EFFECT OF SOME TRANSPLANTING METHODS ON DAMSIS (Ambrosia Maritima L.) CROP PRODUCTIVITY EI-Gendy, H.A.; M.M. Abd EI-Galil and G.G. Radwan Agric. Eng. Res. Inst., ARC, Egypt ### ABSTRACT The aim of this research is to determine the suitable method to transplanting Damsis. The experiments were performed the objective of EL-GEMMIZA Research Station, EL-Gharbiea Governorate, in 2008 season. Damsis transplanting by New-Holand and Lännen Roulette transplanters at different forward speeds (0.9, 1.3, 1.8 and 2.3 km/h) additional manual transplanting. From the obtained results can be concluded that Damsis transplanting by Lännen Roulette transplanter at forward speed of 2.3 km/h is the suitable method to transplanting Damsis to obtain the optimum seedling uniformity space per unit area (25.3 \times 30.5 cm), missed (3.2 %) and floated (4.7) seedling, field capacity (4.7 fed/h) and efficiency (85.6 %), yields (17.9 and 0.26 ton/fed. of green plant and seed respectively), energy consumed (2315 MJ/fed.) and cost about 8.4 LE/ton. ### INTRODUCTION Damsis (Artemisia absinthium L.) is a species of wormwood, native to temperate regions of Eurasia and northern Africa. It grows naturally on uncultivated, arid ground, on rocky slopes, and at the edge of footpaths and fields. Damsis crop is medical and aromatic plant. The plant can easily be cultivated in dry soil. They should be planted under bright exposure in fertile, mid-weight soil. It prefers soil rich in nitrogen. It can be propagated by growth (ripened cuttings taken in March or October in temperate climates) or by seeds in nursery beds. It is naturalised in some areas away from its native range, including much of North America. The plant's characteristic odor can make it useful for making a plant spray against pests. In the practice of companion planting, because of the secretions of its roots, it exerts an inhibiting effect on the growth of surrounding plants, thus weeds. It can be useful to repel insect larvae but it need only be planted on the edge of the area of cultivation. It has also been used to repel fleas and moths indoors. The leaves and flowering tops are gathered when the plant is in full bloom, and dried naturally or with artificial heat. Its active substances include silica, two bitter elements (absinthine and anabsinthine), thujone, tannic and resinous substances, malic acid, and succinic acid. Its use has been claimed to remedy indigestion and gastric pain, it acts as an antiseptic, and as a febrifuge. For medicinal use, the herb is used to make a tea for helping pregnant women during pain of labor. Also, use in treating of kidney, saccharin, and blood pressure, diseases. Damsis crop uses in destroy of shell which support Pelharcia and fashiola diseases without using the chemicals which imported and cost mellions pounds every year. A dried encapsulated form of the plant is used as an anthelmintic. A wine can also be made by macerating the herb. It is also available in powder form and as a tincture. The oil of the plant can be used as a cardiac stimulant to improve blood circulation. Pure wormwood oil is very poisonous, but with proper dosage poses little or no danger. Wormwood is mostly a stomach medicine. Also, conserve the environment from chemicals pollution. Damsis crop was used to fight Pelhercia and fashiola diseases according to Ministry of Agriculture plan (Mortada, 2002) and (Lust, 1979). The achieve of the economical in agricultural is increase and obtain a high yield from unit area, little water, energy consumed and time. The transplanting one of ways to achieve this goal. Mechanical transplanting resulted in winder plant spacing, fewer plants per unit area and fewer detective hills. It also gave better results than manual transplanting in terms of plant height and depth of the seedings roots from the soil surface. Mechanical transplanting significantly increased fruit weight and number of fruit per plant compared with manual transplanting (Salama, et al., 1995). Hand transplanting requires considerable hand labours. Due to the shortage in hand labours and expensive labour costs, a reliable mechanized transplanting operation becomes important (Hegazy, 1990). There are two common types of transplanting systems presently available to the farmers, which are manual and mechanical transplanting. Hand transplanting is arduous work, slow process and need consuming more labors than any other operation in vegetable planting (Saleh, 1990). The advantages of mechanical transplanters is place seedings more uniform than manual transplanting. The uniformity of placing seedings by the mechanical transplanters attributed to the transplanting mechanism design more than the operation condition. Ground speed of 0.9km/h was suitable for operating the mechanical transplanter (Harb et al., 1993). The multiple loading feature mechanism significantly increased the operator speed because it allowed up to five plants to be fed into the mechanism before they are actually needed. One operator on the machin with multiple loading stations could transplant at the same rate (about 70to 80 plant/min) as two operators on conventional one-row machine. Five or six loading stations were needed to optimized feeding rate (Suger, 1979). In report of ASAE (1989) and Odigbah and Akubuo (1991) found that the field efficiency decreased by increasing forward speed. Also, Helmy et al. (2000) found that the sugar yield (and root yield) of sugar beet decreased from about 4.5 to 3.5 Mg/fed by increasing Holland transplanter forward speed from 0.95 to 3.65 km/h respectively. Mohamed et al. (2000) found that the energy requirements for tomato transplanting decreased by 41.61 when transplanter forward speed from 0.94 to 2.03 km/h. Seeding damage faulty in planting and feeding losses increased due to increasing transplanter forward speed (Hamad et al., 1983). The objective of this study determine the suitable method to transplanting Damsis ## **MATERIALS AND METHODS** The experiments were performed the objective of EL-GEMMIZA Research Station, EL-Gharbiea Governorate, in 2008 season. To evaluate some transplanting systems for reach the optimum Damsis yield. The transplanting systems were: - Manual transplanting. - Mechanical transplanting by using semi-automatic transplanters, New-Holland (Fig. 1) and Lännen Roulette transplanter (Fig. 2). - 1- Disc pocket - 2- Seedling - 3- Disk - 4- Press wheels - Fig. 1: The photo of New Holland transplanter and the diagram of the disc pocket arrangement transplanting mechanism. - 1- Seedling - 2- Tube - 3- Falling tube - 4- Share - 5- Belts - o I alling tub - 6- Spikes 7- Bottom of the furrow 8- Compaction wheels - Fig. 2: The photo of Lännen roulette transplanter and the diagram of the operator drops the seedlings. - 1- New Holland transplanter: the machine has a disc pocket arrangement transplanting-mechanism (Fig. 1). Seedlings are placed manually into transplanting pockets which consist of two rubber plates to hold the seedling. The rubber plates are opened, and closed with special spring mechanism. The closing of rubber plates occurs as soon as the pocket enters two guide plates which are designed for vertical transplanting. - 2- Lannen roulette transplanter: Lannen roulette transplanter is semiautomatic. This was designed as seedling block transplanter vegetable and cotton. The principle of the machine (Fig. 2) is the operator drops the seedlings into the tubes of the roulette. When the roulette rotates each of the tubes in its turn comes above the falling tube, the roulette tube flap opens and the seedling falls into the falling tube. The seedling drops down the falling tube to the bottom of the furrow opened by the share between the spikes of the belts. The technical specifications of transplanting machines are indicated in Table (1). Table (1): Transplanters specifications. | Cassifications | Transplanters | | | |---------------------|---------------|-----------------|--| | Specifications | New-holland | Lännen Roulette | | | Manufacture | USA | Finland | | | Model | 1700 | Rt-2 | | | Main dimensions | | | | | Total length, cm | 130 | 130 | | | Total width, cm | 245 | 240 | | | Total height, cm | 90 | 120 | | | Total mass, kg | 250 | 350 | | | Hitching type | 3 points | 3 points | | | No of planting rows | 2 | 2 | | **Tractors:** Massy Ferguson MF230 tractor of 35 hp (26.2 kW), 2000rpm was used with both transplanting machines. Crop variety: Seed variety is Giza21, seedling age is 75-90 days and its average length is 20 - 25 cm. The experiments were carried out in clay loam soil. The physical properties of the soil under investigation are summarized in Table(2). Soil analysis were done in soil laboratory at EL-Gemmiza Research Station. Table (2): physical properties of the experimental soil. | Fine sand | Coarse sand | Silt | Clay | Soil texture | |-----------|-------------|-------|-------|--------------| | 21.50 | 1.30 | 31.20 | 46.00 | Clay loam | The experimental procedure were done at the transplanters forward speeds of 0.9, 1.3, 1.8, and 2.3 km/h in three replicates then the mechanical transplanting compared with the manual transplanting as a control experiment. To evaluate the machine performance: # - The seedling uniformity The seedling uniformity (longitudinal – transverse and losses) were estimated by measured the distance between twenty hills along the row and transverse scattering the row center-line, then the number of missing and floated hills/m² were determined as a percentage by using the following formula: $$M_g = \frac{M_m}{M_{th}} \times 100 \qquad (1)$$ Where: M_g = missing hills,% M_m = number of missing, hill/m²,and M_{th} = number of theoretical, hill/m². # - The filed capacity and efficiency: The theoretical (F_{ct}), effective (F_ca) field capacity and field efficiency (E) were determined by using the following equations (Hanna et al. 1985): $$F_{\text{ct}} = \frac{S \times W}{4200}, \quad \text{fed/h} - - - - - (2)$$ $$F_{ca} = \frac{60}{T_u + T_L}, \quad \text{fed/h-----(3)}$$ $$E = \frac{F_{ca}}{F_{ct}} \times 100$$. %----(4) Where: S = Forward speed, km/h W = Transplanter width, m T_u = The utilized time/fed, min. T_L = The summation of lost time/fed, min. # - Productivity: The yield production contain two product green plant and seed the grain plant as one gather then the seed yield were determine as a mass/fed. # - Energy consumption: The following formula was used to estimate engine power (EP) (Embaby, 1985): $$EP = \frac{Fc}{60 \times 60} \times P_{f} \times L.C.V. \times \eta_{th} \times \eta_{m} \times 4.2$$, kW ---- (5) Where: F.C Fuel consumption, L/h P_f Density of fuel, kg/L (0.85 for diesel fuel) L.C.V. Lower calorific value of fuel, kcal/kg = 104 η_{th} Thermal efficiency of the engine, it is assumed about 35% for diesel engine η_m mechanical efficiency of the engine, it is assumed about 80% for diesel engine 4.2 Thermo- mechanical equivalent (kJ/kcal) The energy requirement was estimated by using the following formula: Energy consumed = $$\frac{EP}{F_{ca}}$$, MJ/fed - ---- --- (6) Where: EP Engine power, MJ F_{ca} Actual field capacity, fed/h. #### - Cost estimation: Cost of operation was calculated according to the following equation (Awady, 1978): $$C = p/h (1/a + i + t/2 + r) + (1.2 \text{ w.s.f}) + m/144, LE/h - - - - - (7)$$ # El-Gendy, H.A. et al. ## Where: C hourly cost p price of machine h yearly working hours a life expectancy of machine i interest rate/year t Taxes r overheads and indirect cost ratio w power of the machine kW s specific fuel consumption L/kW f fuel price LE/L m monthly wage ratio 1.2 is a factor to take lubrication and greasing into account 144 is estimated monthly working hours ## - Human labor energy: The human labor energy can be estimated by the following equation: $$E_{HL} = \frac{C_{HL}}{F.c} \times N_{L}$$ MJ/fed -----(8) #### Where: CHL = Energy input coefficient represents the human labor energy = 2.3 MJ/man.h (Lower et al., 1977) NL = Number of labors required to perform any operation. # **RESULTS AND DISCUSSION** # Seedling uniformity: The seedling uniformity divided into both longitudinal and transverse seedling distribution (Figs. 3 and 4). Figure (3) illustrated the effect of transplanting methods on longitudinal seedling distribution at different transplanter forward speed compared with the human transplanting method. From the figure the longitudinal seedling space increased by increasing the machine forward speeds. Therefore, the machine forward speed increase from 0.9 to 2.3 km/h the seedling dispersion increased about 7.9 cm and 6.0 cm by using New-Holland and Lännen Roulette transplanters respectively. That results mean that the differences by using each machine is non significant effect in longitudinal scattering. The recommended from Agricultural Research Center the longitudinal space for transplanting Damsis plant in row was about 25.0 cm. Hence, the suitable results were 25.3 and 25.6 cm of New-Holland and Lännen Roulette transplanters at transplanter forward speed 1.8 km/h while it about 26.2 cm at manual transplanting method. On the other side, Fig. (4) cleared that the effect of the transverse seedling dispersion at the previous studied parameters. From the figure the transverse seedling dispersion were 4.9, 2.8, 1.7 and 5.5 cm at transplanter forward speed 0.9, 1.3, 1.8 and 2.3 km/h for New-Holland transplanter but for Lännen Roulette transplanter the corresponding results were about 2.7, 0.9, 0.5 and 2.3 cm. Furthermore, the recommended from agricultural research center the space between rows for transplanting Damsis plant was about 30.0cm. Then, the suitable results were 31.7 and 30.5cm of New-Holland and Lännen Roulette transplanters at transplanter forward speed 1.8 km/h while it about 30.2 cm at manual transplanting method. Fig. 3: Effect of transplanting methods on longitudinal scattering. Fig. 4: Effect of transplanting methods on transverse scattering. # Seedling losses: The seedling losses include two component the missed hill and the floated (un-correct depth) hill. The percentage of missed hill affected transplanting methods at different machine forward speed were illustrated in Fig (5). From the figure the missed hills increased from 2.3 to 8.1 % by increase the transplanter forward speed from 0.9 to 2.3 km/h for New-Holland machine. On the other hand, the missed hills increased from 1.8 to 6.8 % by increase the transplanter forward speed from 0.9 to 2.3 km/h for Lännen Roulette machine. Fig. 5: Effect of transplanting Fig. methods on missed hill. 6: Effect of transplanting methods on floated hill. Fig. (6) indicate that the floating hills percentage of Damsis seedlings increased by increasing forward speed for New-Holland and Lännen Roulette transplanters. The minimum floating hills percentage of Damsis seedling of 1.0 % was obtained by using Lännen Roulette transplanter at forward speed of 0.9 km/h while the maximum floating hills percentage of 7.3 % found by using New-Holland transplanter at forward speed of 2.3 km/h. The increasing of missing hills by increasing forward speed may be due to increasing the slip percent of transplanter ground-wheel. ### Filed capacity and field efficiency Therefore, Figs. (7 and 8) clear that the relationship between field capacity and field efficiency at transplanting methods and different machine forward speed. Fig. (7) shows the effect of transplanting methods on actual field capacity. From the figure the increasing in transplanting speeds from 0.9 to 2.3 km/h the actual field capacity increased from about 0.25 to 0.57 fed./h. Then the semi-mechanical transplanting increment about 0.47 fed./h when compared with the manual transplanting. On the other wise, Fig. (8) clarify that the field efficiency of Damsis seedlings transplanter decreased by increasing forward speed for New-Holland and Lännen Roulette transplanters. The maximum field efficiency of 94.5 % was obtained at forward speeding of 0.9 km/h and the minimum field efficiency of 83.2 % was obtained at forward speed of 2.3 km/h. While the field efficiency was 18.1 % by manual transplanting. Fig. 7: Effect of transplanting Fig. 8: Effect of transplanting methods on actual field methods on field efficiency. capacity. # Effect of transplanting system on Damsis yield. Figures (9 and 10) show the Damsis green plant and seed yields affect the transplanting methods. The figures clear that the Damsis crop yields decrease from 20.2 to 14.2 and 0.27 to 0.15 ton/fed of green plant and seed respectively by using New Holland transplanter. On the other side, it about 20.5 to 16.3 and 0.31 to 0.21 ton/fed. of green plant and seed respectively by using Lännen Roulette transplanters. When compared the mechanical transplanter results with the manual transplanting can be found the same manual transplanting yields (about 18.1 and 0.27 ton/fed.). The increasing of Damsis crop yields may be due to the suitable uniformity of seedling distribution which gave a suitable plant area. Fig. 9: Effect of transplanting methods on plant green yield. Fig. 10: Effect of transplanting methods on seed yield. ### **Energy consumed:** The effect of transplanting methods on energy consumed can be shown in Fig. (11). From the figure the energy consumed slightly increase by using the Lännen Roulette transplanter than using the New-Holland transplanter. The data show that the increase in machine forward speed from 0.9 to 2.3 km/h decrease the energy consumed about indicate the draw-bar power requirement was increased and energy was decreased by increasing forward speed 1068 and 1009 MJ/fed. for New-Holland and Lännen Roulette transplanters. Then the energy consumed was 6800 MJ/fed. by manual transplanting method. Fig. 11: Effect of transplanting methods on energy consumed. ## Estimating the machine costs The operating costs of different transplanters are determined. The minimum operating cost of 5.30 LE/ton was obtained by using New Holland transplanter at forward speed of 0.9 km/h and maximum operating cost of 11.31 LE/ton was obtained by using Lännen Roulette transplanter at forward speed 2.3 km/h. Whereas the operating cost of manual transplating was about 11.11 LE/ton. #### Conclusion Damsis transplanting by Lännen Roulette transplanter at forward speed of 2.3 km/h is the suitable method to transplanting Damsis to obtain the optimum seedling uniformity space per unit area $(25.3 \times 30.5 \text{ cm})$, missed (3.2 %) and floated (4.7) seedling, field capacity (4.7 fed/h) and efficiency (85.6 %), yields (17.9 and 0.26 ton/fed.) of green plant and seed respectively), energy consumed (2315 MJ/fed.) and cost about 8.4 LE/ton. ### REFERENCES - ASAE Standards (1989). Agricultural machinery management, EP 391.1 and D 230. USA: 4. - Awady, M.N. (1978). Tractors and farm machinery. in Arabic, text. Co. Ag., Ain Shams Univ., 164-167. - Embaby, A.T. (1985). A comparison of the different mechanization systems for cereal crop production. M.Sc. Th., Ag. Eng. Dept., Cairo Univ., 50-100. - Hamad, S.A.; M.A. Ali; M. Khalifa and Z.E. Ismail (1983). Manual feeding rice transplanter, J. Agric. Sc. Univ. of Mansoura, 8 (1): 60-80. - Hanna et al. 1985) - Harb, S.K. Abdelmawala, H.A. and G.M. Salama (1993). Comparison between mechanical and manual transplanting of tomato. Minia J. of Agric. Res. and Develiop., Special Issue, (15): 361-375. - Hegazy, K.S. (1990). Mechanization of onion planting. M.Sc., Fac. of Ag. Mansoura Univ., 20-80. - Helmy, M.A.; E.M. Khalifa; H.M. Sorour and W.A. Gad (2000). Misr J. Ag. Eng., 17 (3): 660-674. - Lower, O.J.; E.M. Smith; S. Burgess; L.G. Wells and D. Bebertine (1977). Production of beet with minimum grain and fossil energy inputs. Vol. 1,2 and 3 reports to NSF. - Lust, J.N.D. (1979). The Herb Book. Bantam Books. 1979. ISBN 0879040556. from Wikipedia, the free encyclopedia. last modified on 1 April 2009, at 22:30 (UTC). - Mohamed, M.A.; M.A. Aboamera and N.A. Srour (2000). Performance of semi-automatic transplanters in transplanting tomato. Misr J. Ag. Eng., 17(3): 469-482. - Mortada, K. (2002). National Project of Damsis Planting for Fighting Pelharacia and Fashiola, Ministry of Ag., 3-12. - Salama, G.M.; A.M. Youssef and S.S. Fareg (1995). Tomato Plant growth and productivity as affected by method of transplanting. Vegetable Res. Section, Hort. Res. Inst., Ag. Res. Center, Cairo, Egypt, 22 (2): 109-115. - Saleh, F.K. (1990). Mechanization of onion Planting. M.Sc. Th., Fac. of Ag., Mansoura Univ., 18-31. - Suggs, C.W. (1979). Development of a transplanter with multiple loading stations. Trans. of ASAE, 22 (2): 260-263. تاثير بعض طرق الشتل على انتاج محصول الدمسيسة هانى عبد العزيز الجندى ، محمد محمود عبد الجليل و جابر غمرى على رضوان معهد بحوث الهندسة الزراعية – مركز البحوث الزراعية تهدف هذه الدراسة الى تقييم تاثير بعض أنظمة الشتل (الشتل الالى بواسطة السشتالة "نيو هو لاند New-Holland " والشتالة "لانين Lännen" مقارنة ب السشتل اليدوى) على انتاج محصول الدمسيسة حيث تمت التجارب في محطة البحوث الزراعية بالجميزة موسم ٢٠٠٨ عند سرعات تقدم مختلفة لكلا الشتالتان (٢٠٠، ١,٨،١,٨، ٢٣٠ كم/ساعة) وكانت أفضل النتائج التي تم الحصول عليها عند استخدام الشتالة (Lännen) بسرعة تقدم مرا كم/ساعة حيث أعطت أفضل قيم لإنتظامية توزيع الشتلات في وحدة المساحة (٢٠٦ مرمساعة حيث أعطت افضل قيم لإنتظامية العمق ٥٠٥ %، ٧٤ % على التوالى، التوالى، التوالى، النحضر السعة والكفاءة الحقلية ٢٥٠١ فدان/ساعة، ٢٥٠٦ % على التوالى، انتاجية العشب الاخضر والبذور ١٧٠٩، ٧٢، طن/فدان، والتكاليف و٨٤ جنيه مصرى/طن.