars to late fertilization with Urea. Zagazig J. Agric. Res, 1 (1): 109-115.

خدمة الأسمدة النتروجينية للقمح المروي بمياه ترعة السلام جنوب القتطرة شرق سيناء

صلاح السيد ابراهيم علي - احمد عفت احمد الشربينى صلاح محمود محمد دحدوح - مصطفي محمد مصطفي الصاوي قسم علوم الأراضي - كلية الزراعة - جامعة الزقازيق

أجريت تجربتان حقليتان خلال موسم ٢٠٠٥-٢٠٠٦ بمنطقة القنطرة شمرق بمحافظة شمال سيناء والتي تروي بمياه ترعة السلام لدراسة تأثير السماد البلدي ومصادر النتروجين ومعنل التسميد وتجزئته على محصول القش والحبوب للقمح وكذلك وزن ١٠٠٠ حبه ومحتوي النتروجين فيه وذلك تحت نظامي ري ، ري رش وري غمر.

وقد أشارت النتائج المتحصل عليها إلى النقاط التالية:

- ١) تأثر كل من الحبوب والقش ايجابيا باستخدام السماد البلدي في التجربتين.
- ۲) باستخدام سماد نترات الامونيوم بمعدل ۲۰ اكجم/فدان علي ۸ جرعات مـع اسـتخدام
 السماد البلدي زاد محصول الحبوب والقش تحت استخدام نظام الري بالرش.
 - ٣) وزن الـ ١٠٠٠ حبه زاد بزيادة معدل النتروجين واستخدام السماد البلدي والتجزئة
- ع) محتوي البروتين زاد بنسبة ۲۲٫۷٪ باستخدام السماد البلدي تحست السري بسالرش وينسبة ۳۷٫۵٪ تحت الري بالغمر.
- استخدام نترات الامونيوم بمعدل ١٢٥ كجم/فدان في ٨ جرعات رفع محتوي النتروجين تحت الري بالرش.
 - ٦) استخدام ٨ جرعات من نترات الكالسيوم زود محتوى النتروجين تحت الري بالغمر.