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Abstract  

A Statistical downscaling model was developed and validated using large-scale predictor variables 

derived from the National Centre for Environmental Prediction (NCEP) reanalysis data and observed 

station data that was achieved in order to establish a statistical relationship between large-scale NCEP 

reanalysis predictor variables and locally  observed meteorological variables. The relationship obtained 

was then used to generate the possible future scenarios of meteorological variables such as temperature 

and precipitation using large-scale predictor variables obtained from the Global Climate Model, 

HadCM3 (Hadley Centre Coupled Model version3) outputs. The downscaled meteorological variables 

corresponding to global emissions scenario (A2a) were then used as input to the HEC-HMS 

hydrological model calibrated and validated with observed station data to simulate the corresponding 

future streamflow changes in the Beles River. 

Hydrological impact assessment over the basin showed a projected decrease in annual runoff in the 

future. Most of this decrease in flow is also found to be in the summer season (main rainy season of the 

area).
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1. INTRODUCTION

Global Climate models (GCMs) are the best tools to estimate future global climate changes resulting 

from the continuous increase of greenhouse gas concentration in the atmospheres (Busuioc et al., 2001; 

Dibike and Coulibaly, 2005). However, due to their coarse spatial resolution, the outputs from these 

models may not be used directly in impact studies. Hydrological models, for instance, deal with small 

or sub catchment scale processes whereas GCMs simulate planetary scale and parameterize many 

regional and smaller-scale processes.  Therefore, downscaling techniques emerged as a mean to relate 

the scale mismatch between the GCMs results and the increasingly small scales required by impact 

community (Dibike and Coulibaly, 2005; Wilby and Wigley, 1999). The two main approaches used for 

deriving local or regional scales information from the global climate scenarios generated by GCMs are 

dynamic downscaling which involves a nested regional climate model (RCM) and statistical 

downscaling techniques which employs  a statistical relationship between the large scale climatic state 

and the local variations derived from historical data. A diverse range of statistical downscaling 

techniques are available where each method lies, generally, in one of the three categories, namely 

regression_(transfer function) methods , stochastic weather generators and weather  classification 

schemes (Wilby et al., 2004). Among the widely applied statistical downscaling techniques is the 

universally multiple linear regression models called Statistical Down-Scaling Model (SDSM). This 

technique is used in this study and is briefly reviewed for clarity and discussions.  

2. STATISTICAL DOWNSCALING METHODS OVERVIEW 

Statistical downscaling methods involve developing quantitative relationships between large-scale 

atmospheric variables (predictors) and local scale surface variables (predictand) through the transfer 

functions (Wilby et al., 2004). The most common form has a predictand as a function of the predictors. 

The two frequently used terms in statistical downscaling are defined as follows as used in many 

publications.
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The predictor is the input data used in statistical models, typically a large scale variable describing the 

circulation regime over a region. The predictor is also known as ’independent variable’, or simply as 

the ’input variable’, usually written as  

                  Predictand = ƒ (predictors) 

The predictand is the output data, typically the small-scale variable representing the temperature or 

rainfall at a weather/climate station. The predictand, is also known as ’dependent variable’, ’response 

variable’, ’responding variable’, or simply as the ’output’ 

 Statistical downscaling is computationally inexpensive, and thus can be easily applied to the output of 

different GCM experiments (Wilby and Dawson, 2007). Additionally, it can be used to provide local 

information, which could be most needed in many climate change impact applications. According to 

Wilby and Wigley (1999), the following three implicit assumptions are involved in the statistical 

downscaling: 

predictors are variables of relevance and are realistically modeled by the GCMs  

the employed predictors fully represent the climate change signal  

these observed empirical relationships are valid also under altered climate change conditions  

3. STUDY AREA AND DATA USED 

Beles sub-basin of the Upper Blue Nile was chosen to be investigated in this study. This is because the 

basin is sought to be one of the potential future development areas where currently, some water 

resources development projects like TanaBeles Multipurpose hydropower project through inter basin 

water transfer from Lake Tana and Upper Beles Irrigation projects are in progress. Therefore assessing 

the impact of climate change will give an insight upon which appropriate decisions about water 

resources development can be made in the future 

The main stem of the Beles River originates on the face of the escarpment across the division to the 

west of the south-western portion of Tana Lake. It then flows in a westerly direction and enters into the 

Blue Nile just before it crosses the Ethiopia-Sudan frontier. It is the only major right bank tributary of 

Blue Nile.  The Beles basin covers an area of about 14,000 km2 and geographically it extends from 10o 

56’ to 12o N latitude and 35o12’ to 370 E longitude. The basin has two gauged sub-catchments namely 

upper-main Beles and Giligile Beles that have sizes of 3474 km2 and 675 km2, respectively. In 

particular, the focus of this study is Upper Beles sub-basin (figure 1). Three meteorological stations in 

the vicinity of the Upper Beles sub-basin namely Pawe, Dangila and Bhardar are used in the 

downscaling experiments. For Bhardar station, 30 years of daily data (1961-1990) were used for the 

downscaling experiment. For the other two stations, 15 years (1987-2001) daily precipitation, daily 

maximum and minimum temperature records have been used as predictands as they exhibit shorter 

records. Also, large-scale reanalysis was executed to daily data sets of the National Center for 

Environmental Prediction (NCEP) for the same period. These were used as predictors.  

                                 (a)                                                                                (b) 

Figure 1: Tana and Beles Basin Map: (a) Tana-Beles basin, (b) Upper Beles sub-basins 
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4. STATISTICAL DOWNSCALING MODEL 

Statistical Downscaling Model (SDSM) is a hybrid of multiple linear regression and stochastic 

downscaling model developed by Rob Wilby and Christian Dawson (Harpham and Wilby, 2005; Wilby 

and Dawson, 2007). It is a freely available decision support tool for assessing local climate change 

impact using a robust statistical downscaling technique.7 In SDSM downscaling, a multiple linear 

regression model is developed between a selected large-scale predictor variables and local scale 

predictands such as temperature and precipitation. And the parameters of the regression equation are 

estimated using an ordinary Least Squares algorithm. Precipitation is modeled as a conditional process 

in which the local precipitation amount is correlated with the occurrence of wet days. As the 

distribution of precipitation is skewed, a forth root transformation is applied to the original series to 

convert it to the normal distribution, and then used in the regression analysis. Minimum and maximum 

temperatures are modeled as unconditional process, where a direct link is assumed between the large 

scale predictors and local scale predictand.   

4.1 Predictor Variables  

Predictor data files for SDSM were obtained from the Canadian Institute for climate studies (CICS) 

website.8  The predictor variables for HadCM3 were provided on a grid box by grid box basis of size 

2.5o latitude and 3.75o longitude. The watershed area of Beles basin lies in two grid boxes 10o latitude 

and 37.5o longitude and 12.5o latitude and 37.5o longitude (Figure 2). Table 1 shows large- scale 

atmospheric variables derived from the grid boxes 

Figure 2: African continent windows with 2.50 latitude x 3.75o longitude from which grid of 

study area selected shown in black square box 

7
https://co-public.lboro.ac.uk/cocwd/SDSM/index.html

8 http://www.cics.uvic.ca/scenarios/sdsm/select.cgi
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Table 1  Large-scale atmospheric variables from the NCEP reanalysis and HadCM3 simulation 

output that are used as potential inputs to the multiple linear regression model. 

No. Predictors description No. predictors description 

1

2

3

4

5

6

7

8

9

10 

11 

12 

13 

 mslpaf 

 p_faf 

 p_uaf 

 p_vaf 

 p_zaf 

 p_thaf 

 p_zhaf 

 p5_faf 

 p5_uaf 

p5_vaf 

p5_zaf 

p500af 

p5thaf 

men sea level pressure       

surface air flow strength   

surface zonal velocity 

surface meridian velocity   

surface vorticity 

surface wind direction 

surface divergence 

500hpa  air flow strength 

500pa  zonal velocity 

500hp meriodinal 

velocity 

500hpa voritcity                 

500hpa geo-potential 

height      

500hpa  wind direction 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

P5_ zhaf

p8_faf 

p8_uaf 

p8_vaf 

p8_zaf 

p850af 

p8thaf 

p8zhaf  

r500af 

r850af 

rhumaf 

shumaf 

tempaf 

500hpa divergence 

850hpa airflow strength 

850hpa zonal velocity 

850 hpa meriodinal 

velocity 

850 hpa vorticity 

850hpa geo-potential 

height 

850hpa wind direction 

850 hpa divergence 

relative humidity at 500 

hpa 

relative humidity at 850 

hpa 

near surface relative 

humidity 

surface specific humidity 

mean temperature at 2 m 

All predictors were normalized with respect to the 1961-1990 mean and standard deviation, except the 

wind direction. 

 (Source:http://www.cccsn.ca/Help_and_Contact/Predictors_Help-e.html, accessed on April 24, 2009) 

4.2 Choice of Predictor Variables  

The choice of predictor variable(s) is one of the most challenging stages in the development of any 

statistical downscaling model. This is attributed to the fact that decision largely determines the 

character of the downscaled scenario. The decision process is also complicated due to the fact that the 

explanatory power of individual predictor variables varies spatially and temporally (Hessami et al.,

2007; Wilby and Dawson, 2007). In SDSM, the selection of the most relevant predictor variables was 

carried out through linear correlation analysis, partial correlation analysis and scatter plots between the 

predictors and the predictand variables. Large-scale predictor variables representing the current climate 

conditions, derived from the NCEP reanalysis data sets, were used to investigate the percentage of 

variance explained by each predictand-predictor pairs. Table 2 shows the selected predictor variables 

for the stations in the downscaling experiments.  

Table 2 Large-scale climate predictors for computing surface meteorological variables at 

different stations with SDSM model 

Predictors No. 2 3 4 5 9 12 17 22 23 26 

Station Predictand           

pawe precipitation    X X    X  

 Max Temp X      X   X 

 Min Temp  X  X  X     

Bhardar precipitation   X     X  X 

 Max Temp     X X  X X X 

 Min Temp      X  X  X 

Dangila precipitation     X   X   

Definition of the variables corresponding to each predictor number is the same as in Table1 

4.3 SDSM Model Calibration and Validation 

Model calibration was carried out based on the selected predictor variables that were derived from the 

NCEP data set.  Model calibration in this case was to find the coefficients of the multiple linear 

regression equation parameters that relate the large scale atmospheric variables derived from NCEP 



Hydrological Response of a Catchment to Climate Change in the Upper Beles River Basin, Upper Blue Nile, Ethiopia  

Nile Basin Water Engineering Scientific Magazine, Vol.2, 2009 53

0

5

10

15

20

25

J F M A M J J A S O N D

A
v
e
ra

g
e
 d

ry
-s

p
e
ll 

(d
a
y
s
)

observed

simulated

0

1

2

3

4

5

6

7

8

9

J F M A M J J A S O N D

A
v

e
ra

g
e

 w
e

t-
s

p
e

ll 
(d

a
y

s
)

observed

simulated

0

2

4

6

8

10

12

14

16

J F M A M J J A S O N D

M
e
a
n
 d

a
ily

 T
m

in
 (

o
c
)

Observed

Simulated

0

50

100

150

200

250

300

J F M A M J J A S O N D

P
re

c
ip

. 
v

a
ri

a
n

c
e

Observed

Simulated

and local scale variables. The temporal resolution of the downscaling model for precipitation 

downscaling was specified as seasonal for Pawe station and monthly for Dangila and Bhardr stations. 

Seasonal model could be used in situations where data are too sparse, at the monthly level, for model 

calibrations. For example, in a low incidences of precipitation in semi arid area (Wilby and Dawson, 

2007), is a typical case for Pawe station. 

For Bhardar station, from the 30 years of data, representing the current climate condition, the first 15 

years of data (1961-1975) were considered during calibrating the regression model while the remaining 

15 years (1976-1990) were used to validate the model, where as for  Pawe and Dangila station,  the 15 

years of data, representing the current climate condition, the first 10 years of data (1987-1996) were 

considered during calibrating the regression models while the remaining 5 years of data (1997-2001) 

were used to validate the model. Some of the SDSM setup parameters for event threshold, bias 

correction and variance inflation were adjusted during calibration to obtain a good statistical agreement 

between the observed and simulated climate variables. During the calibration of precipitation, 

downscaling models, in addition to the mean daily precipitation, monthly average dry and wet-spell 

lengths were used as performance criteria. Figure 3 & 4 shows the performance of the model during 

validation period. The graph shows a good agreement between the observed and simulated mean daily 

precipitation and average wet spell lengths for all months of the year except August, whereas the 

observed and simulated mean daily maximum and minimum temperature showed good agreement for 

all months of the year. Unlike temperature, precipitation is a conditional process that dependents on 

other intermediate process like occurrence of humidity, cloud cover, and /or wet-days. For that reason, 

it is identified by many researchers as one of the most problematic variable in downscaling. 
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Figure 3: Validation result of SDSM model downscaling (1976-1990) of daily precipitation at 

Bhardar station 
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Figure 4: Validation results of SDSM model downscaling (1976-1990) of daily maximum and 

minimum temperature at Bhardar station 
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4.4 Downscaling with SDSM  

After calibrating the SDSM model, using observed data and large-scale predictors originating from 

NCEP reanalysis, the same empirical relationship with predictors, supplied by GCMs, were tuned to 

downscale the future climate change scenario simulated by GCMs. 20 ensembles of synthetic daily 

time series were generated for A2a SERS emission scenarios for the period of 139 years (2061-2099). 

The ensemble mean of the 20 ensemble members for the period 2050s (2040-2069) were used for 

impact analysis using Hydrological model, for this case HEC-HMS. 

Figures 5& 6 shows the general trend in the mean daily precipitation and the mean daily maximum and 

minimum temperature at Bhardar station corresponding to future climate change scenarios downscaled 

with SDSM. Form these figures, it could be seen that the precipitation decreased, during the rainy 

season, and a general increasing trend is evident for both minimum and maximum temperature through 

out the seasons. The average increase in minimum and maximum temperature between the current 

climate and that of 2050 s will be about 2.5 oC and 2.3 oC , respectively. 
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Figure 5: General trend in the mean daily precipitation at Bhardar corresponding to climate 

change scenario downscaled with SDSM 
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Figure 6: General trend in mean daily maximum & minimum temperature at Bhardar 

corresponding to climate change scenario downscaled with SDSM 

5. HYDROLOGIC MODEL DESCRIPTION  

HEC-HMS which is a comprehensive hydrologic model, developed by Hydrologic Engineering Centre 

(HEC) of United States Army Corps of Engineers (USACE), was used in this study. HEC-HMS is 

designed to simulate the precipitation-runoff processes of dendritic watershed systems. It is also 

designed to be applicable in a wide range of geographic areas for solving the widest possible range of 

problems. This includes large river basin water supply, and flood hydrology, and small urban or natural 

watershed runoff (HEC, 2006). 
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The current version of HEC-HMS (3.1.0) is a highly flexible package. It includes different methods to 

simulate infiltration losses, transforming excess precipitation, base-flow estimation and channel 

routing.  

For this particular study, continuous soil moisture accounting for (SMA) model, Clark’s unit 

hydrograph, Muskingum and linear reservoir methods were used. SMA method allows for a long-term 

continuous simulation of hydrologic processes that change over time in a watershed. This could be 

achieved by simulating the movement of precipitation through storage volumes that represent canopy 

interception, surface depressions, the soil profile and two groundwater layers. Computational 

components of this algorithm also include evapotranspiration (ET), surface runoff, and groundwater 

flow (HEC, 2006). Conceptually, the HMS SMA algorithm divides the potential path of rainfall onto a 

watershed into 5 layers, Figure 7. Besides precipitation the only other input to SMA algorithm is 

potential evapotranspiartion rate.  Clark unit hydrograph technique, used to transform the excess 

rainfall to direct runoff, has 2 important parameters, namely time of concentration and storage 

coefficient which is needed to be determined through the calibration process.  

                                                                                                                                       

                                                                                                                                                                                      

Figure 7: Conceptual schematic of the continuous soil moisture accounting algorithm (Bennett, 

1998) (source HEC-HMS Technical manual) 

5.1. HEC-HMS Model Setup 

HEC-HMS Model setup consists of 4 main model components: basin model, meteorologic model, 

control specifications and input data (time series, paired data and gridded data).  

The Basin model for instance, contains the hydrologic element and their connectivity that represents 

the movement of water through the drainage system (HEC, 2006).  HEC-GeoHMS, an Arc view 

extension developed by the U.S. Army Corps of Engineers (USACE) was employed to create the basin 

model background map file and to delineate the sub catchments from the Digital Elevation Model 

(DEM). DEM was downloaded from the Consortium for Spatial Information (CGIAR_CSI)9, which 

provides the NASA Shuttle Radar Topographic Mission (SRTM) 90 m x 90 m resolution Digital 

Elevation Data for the entire world.  

The sub basin physical characteristics such as longest flow lengths, centeroidal flow length and slopes 

derived from DEM were used for estimating the hydrologic parameters. Longest flow path information, 

for example, was used for estimating time of concentration  

The background maps provide a spatial context for the hydrologic elements composing basin model. 

They are commonly used for showing the boundaries of a watershed or the location of streams. Terrain 

9 . http://www.ambiotek.com/srtm
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pre-processing, Basin processing and HMS model support are the main functionalities of HEC-

GeoHMS. In the terrain pre-processing DEM derived from SRTM is used as input and a series of steps 

consisting of computing the flow direction, flow accumulation, stream definition, stream delineation, 

watershed delineation, and watershed aggregation were performed step by step to derive the drainage 

networks.  The basin processing step gives capability of merging, editing and subdividing of basins and 

rivers whereas the HMS model support produces a number of hydrologic inputs that are used directly in 

HMS. Figure 8 shows the Upper main Beles sub-basins used in the modeling.  

The meteorologic component is also the first computational element by means of which precipitation 

input is spatially and temporally distributed over the river basin. The spatio-temporal precipitation 

distribution is accomplished by the gauge weight method. The Thiessen polygon technique was used to 

determine the gauge weights. The Meteorologic model uses monthly evapotranspiartion as input for 

continuous hydrological simulation which is the case for this model.  For this particular study, potential 

evapotranspiartion computations were carried out using FAO Penman-Monteith method. FAO Penman-

Monteith Method is recommended as a sole standard method for the definition and computation of the 

reference evapotranpspiartion (ETo) (Allen et al., 1990). It requires radiation, minimum and maximum 

temperatures, air humidity, and wind speed as input. 

Figure 8:  The three small sub-basins of Upper Main Beles 

5.2.   Calibration and Validation 

HMS has the capabilities to process automated calibration in order to minimize a specific objective 

function, such as sum of the absolute error, sum of the squared error, percent error in peak, and peak-

weighted root mean square error. Therefore, automated calibration in conjunction with manual 

calibration was used to determine a practical range of the parameter values preserving the hydrograph 

shape and minimum error in volumes. Flow calibration was carried out over the period of `1994-1998 

and model validation was carried out over the period of 1999-2001. The whole 12 parameters, needed 

for the SMA, were taken into consideration in the simulation. The maximum infiltration rate and the 

maximum soil depth, as well as, the percolation rates and groundwater components had significant 

influence on the simulated flow discharges. The remaining parameters were adjusted to match the 

simulated and observed volumes and hydrograph shape. The coefficient of determination (R2) and 

Nash-Sutcliffe simulation efficiency (E) were used as evaluation criteria. The coefficient of 

determination (R2) during calibration and validation were found to be 0.63 and 0.73, respectively. 

Nash-Sutcliffe simulation efficiency (E) was found to be 0.62 during calibration and 0.72 during 

validation (Figure 9).  In general, the validation results showed that the model performance is 

reasonably good in simulating flows for periods outside of the calibration period. 
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Figure 9: Validation result of Simulated and observed flow hydrographs 

5.3.  Model Simulation Corresponding to Future Climate Change Scenarios

The ultimate goal of downscaling is to generate an estimate of meteorological variables corresponding 

to a given scenario of future climate so that these meteorological variables will be used as a basis for 

hydrological impact assessments.  Therefore, after calibrating the hydrological model with the 

historical data, the next step was to simulate flows corresponding to future climate conditions by using 

the downscaled precipitation and temperature data for emission scenario used in the downscaling 

experiment (A2a).  This might help in identifying any specific trend in the mean flows in the Beles 

River corresponding to future time horizon considered in this study.  

The future simulation (2050 s) was carried out with the downscaled precipitation and temperature data.  

Fig 10 shows the change in simulated average monthly mean flows of Beles River corresponding to the 

downscaled precipitation and temperature data of the current(1961-2001) and future(2040-2069) 2050s 

climate. The simulation results showed an average mean flow reduction in the summer. SDSM 

downscaling data resulted in a decrease in the mean annual flow by 5.7 % during the period between 

the present and the future (2050). 
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Figure 10: Comparison of  simulated change in the  average monthly  mean flows in Beles River 

corresponding to the downscaled precipitation and temperature data of the present (1961-2001) 

and future (2040-2069)  

6. CONCLUSION 

A number of studies were conducted on the Nile River. However,  few studies investigated the impact 

of climate change on Upper Blue Nile River Basin (Ethiopia). Apparent was, also, that there is  no 

literature published at sub-basin levels. All studies focused on the whole basin. But the water resource 

planning and managements were carried out at the sub- basin levels. The use of watershed, as the basic 

planning unit, did not allow the integration of water uses only, but it was also important in managing 

the relationship between quantity and quality, upstream and downstream water interests. 
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The results of the downscaling model indicated an increasing trend in both minimum and maximum 

temperature in the future. The average increase in the minimum and maximum temperature is about 2.5 

°C and 2.3 °C, respectively. The IPCC finding,  based on the results from several GCM model output, 

indicated that warming across Africa ranges from 2 °C  ( low scenario ) to 5 °C (high scenario). Hence 

the result obtained in this case agrees with the IPCC findings. The result of downscaled Precipitation 

indicated a reduction in precipitation in the main rainy season which accounts the major share of the 

annual runoff of the area. The streamflow change corresponding to the downscaled precipitation and 

temperature showed a decrease in the mean annual flow of 5.7 %, during the period between the 

present and the future (2050s). The downscaling, in this study, is performed by using one GCM model 

output (HadCM3) only.  

Previous studies showed that data taken from different GCMs could differ significantly. Therefore, the 

methods described in this paper could be used to provide an indication to the likely impact of climate 

change in the Beles sub basin Upper Blue Nile. Consequently, care should be taken in interpreting the 

results for further impacts assessments. 

7. LIST OF SYMBOLS /ACRONYMS 

A2a                   Medium-high Emissions Scenario 

CICS                 Canadian Institute for Climate Studies  

DEM                 Digital Elevation Model  

ETo                   Reference Evapotranpspiartion 

GCM               General Circulation Model 

HadCM3           Hadley Centre Coupled Model version3  

HEC- HMS       Hydrologic Engineering Center-Hydrologic Modeling System 

NCEP                National Center for Environmental Prediction 

SDSM               Statistical Downscaling Model 

SMA                  Soil Moisture Accounting  

SRES-               Special Report on Emission Scenarios 

SRTM               Shuttle Radar Topographic Mission 

USACE             U.S. Army Corps of Engineers 
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