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ABSTRACT

The soil water retention curve and the infiltration rate are imporiant parameters in
many scil, hydrological, ecological and agricultural studies. They play the main role as the
input parameters in models for water flow and solute transport in the vadose zone. in this
study, Multilayer Artificial Neural Network: using the backpropagation aigorithm were
selected to estimate the point estimation of the soil water retention curve (i.e. G-oups , B-20
ks , O-33 kPa . B.1000wPa AND O 1s00wpe } and the steady infiltration rate ( /. ) covering different
types of Libyan soils. The activation function was selected LOGSIG in the middle and exist
layers. Tie input data were consisted of the percentages of sand, silt and clay and bulk
density {ps) for point estimation and the percentage of sand, silt and clay, bulk density,
saturated hydraulic conductivity {k;) and the 8-1 ke for steady infiltration rate (). The
performance of the ANN models was evaluated against a set of data that never seen by the
model during the training phase. The evaluation of ANN model was performed against
pedotransfer functions developed by Minasny et al. (1999) to determine the point estimation
{B-10kPa , B-33 kP, Nd © _1s00kra). Multivariable linear regression model (MLR) based on the
percentage of silt, ks and G-y s Was also developed to determine infiliration rate for
evaluation purpose, as well. The results obtained in this study showed good agreement
between the actual and the ANN simulated data for point estimation and the steady
infiltration rate. The overali perfermance of the ANN models for some seiected point
estimation {i.e, 8-1pxpa , G-33 kpa . 3nd B _;s00xpa) Was better than that of Minasny et al. (1999)
PTFs. The values of mean absolute error (MAE) and root mean square error (RMSE) were
slightly smaller in ANN steady infiltration rate model compared to Mi.R model which was
developed to estimate the /. Although the results of these comparisons encourage the
capability of using ANN in practice, it would be valuable to have large local soil database
from many different sites, in order to make a stronger assessment of the ANN models.

Keywords: Artificial neural networks, multivariable linear regressions, soil water retention curve, steady
infiltration rate, Libyan soils

INTRODUCTION

Like many soil hydraulic properties, soil water retention curve and
the infiltration rate are important parameters in many soil, hydrological,
ecological and agricuitural studies. They play the main role as critical input
parameters in models for variably-saturated flow and contaminant
transport, and often serve as integrated indices for soil quality (Lin, 2003).
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Soil water retention curve, which is the points at a series of matric
potentials or parameters of analytical soil water retention equations, is
needed for the study of plant available water, infiltration, drainage, hydraulic
conductivity, irrigation, water stress on plants and solute movement (Brady,
1974). Moisture percentages in field capacity and permanent wilting point
are the most common soil moisture constants used in soil-plant-water
relationships and influenced by soil texture, bulk density (p,). Field capacity
(FC) is sometimes defined as the upper limit of available of soil water
content which corresponding to matric potential ranging from -10 kPa for
sands to -50 kPa or more for very fine- textured soils. However, a matric
potential of -33 kPa is used to define field capacity for most soils (Larry,
1988). The lower limit of the available soil moisture is permanent wilting
point which occurs at -1500 kPa. On the other hand, among the various
components of the hydrological cycle, it can be stated that the infiltration
rate is one of the most important component. Along with precipitation, it
determines the amount of water that becomes available to plants, the runoff
and water supply from reservoirs groundwater. There are many methods of
direct measurement that can be used to determine the soil water retention
curve and the infiltration rate in the field or in the laboratory (Klute, 1986).
The limitations of such measurements are subjected to specific ranges of
applicability with respect to the soil type and generally quite cumbersome
and requires a substantial investment in both time and money. So many
attempts were made at estimating soil characteristics from readily availabie
data, such as textural soil properties (i.e, particle-size distribution, and
porosity), which are the most common measured soil data across the world.
Such relationships is Pedotransfer functions (PTFs) approach which can be
extremely powerful since it can either be used at the local scale using point
textural properties or at the watershed scale, where textural information has
been aggregated (Delleur, 1999). The majority of PTFs are completely
empirical, although physico-emprical models and fractal theory modeis
have aiso been developed ( Sobieraj et al, 2001). Recent studies in PTFs
development focus on the development of better functions to estimate soil
hydraulic properties (soil water retention curve, hydraulic parameters, etc)
for different geographical areas or soil types and determination of the most
important basic soil properties as input (i.e., particle size data and bulk
density, etc.). Pachepsky and Rawls (1999) and Merdum et al, (2006)
employed ANN and regression pedotransfer functions for prediction of soil
water retention and saturated hydraulic conductivity functions and indicated
that the differences between the two methods were not statistically
significantThe crucial step in deriving PTFs is by forming empirical
relationships between basic soil properties and parameters to be predicted.
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This can be achieved by various mathematical methods, such as

multivariable linear regression (Wosten et al, 1995). A recent approach for
fitting PTFs is to use artificial neural networks (ANN) (Pachepsky ef al,
1996 and Schaap et a/, 1998 a). Neural network applications have diffused
rapidly due to their functional characteristics, which provide many
advantages over Multivariable linear regression approaches (Koekkoek and
Booltink, 1999). The key advantage of using the neural network approach is
that no relationships need to be assumed beforehand. Instead the network
is trained to find the relationship.
The purpose of this paper is to estimate the main points of soil water
retention curve which included the moisture content at -10, -20, -33, -1000
and -1500 kPa and the steady final infiltration rate from basic soil physics
properties using artificial neural network (ANN). in addition, the
performance of the new method is evaluated and compared with the other
developed PTFs.

MATERIAL AND METHODS
Theoretical concept and structure of feed-forward
backpropagation

The feed-forward backpropagation neural network model was
suggested and developed to be used as a tool to determine the soil water
retention curve as represented by point estimation and the steady
infiltration rate. The error backpropagation learning algorithm (Rumelhart ef
al., 1986) which is a form of supervised learning was used as training
algorithm to train ANN. The Error back propagation learning algorithm
consists of two passes of computation through the different layers of the
network a forward pass and a backward pass (Jacek, 1995). In the forward
pass, the input vector is applied to the input nodes of network and its effect
propagates to the units in the first layer and each unit produces a set of
outputs. The outputs of these units are propagated to units in subsequent
layers and this process continues. Finally, a set of outputs is produced as
the actual response of the network. During the forward pass the synaptic
weight of the networks are all fixed. The process of the forward pass can be
summarized in mathematical form as follows

k
S,=Zr:1w,jy,+9, 1
y =7G) 2
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Where w, = (wy,, wa, W, ) is the weight vector of unit i and k is the number
of neurons in the layer that includes unit i. , y, is the output from unit j, 6, is
the bias of unit i, s, is the incoming signal of unit I, ¥ is the estimated output
vector, f is the transfer function. During the back pass the synaptic weights
are all adjusted in accordance with an error-correction rule. The actual
response of the network is subtracted from the desired response to
produce an error signa! which given by,

! .
Etny :t} tny - Yinp 3
Where y, is the estimated state of the output unit in response to the n™ input
exemplar and Y(n) is desired state of the output unit. This error signal is
then propagated backward through the network against the direction of
synaptic conditions. The synaptic weights are adjusted to make the actual
response of the network move cioser to the desired response.

The adjusted weight is defined by

B (n+ 1y = =722 — £pww, ()

Where n represents the leamning rate, § is a constant (momentum term) that
determines the effect of past weight changes on current weight change.
However, when the error is acceptably small for all of the training pattemn
pairs, training can be discontinued. .

Parameter selection criteria and modeling

Multilayer networks using the backpropagation algorithm were
selected to construct the network. Levenberg-Marquardt (LM) training
algorithm was used. The hidden layers for both models started with a smali
number of neurons and increased progressively until the optimum structure
was reached. The selection of the optimum network structure was
performed by trial and error. Sigmoid transfer function is commonly used in
mutltitayer networks that are trained using the backpropagation aigorithm.
The Log-sigmoid transfer function was used in the hidden and output
layers. The structure of a feed-forward ANN is shown in Figure 1. This ANN
is a popular neura! network which known as the back propagation algorithm
introduced by Karaca and Ozkaya (2006).
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Figure 1: A typical three-layer feed-forward ANN

To build up and evaluate the ANN model independent datasets
were acquired from many previous iocal studies on different areas of Libya
(Great Man-Made River, 1997 and 1998; Alaswad, 1997 and Alzlait, 2000).
The summary of the parameters and the statistics data sets soils are given
in Table 1.

The data set was divided into three sections: the first section was
used for training, the second was used for testing and the third was used to
verify the ANN. The model output from the verifying phase was compared
to the observed data and examined to evaluate the model performance with
a data that was never seen by the model during the training stage.

In this study, it was suggested that the soil water retention
characteristic is a function of soil particle distribution and bulk density.
Many studies reported that the soil water retention characteristic and
infiltration rate are strongly related to the particle-size distribution and bulk
density (Gupta and Larson 1979 and Ghosh 1980). it was assumed that
the retention curve could be represented by five point estimation at pre-
defined potential, ie., -10, -20, -33, -1000 and -1500 kPa, respectively.
However, soil particle distribution which represented by the percent of
.sand, silt.and clay and the bulk density (gm/ cm®) of soil was selected to
represent the input layer in the neural network sets. The oufputs from the
soil water retention ANN model were single- point estimation, ie., the
moisture contents at -10 , -20, -33, -1000 and -1500 kPa.
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Table 1: Statistics of physical soil properties used in this study

Number
of Standard
models Soil properties samples  Minimum  Maximum  Mean Deviation
Sand (%) 143 836 100 6913 25714
Silt (%) 143 o 64 80 1954 1720
O-104ps  Clay (%) 143 ] 54 84 1111 1108
Polgmem™) 143 1.24 1.73 148 013
B-10 xps (om’ cm™) 143 208 44.85 18.53 1258
Sand (%) 80 8.36 100 6340 3077 )
Silt (%) 80 0 64.80 2384 2099
B cum Clay (%) 80 0 54.84 1238 1276
po {gm cm™) 80 124 161 139 008
B-z0u0s fem’ cm’’} 80 0.99 36.31 1232 1181
Sand (%) 118 8.36 100 5716 2740
Silt (%) 118 0 64.80 2614 1820
8 e Clay (%) 119 0 54.84 1645 12.79
o (gm em™)0, 119 122 179 1445 013
B-334pa e’ ctn 'J 14 ) 4.0 TRV 1004
Sand (%) T80 836 100 " B340 3077
Silt (%) 80 0 64.80 2384 2099
O coorre COY (%) B 0 D4 B4 123 1246
pe tgm cm™) 80 1.24 1,61 139 0.09
& -ioposps (E7 c7) B0 0.64 3604 1122 873
Sand (%) 102 2055 98.81 6415 2042
6 isorewr SHL{%) 102 0.36 54.30 2048 1178
Ciay (%) 102 0.18 53.20 1536 11.00
po (gm em™) 102 1.22 179 157 0N
© - 1500 kpar (CM° cr”) 102 063 18.59 617 393
Sand (%) 150 470 95 90 6520 2955
Silt {%) 159 0.30 60.00 1572 1665
Ciay {%) 159 0.38 88.50 19.06 1836
I po {gm cm?) 159 117 1.75 152 012
K (emh™) 159 0.06 19.20 444 449
8-10 kpa (cm® cm™) 158 6.55 4345 2451 7.98
I{emp™ 159 0.50 19.20 485 496
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The input parameters (table 1) which used to develop the steady
infiltration rate (/.) model were selected based on theoretical studies. Such
studies revealed that the infiltration rate is a function of saturated hydraulic
conductivity, soil particle distribution and the matric potential behind the
wetting front (Springer and Cundy, 1987, Bohne et al. 1993, Mishra and
Parker, 1990 and Mahdian et a/ 2008). The input data used to perform the
neural network for infiltration mode! included, the percentage of sand, silt
and clay, bulk density (pp), soil moisture content at -10 kPa (6., «ps) and
saturated hydraulic conducitivity (ks). The output for the steady infitration
rate ANN model was steady infiltration rate (cm/h) only. All data were
processed and loaded into the neural modeling application Matiab® Version
7.0 of Neural Network Toolbox -Graphical User Interface (Demuth and
Beale 1998) to develop the ANN.

2.3 Evaluation of performance

The adequacy of the ANN evaporation models was evaluated by
several statistical measures, such as mean absolute error (MAE), root
mean square error (RMSE), correlation coefficient( r), and index of
agreement (d;) and the linear regression equation with intercept equals
zero. These statistical criteria can be calculated as follows:

i .
MAE = ;ZIY, A

iF=1 5
11 n
RMSE = Q—Z(Y, — V)
\ﬂi=l 5
~ 2
Sr:;lvl -Yil

- S —
5000 ) AR A RS AR AY

Where, n is the total number of events considered. Y, ad Y, are the

observed and predicted of the i" output, respectively And Y is the mean of
the observed output.
The closer the MAE and RMSE is io zero closer to the better accuracy,
while the closer the r and d, is to one closer to the better accuracy.

The linear regression equation with intercept equals zero was aiso used to
determine the goodness of the predicted model. The general form of this
equation is expressed as

y = ax 9
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Where y represent the simulated data, a the slope of the regression line
and x represents the actual data.

The closer the slope is to 1 the better is the general predictive power of the
model. A correlation analysis was performed between the actual and
simulated data. The value of coefficient of determination () given in the
correlation analysis would indicate the accuracy of the predictions. in
addition, the results of comparison between the actual and simulated data
were plotted against a 1:1 line. In case of perfect prediction all paired data
would fail on the line across the graph signifying a slope of one (simulated=
actual).

To verify the reliability of the ANN model, data other than those
used in the training and testing phases are needed. Therefore some of the
collectec data were truncated for verification purpose. Moreover, a series of
pedotransfer functions (PTFs) for predicting soil water retention after
Minasny et al. (1999) were selected for determining the accuracy of the
developed ANN model. These pedotransfer functions are expressed as:

8-10kPa = 0.6561 - 2.8x10-3 Sand ~ 0.141pb +1.9 x10-5 Sand.Clay

10
6_33 kpa= 0.5482 — 3.3x10° Sand — 0.1 p, +4.1x10° Sand.Clay + 2.4x10°° Sand. Silt
11
B_1500 kps = 0.26 + 9.2x10™ Clay — 2.7x10° Sand + 8.58x10°° p, + 1.64x10™ Clay.Sand
12

Where, 6_, «r. is the volumetric water content at - 10 kPa, 0_3; «es 1S the
volumetric water content at - 33 kPa, 8_;s500 kps vOlumetric water content at -
1500 kPa, Clay is the mass (%) of particles <0.002 mm, Silt is the mass (
%) of particies (0.002 —0.20 mm), Sand is the mass (% )of particles 0.20-2
mm, and psis the bulk density (gm/cm?®).

Unfortunately, there is no available published PTFs has been constructed
based on the suggested inputs (i.e., soil particle distribution, bulk density,
soil moisture content at -10kPa and saturated hydraulic conductivity) could
be used to verify the ANN model for steady infiltration rate. Therefore, it
was suggested to build PTFs by the same available collected data which
used to develop the steady infiltration rate ANN modei. Such verification will
show the accuracy of the ANN model compared to PTFs. The most
common method used in estimation PTFs is to employ multivariable linear
regressions (MLR). The suggested form of the regression equation is:

Ic =bo+ b1 Sand + bz Silt + ba C’ay*‘ b4 Pyt b5Ks +b5 9_1okpa 13
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Where ; /. is the steady infiltration rate (cm/ h), b, is the constant of
regression, by, by, by, by, bs and b are regression coefficients, p, is the bulk
density (gm/cm®). and k; is the saturated hydraulic conductivity (cm/ h). The
soil particles distribution (i.e., Sand, Silt and Clay) are in percentage. The
statistical package Minitab® version 14 was used to analyses the data.

RESULTS AND DISCUSSIONS

The optimum models structure of the point estimation of the soil
water retention characteristic (i.e., 9.;9 kPa 8. 20 kPa, O a3 KPa » 61000 kPa and
© 1500 kpa) @nd the steady infiltration rate (/;) were accomplished through
trial and error operations to determine the number of hidden layers. The
input layer composed of 4 and 6 neurons for soil water retention
characteristic and infiltration rate modeis, respectively. The output layer has
only one neuron for each soil water retention characteristic and infiltration
rate. The hidden layer was started with small number of neurons and
increased progressively until the optimum structure was reached. Table 2
shows the neural network parameters used to specify the soil water
retention characteristic and infiltration rate. The data sets were divided into
three parts, (56 to 65%) of the data was used in the training phase, (13 to
19 %) of the data was used in the testing phase, while (19 to 25%) was
used for verification purpose. The training phase reflects the repeat feature
of an ANN model, while, the testing phase reflects the generalization
feature. The verification involves evaluating the npeural network
performance on a set of test problems that were not used for training. If the
results of comparisons between the actual and predicted data indicated
high coincidence, it could then be reliably recommended in practice. Figure
2 plots the results of the simuiated results via ANN models and the actual
O.0kpa » ©-20 kPas © 33 kpa »  O-1000 kpa BNA O y500 kpa @Nd | during training
phase. As can be seen from the figure, there is high accordance between
-actual and simulated data of both soil moisture content at different matric
potentials and infiltration rate whereas the actual data were closely
matched by the simulated resuits by ANN,
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Figure 2. Actual and simulated soil moisture content (malma) and steady
infiltration rate (cmy/ h) during training phase.
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Table 2: Neural network parameters

Model Number of neurons Number of data sample
inputs _hidden _outputs training _testing _verification
©.10kpPa 4 5 1 93 20 30
© z0kpa 4 4 1 45 15 20
€ 33 kpa 4 4 1 75 20 22
B oookpa 4 5 1 45 15 20
© -1500kPa 4 4 1 62 20 20
I 6 10 1 86 30 33

tn case of the point estimation of the soil water retention, the resuits
of statistical analysis indicated that the MAE, and RMSE are generally
close to their optimum values, Tabie 3.
The maximum values of MAE and RMSE are 0.037 and 0.067 m%m®,
respectively. It can also be noted that the minimum value of r and d, are
0.74 and 0.93, respectively. Even though these values represent the worst
findings, they are very close to their optimum limit. The siope of the best-fit
line (a) with interception equal to zero fluctuated from 0.96 to 0.99 with
determination coefficients (r?) which ranged from 0.85 to 0.97, indicating
slight underestimation of the soil water retention characteristic. The same
trend was observed with infiltration rate estimation. The -calculated
performance indicators, i.e., MAE, RMSE, r, d,, a and r* are 0.45 cm/h,
0.64 cm/h, 0.99, 0.90, 0.989, and 0.99 respectively. Such resuits indicated
that the ANN models during training phase have high predictive power and
ability to track the path of the actual cbservations.

Table 3. The performance indicators for point estimation after training

phase
Models MAE RMSE R d; a re
(m*m3) (m%m?)
.10 kPa 0.022 0.031 0.97 098 0.98 0.83
©.20kPa 0.017 0.020 0.97 0.98 0.99 0.85
E.33kPa 0.037 0.064 0.74 0.97 0.99 0.95
©.1000 kPa 0.009 0.015 0.98 0992 0.99 0.97
S 1500 kPa 0.007 0.017 0.93 098 0.96 0.85
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Figure 3. The scatter plot of the actual versus simulated Band . during
training phase
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The performance of the mode! was further evaluated using the
independent data which did not included during training phase. Hence the
results of comparisons between the actual and simulated data indicated
high coincidence; it could then be enable the model's users to estimate the
point estimation of soil water retention characteristic and steady infiltration
rate. The simulated data of the soil water retention data and infiltration rate
as obtained from the ANN mode! versus the actual data is presented in
scattergram as shown in Figure 3. Graphical depiction shows that the point
are uniformly scattered around the line 1:1 line with slope of 0.97, 1.00,
1.01, 0.97, 1.04 and 1.064 B.;okpa . B20kpa » S.33kpa, O.1000kPa, O -1500 kPa
and /., respectively.

The coefficient of determination r? of the linear regression was found
to be 077, 097, 091, 090, 0.67 and 0.91 for 6.10 kPa 9_20 kPa » e_;;;;kpa, e.
1000 kPa, © .1s00 pa @nd I, respectively. Since the value of r* could be
interpreted as the proportion of variation in actual vaiues that explained by
the fitted model, this value indicates that the ANN models predictions in the
soil water retention and infiltration rate were reasonably good.
Tabie 4 shows the performance indicators, i.e., MAE, RMSE, r and d, for
soil water retention. As can be seen these values fluctuated from (0.015 to
0.042 m*m?), (0.014 to 0.061 m*m?), (0.76 to 0.99) and (0.93 to 0.99) for
MAE, RMSE, r and d,, respectively.
The performance indicators for the /. are 1.19 cm/h, 1.68 cm/h, 0.94 and
0.98 for MAE RMSE, r and d,, respectively.

Table 4: The performance indicators for point estimation after verifying

phase
Models MAE RMSE R d, a r
{m*im*) (mm®)
E.10kpa 0.042 0.061 0.76 093 097 077
©.20kPa 0.015 0.017 0.99 098 100 097
O.33 kpa 0.023 0.0311 0.94 099 101 09
1000 kpa 0.0154 0.020 0.95 099 097 090
© 1500 kPa 0.0121 0.014 0.99 098 1.04 067

However, the results of the comparison between the actual and
simulated data for both point estimation of the soil water retention and the /;
indicate a reasonable agreement and suggested that the ANN models
performed well considering the discrepancies may be resulting from model
and experimental error. ‘

Vol. 15 (1), 2010 183



J. Adv. Agric. Res. ( Fac. Ag. Saba Basha)

Comparisons between different ANN and Minasny et al. (1999) PTFs
developed to estimate moisture content at -10, - 33 and -1500 kPa are
shown in figures 4. It is clear from the figure, there is high accordance
between actual and ANN predicted data compared with Minasny et al.
(1999} PTFs. The reliability of the ANN model and Minasny et al. (1999)
PTFs predictions can be estimated also from the Tabie 5. The values of the
performance indicators support the findings as mentioned previously,
whereas their values are closed to their optimum in case of the ANN
models compared to Minasny et al. (1999) PTFs. For instance, the error
percentage was found to be -3%, 1% and 4% in ANN model compared to
+21%, 83% and 93% in Minasny et al. (1999) PTFs for 6-10 kPa, ©-33 kPa
and ©-1500 kPa , respectivelyThe discrepancies may be attributed to the
fact that Minasny et a/. (1999) PTFs model was developed based on basic
soil properties data across Australia. This is consistent with both theory and
studies in other parts in the world. For instance, van den Berg et al. (1997)
and Amini et al. (2005) also reported similar resuits where the neural
network-based models provided more reliable predictions than the PTFs
model. Schaap et al (1998b) estimated van Genuchten parameters for
1209 soil samples from the US using ANN. They distinguished their PTFs
based on available in formation level: texture class; clay, silt and sand;
texture + bulk density; texture +bulk density + measured 6 at -33 and -1500
kPa. They found that ANN performed better than four published PTFs and
accuracy of prediction generally increased if more input data are used, but
there was always a considerable difference between predicted and
measured values. Koekkoek and Booltink (1999) applied similar approach
to estimate scil water retention at different potentials from Dutch and
Scottish data bases. They found that ANN performed somewhat better than
PTFs of Gupta and Larson (1979). A multivariable linear regression
approach (MLR) using Minitab 14 statistical package was used to find out
the best-fit coefficients for Equation 13.
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Figure 4: Comparison between ANN modei and Minasny et al. (1999) PTFs
for predicting ©_1okpa ,E.23kpa, © -1500kPa

The results of the regression analysis showed that the saturated
hydraulic conductivity, moisture content at -10 kPa and silt (%), were
significantly correlated with the /. whereas
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(r= 0.84, t-value at probability level P<0.05}.

Table 5. Comparison of ANN mode! and Minasny et al. (1999) performance
in predicting 8 at -10, -33, -1500 kPa the verification set

Models MAE RMSE r d; a r
(m¥m?) _(m*m?)
ANN model 0.042 0.061 076 093 087 077
. 10xp.
’ Minasny et al. 0.088 0.101 095 083 1.21 -0.08
(1999)
ANN model 0.023 0031 0954 099 101 091
e-33kPa
Minasny et al. 0.215 0218 095 084 193 0.03
(1999)
ANN mode! 0.012 0.014 099 099 104 067
© s
kPa Minasny et al. 0.057 0.077 0.81 093 183 0.65
(1999)

Similarly, Mbagwu (1995) reported that the k; was significantly related to /;
on 18 sites with different land use histories on a watershed in the Nsukka
plains of southeastern Nigeria.The similar results were also obtained by
Canarache ef al. (1968). They found that the steady state infiltration rate
depended on the initial moisture content, total porosity, non capillary
porosity and hydraulic conductivity.

The estimated coefficients of the /. equation and statistical tests are
presented in Table 6.

The derived multivariable -linear regression infiltration rate /. model is as

follows:

I =4.648 +0.821 k - 0.168 6_,, + 0.043 Silt 14
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Table 6: Coefficients and diagnostic tests for multivariable-iinear regression
model for steady infiltration rate

Predictor Coefficient  Std. Error t-Statistic Probability

variable
4.648 0.973 4775 0.000

Constant
K 0.821 0.065 12.559 0.000
.10 kP2 -0.168 0.041 -4.082 0.000

Sift 0.043 0.020 2.121 0.036

The multivariable finear regression model (MLR) was used to
evaluate the steady infiltration rate ANN modei. The comparison between
the actual data of the /. and those predicted from the ANN and MLR models
is shown in Figure 5. As can be seen from the figure, there is high
accordance between actual and predicted data of /. whereas the actual
data was ciosely matched by the predicted data.

- = = Actual =—e— ANNmodel —»— MLRmodel

‘12 3‘4 S 6 7 8 9101112131415161718192021222324252627282930313232
Sample size

Steady infiltration rate (cm/h)
—
o

Figure 5. Comparison between ANN and MLR modei for predicting steady
infiltration rate

The reliability of the ANN and the MLR models predictions can be
estimated ailso from the Figure 6 where the predicted data was plptted‘
versus the actual. The figure shows also the equity line and best fitted line
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for the observed and the predicted of the /.. The points are closely lie on
and around the 1:1 line with siope value found to be 1.064 and 0.879, with
determination coefficient of 0.91 and 0.86 for ANN and MLR modeis,
respectively. The slope values reveal that the percent error between the
actual and predicted data is + 6.4 % and — 12% for ANN and MLR models,
respectively.

¢ ANN model 1 MLR model
25 Linear (ANN model) - - - Linear (MLR model)
O /
20 = )
—_ o
o @
£ 15 y= 1.064x /
o R2=0.916 <. -7 ¥= 0.579x
E T R?= 0.864
- 10 =
2 ]
8
?_, 5
Q
0 T L} T
10 15 20
-5

Actual | icm/h)
Figure 6. The scatter plot of the actual versus the simulated |,

Table 7 shows the performance indicators for ANN and MLR
models and suggested that both models performed well considering the
discrepancies may be resulting from the model and the experimental error.
The values of MAE, RMSE are slightly smaller in ANN mode! compared to
MLR. The similar results have been reported by the Tamari et al. (1996), as
well. They found that using artificial neural network leads to less RMSE
values than the.multivariable linear regression. Koekkoek-and Beoltink
(1999) also reported that ANN performed slightly better, but the differences
were not significant. Even though these results indicate a reasonable
agreement between the ANN and MLR models for predicting the /;, ANN
model is a more realistic and reliable since it does not predict negative /.
values, as is the case with the MLR using the untransformed data.
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Tabie 7. Comparison of ANN and MLR models performance in predicting
steady infiltration rate

Models MAE (cm/h) RMSE (cm/h) R d

ANN 1.19 1.82 0.95 0.98

MLR 1.41 1.95 0.85 0.97
CONCLUSION

The results obtained showed very good agreement between the
measured point estimation (i.e., © .1okpa » O.20 kPa , O-33kPa , ©.1000kpa aNd O
as00kPa ) @nd the steady infiltration rate (/. ) by ANN mocels during training
phase. The performance resulted in R? values of 0.74-0.98 in the point
estimation using ANN model and 0.99 for infiltration rate ANN model. ANN
models also provided quite acceptable estimates of point estimation and
infiltration rate in spite of the use independent data which did not included
during training phase. The overall performance of the ANN models for
some point estimation { i.e., © 1o xpa, , .33 kpa, @NG O 1500 kpa) WaS better
than that of Minasny et a/. (1999) PTFs. The error percentage was found to
be -3%, 1% and 4% in ANN model compared to +21%, 93% and 93% in
Minasny et al (1999) PTFs for © .10 kpa, , S33 wpa, and © 1500 KPa:
respectively. The discrepancies may be attributed to the fact that Minasny
et al. (1999) PTFs mode! was developed based on the basic soil properties
data across Australia. The vaiues of MAE and RMSE were slightly smaller
in ANN infiltration model compared to Multivariable linear regression model
which developed to estimate the infiltration rate. The higher accordance
between ANN and MLR models in case of infiltration rate predictions may
be explained by the fact that the ANN and MLLR modals were they both
developed from the same data set of Libyan soils. However, it would be
valuable to have large local soil database from many different sites, in order
' to make a stronger assessment of the ANN models.
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