J. Agric. Sci. Mansoura Univ., 34 (4): 3263 - 3275, 2009

COMBINING ABILITY AND HETEROSIS STUDIES FOR YIELD AND ITS COMPONENTS IN OKRA (Abelmoschus esculentus (L.) MOENCH).

Rashwan, A.M.A.

Dept. of Hort. (Vegetable Crops), Fac. of Agric., South Valley Univ., Qena, Egypt.

ABSTRACT

The present investigation was carried out at South Valley University Experimental Farm during the two summer seasons of 2007 and 2008 using 8×8 half diallel cross. The objectives of this investigation were two study combining ability and heterosis of okra. Highly significant differences were found among parents and their F₁ hybrids for all the studied traits. Both general combining ability (GCA) and specific combining (SCA) variance were highly significant for all the studied traits. The mean squares for GCA were greater in magnitude than SCA value. Among parents, Balady and Pusa Sewani cvs, were the best combiner for total green fruit yield, number of branches, diameter at mid-green fruit fruit length and plant height traits; Iraqi and White Velvet cvs. for days to 50% flowering, White Velvet cv. for weight of green fruit; Pusa Sewani for number of green fruit. However, in specific combining ability study, the cross (Escandrany x Iraqi) and (White Velvet x Pusa Sewani) were the best for total green fruit yield, number of fruits/plant, number of branches/plant and plant height; (Escandrany x Pusa Sewani) and (Escandrany x Dot) for weight fruit and total green fruit yield, number of green fruit and number of branches; (Clemson Spineless x iragi), (Balady x Escandrany) and (Pusa Sewani x Iragi) for days to 50% flowering, diameter at mid-green fruit and weight of green fruit. Heterosis over mid-parent was found for total green fruit yield and its components.

INTRODUCTION

Okra (Abelmoschus esculentus (L.) Moench) is considered one of the most favorable vegetables in Egypt. It is grown as summer crop, primarily for the immature fruits which are used fresh, cannaed, frozen or in dry state. Okra fruit has high nutrition value. It contains protein, fats, carbohydrates, oil, mineral, fibers and vitamins (Watt and Merril, 1963).

Combining ability of the parents is becoming increasingly important in plant breeding, especially in hybrid production. It is useful in connection with the testing procedures in which it is desired to study and compare the performance of the line in hybrid combination. Information on the general and specific combining abilities will be helpful in the analysis and interpretation of the genetic basis of important traits. In okra studies on this aspect have been made by many workers [Nassar et al. (1983); Partap and Dhankhar (1983); Vijay and Manohar (1986), Poshiya (1986a); Jawili and Rasco (1990); Ali (1995); Ahmed (2001); Abbas (2006), Srivastava et al. (2008)].

Heterosis is a special genetic mechanism wherein the distant genotypes are brought together in a specific pattern to express their ability to make a dramatic shift in the magnitude of a particular trait. In okra, heterosis has been reported for yield and other yield related traits by Partap et al. (1981); Poshiya (1986b); Shukla et al. (1989); El-Gazar et al. (1988); Mohamed et al. (1994); Ahmed (2001); Dhankhar and Dhankhar (2001); Nandan Mehta (2007).

Hence, the present study was undertaken with a view to assess the combining ability of eight genetically divergent lines of okra in a diallel analysis.

MATERIALS AND METHODS

The present genetic study was carried out at the Experimental Farm of the Faculty of Agriculture, South Valley University, Qena Governorate, Egypt, during the summer season of 2007 and 2008. The soil type was clay loam.

Eight genotypes (Abelmoschus esculentus (L.) Moench), provided by Prof. Dr. A. M. Damarany were used as parents [inbreed line seeds (s_1)] in this investigation.

Table (1): The general characteristics of The Eight Parents of okra used

in The Present study .

N o.	Genotypes	Coloure of fruit	Lear Shane		Plant height
1	(P1) Balady	Dark green	Lobed	Eaely	Long
2	(P2) Esscandrany (Escand)	Green	Lobed	Medium	Medium
3	(P3)Clemson Spineless (Clm.s.)	Green	Very Lobed	medium	short_
	(P4) Emerald	Dark green	Palmately	medium	short
5	(P5) White Velvet (White V.)	Light green	Loped	medium	medium
6.	(p6) Pusa Sewani (Pusa S.)	Green	Loped	Eaely	Long _
7	(p7) Dot	Green	Semei- Loped	late	medium
8	(P8) Iraqi	Whit green	Loped	late	long

Source: Prof. Dr . A.M .Damarany ,Hort . Dept ., Faculty of Agric., South Valley Univ .

In 2007, March 10, the eight cultivates each presented by ten plants, were planted crossed with a diallel fashion without reciprocals.

In 2008, March 10, seeds of the 8 parents genotypes and The 28 F₁ hybrids were planted in the field and arranged in a randomized complete block design with three replications. Each replicate was represented by 28 plots of F₁ hybrids and 8 plots of parents. Each plot consisted of one row, 3 m. long and 0.7 m. wide. The seeds were planted in hill spaced 30 cm apart. Thinning to one plant/hill was done after 25 days from sowining.

The normal agriculture practice of irrigation, fertilization, weed and pest control were practiced as recommended for okra production. Harvesting of green fruits took place during the period May 10–July 20 every 2 days-intervals.

Data were taken on 5 to 10 plants and on 10 fruits every two days.

Measurements:

The following characters were studied:

1- Days to flowering: recorded as number of days from planting to 50% of the plants that were in bloom.

- 2- Plant height in cm: was measured from the cotyledonary to the terminal bud of the main stem at the end of the picking season.
- 3- Number of branches per plant: counted also at the end of the picking season.
- 4- Number of green fruits per plant: total number of edible fruits that were picked per plant during the growing season.
- 5- Total green fruit yield (ton/feddan): weight of all edible fruits that picked (harvested) all over the growing season.
- 6- fruit length (cm).
- 7- Fruit diameter (cm): measured at mid-green fruit.
- 8- Weight of green fruits per plant (g).

Statistical procedure:

General and specific combining ability:

Statistical analysis was made on an entry mean basis. The variation among parents and F_1 crosses was partitioned into general and specific combining ability as illustrated by Griffing (1956), Method (2), Model 1. Heterosis %:

The heterosis % expressed by the F_1 hybrid and mid parent (\overline{MP}) was calculated according to Singh and Khanna (1975) as follows:

The Heterosis % =
$$\frac{\overline{F} - \overline{MP}}{\overline{MP}} \times 100$$

Where \overline{MP} (mid parent) = $\frac{\overline{P} + \overline{P}}{2}$

RESULTS AND DISCUSSION

1 - F₁ performance:

The analysis of variance among the different entries of the F₁ diallel crosses of studied traits revealed highly significant differences among genotypes as shown in table (2).

Table (2). The analysis of variance of all studied characters among the different entries of diallel in the growing summer season of 2008.

Source of variance	d.f	Days to	Plant height (cm)	Number of branches/ plant	Number of green fruit/ plant	Total green fruit yield	Fruit length (cm)	Fruit diameter (cm)	Weight of fruit/ plant (g)
Replication	2	0.444	C.391	0.009	0.023	0.011	0.006	0.001	0.014
Genotypes	35	96.87**	474.8E**	2.22**	45.96**	1.82**	20.95**	0.36**	3.15**
Error	70	0.616	0.3045	0.0180	0.0234	0.0273	0.005	0.0032	0.0052
GCA	7	431.352**	2014.238	7.929**	167.458**	5.638**	76.522**	1.340**	9.563**
SCA	28	13.256**	90.009**	0.794**	15.587**	0.869**	7.066**	0.115	1.550**
GCA/SCA	-	32.5:1	22.37:1	9.98:1	10.74:1	6.48:1	10.82:1	11.55:1	6.16:1
Error	70	0.6160	0.3045	0.018	0.0234	0.0273	0.005	0.0032	0.0052

* and ** are significant at 0.05 and 0.01 level of probability, respectively.

Days to flowering: The results in Table (3) showed that the average number of days to 50% flowering appearance for parents ranged from 42.33 days for P_1 (Balady) to 70.33 days for P8 (Iraqi). This is in agreement with Ahmed (2001) who found that parental mean values for this trait ranged from 41.33 to 71.33 day, with a grand mean. The average of F_1 crosses ranged from 47.33 days for the cross P_1xP_6 (Balady x Pusa S.) to 65 days for the cross P_3xP_8 (Clms.S. x Iraqi). These are in accordance with the findings of Jordan-Molero (1986), Damarany and Farag (1994), Ali (1995) and Abbas (2006).

Table (3): Mean performance of parents and hybrids in the growing summer season of 2008.

Summer season or 2008. Dave to Bland Number Number Total South South											
Genotypes	Days to 50% flowering	Plant height (cm)	of branches / plant	of green	green fruit yield (ton/fed)	Fruit length (cm)	Fruit diameter (cm)	Weight of fruit(g)			
Parents							<u> </u>				
P ₁	42.33	81.53	3.61	11.23	7.250	5.80	2.30	4.70			
P ₂	57.67	62.70	1.50	7.40	5.717	6.40	1.90	6.01			
P ₃	57.00	52.80	2.40	10.50	6.317	10.50	1.80	5.45			
P4	51.33	50.03	2.31	15.77	6.880	11.50	1.35	6.53			
P ₅	57.33	78.37	1.90	10.53	5.900	10.21	1.20	8.33			
P ₆	48.00	88.63	3.05	18.77	7.233	8.23	1.75_	5.75			
P,	60.00	57.73	4.11	11.23	7.017	4.53	1.46	5.45			
P.	70.33	84.93	3.06	9.50	6.050	5.45	2.06	5.51			
Means	55.49	69.59	2.74	11.86	6.54	7.82	1.73	6.09			
L.S.D 0.05	1.41	0.93	0.36	0.50	0.43	0.16	0.11	0.14			
P ₁ xP ₂	80.00	74.77	2.17	9.30	6.450	7.02	1.92	6.65			
P _{1x} P ₃	54.00	68.53	2.78	11.47	7.500	11.35	1.83	5.85			
P _{1x} P ₄	51.00	65.32	2.78	17.30	7.900	11.78	1.60	6.81			
P _{1x} P ₅	55.00	79.53	2.09	11.43	6.300	10.35	1.45	8.83			
P _{1x} P ₄	47.33	84.73	3.41	21.30	8.383	8.35	1.81	5.93			
P _{1x} P ₇	55.67	61.80	4.83	12.40	7.700	4.65	1.50	5.76			
P₁×P₃	61.67	82.80	3.73	10.40	6.750	5.63	2.15	5.80			
P _{2x} P ₃	56.67	56.77	2.60	10.77	7.117	11.66	1.85	5.55			
P _{2x} P ₄	55.33	54.60	2.46	16.80	7.400	11.71	1.46	6.73			
$P_{2i}P_{6}$	57.33	80.97	2.13	11.23	6.233	10,35	1.25	8.51_			
P _{2x} P ₆	53.33	72.30	3.36	20.10	8.200	8.30	1.83	5.80_			
P _{2x} P ₇	58.67	60.17	4.58	11.67	7.433	4.70	1.56	6,85			
P₂xP₁	63.67	81.21	3.41	10.00	6.650	5.65	2.25	5.60			
P _{3x} P ₄	54.33	52.90	2.65	18.30	7.200	11.80	1.56	6.75			
P _{3x} P ₅	58.00	75.13	2.27	10.57	6.157	10.40	1.43	8.81			
P ₃₇ P ₆	50.00	85.83	3.61	20.43	8.617	8.50	1.86	5.85			
$P_{3x}P_7$	56.33	57.87	4.40	11.33	7.633	4.63	1.58	6.45			
P _{3x} P ₁	65.00	77.60	3.51	10.63	8.467	5.65	2.31	5.73			
P _{4x} P ₅	54.00	67.63	2.11	12.33	6.150	10.65	1.50	8.65			
P ₄₁ P ₄	48.67	70.60	3.35	21.23	8.150	8.55	1.78	5.75			
Ρ ₄₃ Ρ ₇	55.00	55.53	4.31	13.23	7.300	4.66	1.60	6.80			
P4. P	60.00	76.53	3.51	11.37	6.200	5.69	2.43	5.88			
P _{sx} P ₆	50.67	91.70	3.25	20.27	7.900	8.61	1.85	6.11			
P _{5x} P ₇	58.00	59.67	4.30	11.47	7.600	4.80	1.35	6.75			
P _{5x} P ₄	63.00	83.60	3.40	10.17	6.400	5.75	1.95	5.60			
P ₆₁ P ₇	51.33	65.63	4.65	13.47	8.350	4.60	1.73	6.80			
P _{6x} P ₆	61.67	92.87	3.61	12.33	7.283	5.65	2.53	5.78			
$P_{7x}P_{4}$	64.33	87.20	3.71	10.53	6.850	5.78	2.37	5.88			
Mean	56.24	72.27	3.32	13.63	7.22	7.75	1.79	6.54			
L.S.D 0.05	1.28	0.89	0.22	0.25	0.27	0.12	0.09	0.12			

Plant height (cm): Mean plant height of the parents ranged from 50.03 cm P_4 (Emerald) to 88.63 cm for P_6 (Pusa S.) and from 52.90 cm for P_3xP_4 cross (Clms.S. x Emerald) to 92.67 cm P_6xP_8 (Pusa S. x Iraqi). Similar results in

okra were reported by Rao et al. (1989), Ahmed (2001), Khan et al. (2002), Abbas (2006).

Number of branches: The mean of the parents ranged from 1.5 for P_2 (Escandrany) to 4.12 for P_7 (Dot) and her too from 2.09 for P_1xP_5 (Balady x White Velvet) to 4.83 for P_1xP_7 (Balady x Dot). These results are in same line with Alok Nandi (1990), Ali (1995), Abbas (2001) and Indu Rani *et al.* (2003).

Number of green fruits/plant: the results in Table (3) showed that the mean number of green fruits/plant of the parents ranged from 7.4 for P₂ (Escandrany) to 18.77 P₆ (Pusa S.) and ranged from 9.3 for P₁xP₂ (Balady x Escandrany) to 21.30 for P₁xP₆ (Balady x Pusa S.). These results are in agreement with the findings of Damarany and Farag (1994). Ali (1995), Ahmed (2001) and Indu Rani *et al.* (2003).

Total green fruit yield (ton/feddan): Mean total green fruit yield of the parents ranged from 5.71 for P_2 (Escandrany) to 7.25 for P_1 (Balady) and from 6.15 for P_4xP_5 (Emerald x White Velvet) to 8.62 for P_3xP_6 (Clm.S. x Pusa S.). Similar results were obtained by Ali (1996), Ahmed (2001), Abbas (2001), Indu Rani *et al.* (2003) and Abbas (2006).

Fruit length (cm): Regarding green fruit length, its ranged from 4.53 (cm) to 11.5 (cm) for parents and ranged from 4.6 (cm) to 11.8 (cm) for F₁ hybrids. These are in accordance with the findings of Ahmed (2001), Khan *et al.* (2002), Indu Rani *et al.* (2003) and Adeniji and Kehinde (2007).

Fruit diameter (cm): The range of diameter green fruit varied from 1.2 cm for P_3 (White Velvet) to 2.3 cm for P_1 (Balady) and ranged from 1.25 cm for P_2xP_5 to 2.53 cm for P_6xP_8 among parents and hybrids, respectively. These results have been promoted by Ahmed (2001), Indu Rain *et al.* (2003) and Adeniji and Kehinde (2007).

Weight of green fruit(g): The mean weight of green fruits (gm) in Table 3 ranged from 4.7 (gm) for P_1 (Balady) to 8.33 for P_5 (White Velvet) and ranged 5.55 (gm) for P_2xP_3 (Escand, X Clm.S.) to 8.83 for P_1xP_5 (Balady x White Velvet). Similar results were reported by Jordan-Molero (1986), Ali (1996), Ahmed (2001), Khan *et al.* (2002) and Abbas (2006).

II- General and specific combining ability:

The variance due to GCA and SCA (Table 2) were significant indicating both additive and non-additive types of gene action in the inheritance of all studied traits. The obtained results are in line with those obtained by Ali (1995), Ahmed (2001) and Abbas (2006). The estimates of the GCA effects of the eight parents and the SCA effects of F_1 hybrids are presented in Table (4) and (5), prospectively.

Days to flowering: The parents P_2 , P_7 , P_8 and P_5 (Table 4) exhibited high significant positive GCA effect of 7.04, 1.43, 1.33 and 0.46 Abbas (2006) reported similar results while the hybrids P_1xP_2 , P_9xP_8 , P_1xP_5 , P_1xP_7 , P_1xP_8 and P_3xP_8 showed significant positive SCA effect of 6.01, 2.74, 1.97, 1.77 and 1.14 (Table 5) respectively. Thus, the cross P_1xP_2 was the best specific combination closely followed by P_6xP_8 and P_1xP_5 . These results are in harmony with those obtained by Nassar *et al.* (1983), Poshiya (1986a), Ali (1996), Ahmed (2001) and Abbas (2006).

Rashwan, A.M.A.

Plant height (cm): However, since the P8 had the highest GCA effect of 10.63 among the parents thus it was general combiner. The highest specific combination was P_7xP_8 (10.06) followed by P_3xP_6 (11.07) and P_5xP_6 (5.47). These results are in same with those reported by Partap and Dhankhar (1983), Rajani *et al.* (2001) and Srivastava *et al.* (2008).

Table (4). Estimates of general combining GCA effects of parents for all

studied traits in the growing summer season 2008.

Genotypes	(P1)	(P2)	(P3)	(P4)	(P5)	(P6)	(P7)	(P8)	S.	Ē.
Characters	, ,	, r	Clm.S.	Emerald		PusaS.	Dot	Îraqi	(g _i)	(gi-ga)
Days to flowering	-3.667**	1.433**	0.233	-2.500**	0.467**	-4.700**	1.333**	7.400**	0.134	0.202
Plant height (cm)	3.547**	-3.891**	-6.458**	-10.190**	4.989**	9,565	-8.175**	10 639**	0.094	0.142
Number of branches	0.029**	-0.502**	-0.212**	-0.293**	-0.539**	0.261**	1.027**	0.229**	0.002	0.034
Number of green	-0.313**	-1.453**	-0.469**	2.291**	-1.066**	4.747**	-1.263**	-2.476**	0.026	0.040
fruit/plant	L	_			 		L i		1 :	
Total green fruit yield	0 182**	-0.274""	-0.034	0.040	-0.512**	0.769**	0.324**	-0.496**	0.028	0.042
(ton/fed.)										
Fruit length (cm)	0.077**	0.223**	1.503**	1.788**	1.137**	-0.094**	-2.708**	-1.926**	0.014	0.020
Fruit diameter (cm)	0.089**	-0.006	0.006	-0.135	0.302**			*		* * * *
Weight of green fruits (g)	-0.197**	-0.028	-0.212**	0.243**	1.193**	-0.448**	0.118**	-0.670**	0.014	0.017

^{*} and ** are significant at 0.05 and 0.01 level of probability, respectively.

Table (5). Specific combining ability for all studied traits in Okra in the

growing summer season 2008.

Characters			Number		Total			
	Days to	Plant	of	Number	green'	Fruit	Fruit	Weight
	50%	height	branches/	of green	fruit	length	diameter	of fruit
Crosses	flowering	(cm)	plant	fruit/plant		(cm)	(cm)	(g) [
			1 '	,	(ton/fed.)			
P ₁ xP ₂	[6.011**]	_3.435**	-0.549**	-2_179**	_0.531 **	-1.048**	0.066*	0.429
P _{1x} P ₃	1.211	-0.204	-0.229**	-0.995**	0.278**	1.995**	-0.036	-0.188**
P ₁₈ P ₄	0.944	0.284	-0.149"	2.078**	0.604**	2.143**	-0.131**	0.324**
P1.P5	1.978**	-0.578*	-0.592**	0.432**	-0.444**	1.361**	-0.115**	1.390**
P _{1x} P ₆	-0.522	-0.054	-0.069	3.621**	_0.359**	0.592**	-0_121**	0.132**
P _{1x} P ₇	1.778**	-5.248**	0.581**	0.731**	0.120	-0.494**	-0.230	0.339**
P _{1x} P ₅	1.711**	-3.062**	0.280**	-0.055	-0.010	0.292	-0.124**	0.220**
$P_{2x}P_{3}$	-1.222	_4_533**	0.118	-0.055	0.351**	2.166**	0.072	-0.656
P _{2x} P ₄	0.178	-2.995**	0.066	2.718**	0.561	1.927**	-0.170**	0.072
PzxPs	-0.789	_8.193**	-0.021	0.508**	0.054	1.214**	-0.220**	0.905**
P _{2x} P ₆	0.378	-5.050**	0.412**	3.561**	0.632**	0.395**	-0.009	-0.170**
$P_{2x}P_7$	-0.322	0.557	0.862**	1.138**	0.310**	-0.591**	-0.075*	0.314**
P _{2x} P ₆	-1.389*	2.783**	0.494**	0.685**	0.347**	0.422**	0.064	-0.148**
$P_{1x}P_4$	0.378	-2.101**	-0.041	3.235**	0.120	0.734**	-0.082*	0.272
$P_{1x}P_5$	1.078	4.954**	-0.171	-1 142	-0.371**	-0.015	-0.049	1.383**
P _{1x} P ₆	-1.756**	<u> 11.077**</u>	0.372	2.911**	0.808**	-0.681**	0.005	0.064
P _{3x} P ₇	-1.456**	0.851**	0.389**	-0.179*	0.270**	-1.937**	-0.094	0.097*
P _{3x} P ₁	1,144**	1.770**	0.304**	0.335**	-0.077	-1.702**	0.376**	0.169
P _{4z} P ₅	-0.189	1.159**	-0.247**	-2.135	-0.451**	-0.051	0.159**	0.767**
P _{4x} P ₆	-0.356	0.451	0.186	0.951	0.268**	-0.920**	0.067*	-0.491**
P _{4x} P ₇	-0.056	2.222**	0.386	1.039**	0.137	-2 189**	0.094**	-0.008
P _{4x} P ₃	1.122*	4.408**	0.385	-1.692	-0.417**	-1.944***	0.376**	-0.136**
P _{5x} P ₆	-1.322*	5.471**	0.333**	3.341""	0.570**	-0.202**	0.103**	-1.075**
P _{5x} P ₇	-0.022	8.823	0.616**	0.551	0.715**	-1.405	0.011	-1.008**
P _{3x} P ₃	1.089*	-3.703**	0.515**	0.465**	0.335**	-1.236**	0.059	-1.370**
P _{6x} P ₇	-1.522**	-7.433	0.166*	3.262	0.184*	-0.374	0.022	0.684
P ₆₇ P ₆	2.744**	0.787*	0.069	-3.182**	-0.063	-0.102*	0.270**	0.455**
P _{7x} P	-0.622	13.060**	0.835**	1.028	-0.051	2.642	0.315	-0.011
SE (Sii)	0.496	0.288	0.07	0.080	0.086	0.038	0.030	0.037
SE (S _{II} -S _{Ik})	0.607	0.427	0.103	0.180	0.128	0.057	0.043	0.055
$SE(S_{ii}-S_{ii})$	0.573	0.403	0.097	0.112	0.120	0.053	0.041	0:052
* and ** sign	ificantly a	t 0.05 and	1 0 01 level	of probab	ility roen	ectivaly		

and ** significantly at 0.05 and 0.01 level of probability, respectively.

Number of branches: Parents, P_7 (1.02), P_6 (0.26) and P_8 (0.22) showed highly significant positive GCA effects. The best specific combination was displayed by P_2xP_7 (0.86) followed by P_7xP_8 (0.73) and P_5xP_7 (0.61) Table 5. Vijay and Manohar (1986), Ali (1995), Rajani *et al.* (2001) and Abbas (2001) reported that GCA and SCA effects were highly significant.

Number of green fruit/plant: Among the parents, P_6 (4.74) and P_4 (2.29) exhibited significant positive GCA effect while hybrids P_1xP_6 (3.62), P_2xP_6 (3.56), P_5xP_6 (3.34) and P_3xP_6 showed high significant positive SCA effect. Similar results were obtained by Partap and Dhankhar (1983), Shukla *et al.* (1989), Ahmed (2001) and Srivastava *et al.* (2008).

Total green fruit yield (ton/feddan): Highly significant positive GCA effect observed among parents, P_6 (0.76), P_7 (0.32) and P_1 (0.18). Manifested the best specific combination were the $P_5 x P_7$ (0.72) followed by $P_2 x P_6$ (0.63) and $P_1 x P_4$ (0.60). These results are in agreement with those reported by Ali (1996), Poshiya (1986a), Ahmed (2001), Abbas (2006) and Srivastava *et al.* (2008).

Fruit length (cm): Three parents P_4 , P_3 and P_5 showed highly significant positive GCA effect of 1.78, 1.50 and 1.13. The hybrids P_7xP_8 , P_2xP_3 and P_1xP_4 showed highly significant positive SCA effect of 2.64, 2.16 and 2.14, respectively. Similar results were obtained by Nassar *et al.* (1983), Abbas (2001) and Adeniji and Kehinde (2007).

Fruit diameter (cm): Among the parents, P₈ had the best combiner with the highest GCA effect of (0.41) while the hybrids P₇xP₈, P₄xP₈, P₃xP₈ and P₈xP₈ showed highly significant positive SCA effect of 0.31, 0.37, 0.37 and 0.27, respectively. These results are in agreement with those reported by Vijay and Manohar (1986), Ahmed (2001), Abbas (2001) and Adeniji and Kehinde (2007).

Weight of green fruits (g): Three parents, P_5 . P_6 and P_4 showed highly significant positive GCA effect of 1.19, 0.44 and 0.24. The bet specific combination were P_1xP_5 (1.39) followed by P_1xP_5 (1.39), P_3xP_5 (1.38) and P_2xP_5 (0.90). These results are in harmony with those reported by Partap and Dhankhar (1983), Ahmed (2001) and Abbas (2006).

III- Heterosis %:

Heterosis % value expressed as the percentage deviation from F_1 mean performance from mid-parent in the analysis are presented in Table 6. **Days to flowering:** The heterosis % value ranged from (-4.94%) to (20.0%). The maximum heterosis was observed in cross "(Pusa S. x Dot)" (-4.94%), followed by the cross "Clm.S. x Pusa S." (-4.76%) and "Clm.S. x Dot" (-3.71%), while the heterosis % of cross "Balady x Escand." gave the lowest number of days to 50% flowering (20%). These results are in same line with those reported by El-Gazar *et al.* (1988), Shukla *et al.* (1989) and Ahmed (2001).

Plant height (cm): Heterosis above mid-parent ranged from (22.24%) to (0.08%). The maximum heterosis being in the cross "Dot x Iraqi" (22.24%) followed by "Clm.S. x Pusa S." (-12.31), while the heterosis of cross P₅xP₇ gave the lowest value (-12.31%). Poshya (1986b), Mohamed *et al.* (1994) and Abbas (2006) also reported similar results.

Table (6). Estimate of heterosis based on deviation from the respective mid-parent (\overline{MP}) of 28 F₁ crosses for all studied traits in summer 2008 season.

	Heterosis % ($\overline{ m MP}$)										
Entries and comparisons	Days to 50% flowering	Plant height (cm)	Number of branches/ plant	Number of green fruit/plant	Total green fruit yield ton/fed	Fruit length (cm)	Fruit diameter (cm)	Weight of fruit/ plant (g)			
P ₁ xP ₂	20.00	3.67	-15.12	-0.21	-0.64	15,19	-8.23	24.06			
P _{1x} P ₃	8.73	2.02	-7.54	5.61	10.62	39.26	-10.39	15.38			
$P_{1x}P_4$	8.90	-0.69	-5. 9 7	28.14	11.89	31.56	-12.56	21.29			
P _{1x} P ₅	10.37	-0.63	-0.24	5.05	-4.11	29.21	-17.14	35.76			
$P_{1x}P_6$	4,81	-0.41	2.61	42.0	15.74	18.99	1.04	13.65			
P,,P,	8.79	-11.25	25.20	10.41	7.99	-10.05	-20.21	21.49			
P _{1x} P ₆	9.81	-0.51	11.76	0.38	1.50	0.05	-1.05	13.50			
P _{2x} P ₃	-1,16	-1.69	33.33	20.33	18.28	38.07	-0.18	-3.14			
P _{2x} P ₄	1.52	-3.12	29.16	45.07	17.64	30,87	-10.00	7.33			
P _{2×} P ₅	-0.29	14.78	25.47	25.33	7.28	24.54	-19.35	18.78_			
P _{2x} P ₆	0 94	-4.44	47.67	53.66	26.73	16.12	0.16	-1.36			
P _{2x} P ₇	-0.28	-0.08	63.09	25.34	16.82	14.07	-7.14	9.95			
P _{2x} P ₃	-0.51	10 01	49.86	18.93	13.09	-4.72	13.63	-2.77			
P _{3x} P ₄	0.30	2.88	12.28	13.14	9.25	7.27	-0.82	12.68			
$P_{3x}P_5$	1.46	14.54	5.72	0.57	0.76	0.38	-4.46	27.96			
P _{3x} P ₆	-4.76	21.36	32.97	39.64	27.28	-9.28	4.49	4.46			
P _{3x} P ₇	-3.71	4.70	35.38	4.32	14 48	-38,39	-3.47	8.40			
P ₃ ,P ₃	2.10	12.67	28.35	6.30	4.64	-29.02	19.43	4 61			
$P_{4x}P_5$	-0.6C	5.34	0.33	-6 23	-3.75	-1.84	17.18	16.41			
P4xP6	-1.33	1.83	25.00	22 92	15.43	-13.28	14.83	-6.35			
$P_{4x}P_7$	-1 20	3.06	34.06	₿.60	5.18	-41.80	13.47	4.77			
$P_{4x}P_{4}$	-1.09	12.74	30.74	-9.97	4.02	-32.78	42.26	-9.76			
P _{5x} P ₆	-3.79	9,54	31.57	38.36	20.24	-6 54	12.24	-13.11			
P _{5x} P ₇	-1.13	-12 31	42.85	5.42	17.82	-34,87	1.50	-8.65			
P _{5*} P ₈	- 30	2.38	37.09	1.49	7 20	-26.56	19.63	-19.07			
$P_{6x}P_7$	-4 94	-10.31	29.88	-10.20	17.11	-27,89	7.45	11,47			
P _{6x} P ₈	4 24	6.76	18.20	-12.73	9.68	-17.35	32.46	266			
P,xP,	1.29	22.24	3.55	1.54	4,90	15.38	34.65	-1.62			
Maxi. value	20.00	22.24	63.09	53.66	27.28	39.26	42.28	35.38			
Mini, value	-4.94	-12.31	-15.12	-12.73	-4.11	-41,80	-19.35	-19.07			

Number of branches: The variation in heterosis % ranged from (-15.12%) to (63.09%). The maximum was observed in cross "Escand. x Dot" (63.09%) followed by "Escand. x Iraqi" (49.86) and "Escand. x Pusa S." (47.67), while the heterosis % of "Cross Salady x Escand." gave the lowest value (-15.12). These are in accordance with the finding of Partap et al. (1981), Shukla et al. (1989) and Ahmed (2001).

Number of green fruit/plant: The results in Table 6 showed that the heterosis % varied from (-12.73%) to (53.66%). The maximum heterosis % value being in the cross "Escand. Pusa S." (53.66) followed by "Escand. X Emerald" (45.07%) and "Balady x Pusa S." (42.00%), while the heterosis of % cross "P6xP8" gave the lowest value (-12.73%). Ahmed (2001) reported similar results.

Total green fruit yield: Heterosis % above mid-parent ranged from (-4.11%) to (27.28%). The maximum heterosis was observed in cross "Clm.S. x Pusa S." (27.28%) followed by "Escand. x Pusa S." (26.73%) and "White Velvet x Pusa S." (20.24%), while the heterosis of cross "Balady x White Velvet" gave the lowest value (-4.11%). Similar results have been obtained by Mohamed et al. (1994), Dhankhar and Dhankhar (2001) and Nandan-Mehta et al. (2007).

Fruit length (cm): The range of green fruit length varied from (-41.8%) to (39.26%). The maximum heterosis % being in the cross "Balady x Clm.S." (39.26% followed by "Escand. x Clm.S." (38.07%) and "Balady x Emerald" (31.56%), while the heterosis of cross "P₄xP₇" gave the lowest value (-41.8%). These are in accordance with the findings of Poshiya (1986b), Shukla *et al.* (1989) and Nandan-Mehta *et al.* (2007).

Fruit diameter (cm): The heterosis % value ranged from (-19.35%) to (42.28%). The maximum heterosis was observed in cross "Emerald x traqi" (42.28%) followed by "Dot x traqi" (34.65) and "Pusa S. x traqi" (32.46), while the heterosis of cross "Escand. x White Velvet" gave the lowest value (-19.35). These results are in harmony with those obtained by Ahmed (2001) and Abbas (2006).

Weight of green fruits/plant (g): Results in (Table 6) showed that heterosis % over mid-parent ranged from (-19.07%) to (35.38%). The maximum heterosis % was observed in cross "Balady x Clm.S." (35.38%) followed by "Clm.S. x White Velvet" (27.96%) and "Balady x Escand." (24.06%), while the heterosis % of cross "White Velvet x Iraqi" gave the lowest value (-19.07%). These are in agreement with the findings of El-Gazar et al. (1988), Mohamed et al. (1994), Abbas (2006) and Nandan-Mohta et al. (2007).

Conclusions

- 1- Balady and Pusa Sewani cvs. Were good general combiners for total fruit yield (ton/fed), number of branches/plant, pant height (cm) and green fruit diameter (cm). These parents Could be used in breeding program in different ways.
- 2- The Cross (White Valvet × Pusa Sawani) Showed high Performance for total fruit yield ton/fed, number of Fruit/Plant, number of branches/plant, plant height and Could be used in Practical Plant breeding.
- 3- The F₁ (Clemson Spineless × Pusa Sewani) exhibited The maximum heterosis % over mid parent for Fruit yield (8.62 ton/Fed. This F₁ can be consider promising cross for exploition in hybrid Production.

REFERENCES

- Abbas, H.S., 2001. A study of genetic variation in some characters of okra (Abelmoschus esculentus (L.) Moench). M.Sc. Thesis, Assiut Univ., Egypt.
- Abbas, H.S., 2006. Genetic improvement of okra (Abelmoschus esculentus (L.) Moench). Ph.D. Thesis, Assiut Univ., Egypt.
- Adeniji, O.T. and O.B. Kehinde, 2007. Combining ability and genetics components for length and width in west African Okra (Abelmoschus Cailei (A. Chev) Stevels. Jour. Of Agro. 6(1): 131-136.
- Ahmed, N.A.A., 2001. Genetic improvement of yield and some quality characteristics in "Balady" cultivar of okra (*Abelmoschus esculentus* (L.) Moench). Ph.D. Thesis, Assiut Univ., Egypt.
- Ali, M.M., 1995. Genetic studies in okra (Abelmoschus esculentus (L.) Moench). M.Sc. Thesis, Assiut Univ., Egypt.
- Alok Nandi, 1990. Performance of some okra varieties in the north eastern Ghat Zone of Orissa. Environment and Ecology 8 (1B) 471-473. (C.F. Hort. Abst. 66, 2140).
- Damarany, A.M. and I.A. Farag. 1994. An evaluation of growth, yield and quality of some okra cultivars. Assiut J. Agric. Sci., 25: 57-70.
- Dhankhar, B.S. and S.K. Dhankhar, 2001. Heterosis and combining ability studies for some economic characters in okra. Haryana Journal of Horticultural Sciences 30 (3-4): 230-233.
- El-Gazar, T.M., A.H. Hassan, Z.A. Kosba and S.H. El-Askar, 1988. Heterosis and nature of gene action of quantitative traits in okra (*Hibiscus esculentus* L.). J. Agric. Sci., Mansoura Univ. 13: 1763-1775.
- Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing system. Aust. J. Bio. Sci., 9: 463-493.
- Indu Rani, C., D. Veeraragavathathm and Muthuvel. 2003. Performance of parents and hybrids of okra (Abelmoschus esculentus (L.) Moench). Madras Agric. J. 90 (4-6): 322-325.
- Jawili, M.E.E. and E.T. JR Rasco. 1990. Combining ability, heterosis and correlation among plant and yield characters in okra (*Abelmoschus* esculentus (L.) Moench). Philippine Agriculturst 73 (1): 75-88. (C.F. Plant Bred. Abst. 62, 764).
- Jordan-Molero, F.L., 1986. Behavior of six okra Abelmoschus esculentus (L.) Moench, variaties as a vegetable and as a grain. Journal of Agriculture of the University of Puerto Rico (C.F. Plant, Breed, Abst. 56, 10029).
- Khan, F.A., J.U. Din, A. Ghaffoor and K.W. Khan, 2002. Evaluation of different cultivars of okra (Abelmoschus esculentus L.) under the Agroclimatic condition of Dera Ismaii Khan. Asian J. of Plant Sci., 1 (6): 663-664.
- Mansour, S.M., 2000. Genetic variability and inheritance estimates of some characters in okra (*Abelmoschus esculentus* (L.) Moench). Ph.D. Thesis, Fac. Agric., Saba Basha, Alexandria University, Egypt.

- Mohamed, M.H., R.M. Helal, F.A. Abdel Bary and S.Z. Hegazy. 1994. Studies on heterosis in crosses among local and introduced okra cultivars. Annals Agric, Sci. Egypt. 39: 319-327.
- Nandan, Mehta, B.S. Asati and S.R. Mamidwar. 2007. Heterosis and gene action in okra. Bangladesh Journal Agriculture Research 32 (3): 421-432.
- Nassar, A., E.A. Waly, S.A. Abd El-Aal and N. Kandeel, 1983. Combining ability studies in okra. Assiut J. of Agric. Sci., 14 (1): 27-33.
- Partap, P.S. and B.S. Dhankhar, 1983. Combining ability studies in okra (Abelmoschus esculentus (L.) Moench). Genetica Agraria 34 (1/2) 67-73. (C.F. Plant Breed. Abst., 53, 6837).
- Partap, P.S., B.S. Dhankar and M.L. Pandita, 1981. Heterosis and combining ability in okra (*Abelmoschus esculentus* (L.) Moench). Haryana Journal of Horticultural Science 10 (1/2) 122-127. (C.F. Plant Breed. Abst. 52, 9833).
- Poshiya, V.K., 1986a. Combining ability analysis in okra. Gujarat Agricultural University Research Journal 12 (1): 25-28. (C.F. Plant Breed. Abst. 57, 9337).
- Poshiya, V.K., 1986b. Heterosis studies in okra (Abelmoschus esculentus (L.) Moench). Gujarat Agricultural University Research Journal 11 (2): 21-25. (C.F. Plant Breed. Abst, 57, 2371).
- Rajani, B., P. Manju, N. Manikantan and P. Sarwa Swathy, 2001. Combining ability in okra (*Abelmoschus esculentus* (L.) Moench). J. of Trop. Agri. 39: 98-101.
- Rao, L.J., S.S. Ravl and M.G.R.K. Reddy.1989. Performance of okra (Abelmoschus esculentus L.) varieties at different plant densities. South Indian Horticulture 37 (3): 181-182. (C.F. Plant Breed. Abst. 62, 691).
- Shukla, A.K., N.C. Gautam, A.K. Tiwari and A.K. Chaturvedi. 1989. Heterosis and combining ability in okra (*Abelmoschus esculentus* (L.) Moench). Vegetable Science 16 (2): 191-196. (C.F. Plant Breed. Abst. 60, 10574).
- Singh, S.K. and R. Khanna. 1975. Physiological, biochemical and basis of heterosis. Adv. Agron., 27: 123-174.
- Srivastava, M.K., S. Kumar and A.K. Pal, 2008. Studies on combining ability in okra through diallel analysis. Indian J. of Horti., 65 (1): 120-128.
- Vijay, O.P. and M.S. Manohar, 1986. Combining ability in okra. Indian Journal of Horticulture 43 (1-2); 133-139. (C.F. Plant Breed. Abst. 58, 9010).
- Watt, B.K. and A.L. Merril, 1963. Composition of foods, U.S. Dept. Agr. Handbook No. 8, 190 p.

دراسمة القدرة على التآلف وقوة الهجين للمحصول ومكوناته في الباميا أيمن محمد عبد النبي رشوان قسم البساتين (خضر) – كلية الزراعة – جامعة جنوب الوادي

أجريت هذه الدراسة بمزرعة ومعامل كلية الزراعة بقنا - جامعة جنوب الوادى خسلال موسمى صيف ٢٠٠٧ ، في الموسم الأول أجرى التهجين بين ثمانية أباء (أصناف) مسن الباميا على نظام السـ Half Diallel Cross وكانت هذه الأصداف هي :

۱ – البلدي ۲ – الاسكندراني ۳ – كليمسون سباينلس ٤ – اميرالد

٥- هوايت فلفت ٦- بوذا سواني ٧- دوت ٨- العراقي

فى الموسم الثانى ٢٠٠٨ تم زراعة الأباء الثمانية والجيل الأول الهجين (٢٦) الناتج منها (٢٨ هجين) فى تجربة مصممة على نظام القطاعات كاملة العشوائية فى ثلاث مكررات وكانت الصفات المدروسة على النحو التالى:

١- تقتح الازهار ٢- طول النبات ٣- عدد الأفرع/ النبات

٤- عدد الثمار /النبات ٥- وزن محصول الثمار الأخضر (طن/ فدان)

٦- متوسط طول الثمرة ٧- قطر الثمرة الثمرة الثمرة النبات التحليل الوراثي:

- الظهرت الأباء والهجن الناتجة منها اختلافًا جو هريًا في جميع الصفات قبد الدراسة .
- ٢- كانت الاختلافات الراجعة للقدرة العامة والخاصة على الانستلاف عاليسة المعنوبسة لجميسع الصفات قيد الدراسة، وهذا يوضح أهمية كل من الفعل المضيف وغير المضيف في ورائسة هذه الصفات.
- حاتت الاختلافات الراجعة للقدرة العامة على الانتلاف (GCA) أكبر من القدرة الخاصصة على الانتلاف (SCA) في جميع الصفات قيد الدراسة ، وهذا يوضسح أن فعمل الجينسات الاضافي (التراكمي) كان أكثر تأثيرا في وراثة هذه الصفات .
- 3- أظهرت الأصناف (البلدى ، بوذا سوانى) قدرة ائتلافية عامـة عاليسة فـى صـفات عـدد الافرع/النبات، كمية المحصول (طن/فدان)، طول النبات، قطر الثمرة. أما الاصناف (هوايت فلفت ، والعراقى) فى صفة الازهار، وكان الـصنف (بـوذا سـوانى) فـى صفة عـدد القرون/النبات. أما الصنف (هوايت قلفت) فى صفة وزن قرون/النبات. وبالتـالى يمكـن استخدام هذه الاصناف فى برامج التربية فى الباميا لهذه السفات.
- اظلهرت الهجن (الاسكندراني × العراقي) ، (هرايت قلفت × بوذا سوني) قدرة ابتلافية خاصة عالية في صفات محصول الثمار الأخضر (طمن/فسدان)، عدد القسرون/النبسات، عدد الأفرع/النبات، طول النبات بينما أظلهسر الهجينسان (الاسكندراني × بسوذا سسواني) ، (الاسكندراني × دوت) قدرة ائتلافية خاصة عالية في صفات وزن الأمرة/النبات، محسصول الثمار الأخضر (طن/قدان)، عدد الثمار/النبات، عدد الأفرع/النبات وكالله الهجن (كليمسسون سبانيلس × العراقي) ، (البلدي × الاسكندراني) في صفات الترهيسر، قطسر الثمسرة، وزن قرون/النبات .

قوة الهجين لمتوسط الأباء:

أظهرت قوة الهجين النتالج التالية :

۱. صفة الازهار : (بوذا سونی × دوت) - ۱۹۶۶% ، (كليمسوز سبتبشر × بسوذا سسوانی) - ۱۶٫۵% ، (كليمسون سبانياس × دوت) - ۲٫۷۱% .

- ۲. طول النبات : (دوت × العراقي) ۲۲,۲۲% ، (کلیمسون سیاتیلس × بوذا سواتی) ۲۱,۳۲% ،
 (الاسکندرقی × هوایت فلفت) ۱٤,۷۸% .
- عدد الأفسرع/النبات: (الاسكندرائي × دوت) ١٣,٠٩%، (الاسكندرائي × العراقسي)
 ٢٠,٨٤%، (الاسكندرائي × بوذا سوائي) ٢٠,١٧%.
- عدد الثمار /النبات: (الاسكندراتي × بسوذا مسواتي) ٢٦,٦٥% ، (الاسكندراتي × أمير السد) د.٠٥ ، (البلدي × بوذا سواتي) ٢٠٠٠٤% .
- محصول الثمار الأخضر (طن/قدان): (كليم سون سباتياس × بوذا سبواتي) ٢٧,٢٨ ،
 (الاسكندراتي × بوذا سواتي) ٣٢٦,٧٢ ، (هوايت ظفت × بوذا سواتي) ٢٠,٢٤ .
- ٦. طول الثمرة: (البلدى × كليمسون سباتيلس) ٣٩,٢٦ ، (الاسكندر الى × كليمــسون مــباتيلس)
 ٣٢,٠٢% ، (البلدى × أمير الد) ٣١,٠٦٦% .
- ٧. قطر الشرة: (أميرالد × العراقي) ٢٢,٢٨% ، (دوت × العراقي) ٢٥,٥٦% ، (بوذا سواني × العراقي) ٢٢,٤٦% .
- ٨. وزن الثمرة : (البلدى × كليمسون سيائيلس) ٢٥,٣٨% ، (كليمسون سيائيلس × هو ايت قلقت)
 ٨. وزن الثمرة : (البلدى × الإسكندراتي) ٢٤,٠٦% .

الخلاصة والفائدة التطبيقية:

- ١- فظهرت الأصناف (البلدي بوذا سواتي) قدرة انتلافية عاسمة عاليمة في صدفات وزن محصول الثمار الأخضر (طن/فان)، عدد أفرع/النبات، طول النبات، قطر الثمارة، لمذلك يوصي باستخدام هذه الأصناف في برامج التربية لهذه الصفات في الباميا تحت ظروف جنوب الوادئ بمحافظة قنا .
- ٢-كما أظهر الهجين (هوايت فلفت × بوذا سواتي) قدة التلافية خاصة عامة عالية في صفات وزن محصول الثمار الأخضر (طن/فدان) عدد قرون/النبات، عدد أفرع/النبات، طلول النبات، وبذلك يوصي باستخدام هذا الهجين في برامج التربية لهذه الصفات في الباميا تحست ظروف جنوب الوادي بمحافظة قنا.
- الاستفادة من ظاهرة قوة الهجين في الباميا خاصة الهجين (كليمسون سباينلس × بوذا سواني)
 والذي إناجيته بلغت (٨,٦٢ طن / فدان).