

PHYSIOLOGICAL RESPONSE OF FODDER BEET PLANTS TO THE MUTUAL EFFECT AMONG IRRIGATION INTERVALS, POTASSIUM FERTILIZER AND GIBBERELLIC ACID SPRAY AT MARIUT REGION.

Journal

Ahmed, S.Th.

J. Biol. Chem. Environ. Sci., 2010, Vol. 5(3):79-106 www.acepsag.org

Plant Ecology and Range Management Dept., Desert Research Center, Matareya, Cairo, Egypt.

ABSTRACT

Two field experiments were conducted during the two winter growing seasons of 2006 - 2007 and 2007 - 2008 at the experimental station of the Desert Research Center at Mariut, Alexandria Governorate, Egypt, to study the effect of irrigation interval (8, 16 and 24 days), potassium fertilizer (0, 100 and 150 kg K₂O/fed.) and gibberellic acid (tap water, 200 and 400 ppm) on growth, yield and chemical composition of fodder beet plants. The results could be summarized as follows:

- 1- Water stress by prolonging irrigation interval from 8 up to 24 days reduced top dry weight / plant, leaf area index, specific leaf weight (at 120 and 150 day from sowing), root diameter, fresh and dry weight of roots and leaves, fresh and dry yields of roots and leaves, crude protein, total carbohydrate and potassium in roots as well as total chlorophyll in leaves at 180 days from sowing. On the other hand, crude fiber, and sodium percentages in roots of fodder beet increased as the irrigation interval extended to 24 days at the first and second years.
- 2- Gibberellic spraying exerted a significant increase in leaves dry weight / plant, leaf area index, specific leaf weight, root diameter, fresh and dry weight of roots and top / plant, fresh and dry yields of roots and top / fed., crude protein, total carbohydrate, crude fiber and potassium in roots as well as total chlorophyll in leaves of fodder beet through the two seasons. Increasing gibberellic spraying levels from 0 up to 400 ppm decreased sodium

percentage in roots of fodder beet during 2006/2007 and 2007/2008 growing seasons.

- 3- Potassium application (150 kg K₂O/ fed.) increased top dry weight / plant, leaf area index, specific leaf weight, root diameter, fresh and dry weight of roots and top / plant, fresh and dry yields of roots and top / fed., crude protein, total carbohydrate and potassium in roots as well as total chlorophyll in leaves compared with control (nil potassium), these results were true through the first and second season. Sodium and crude fiber percentages in roots of fodder beet decreased with increasing potassium fertilizer from 0 up to 150 kg K₂O/ fed. through both seasons.
- 4- The mutual effect among irrigation interval, gibberellic acid (AG₃) and potassium fertilizer had a significant effect on root diameter, leaves / roots ratio, fresh and dry weight of top / plant, fresh yield of roots and top / fed. and crude protein percentage of fodder beet during 2006/2007 and 2007/2008 growing seasons.
- Key words: Mariut region, Fodder beet, Irrigation interval, Gibberellic acid, Potassium fertilizer, Growth, yield, Chemical composition.

INTRODUCTION

Fodder beet (*Beta vulgaris*, L.) is the highest yielding forage crop any one can grow. The energy rich fodder beets are complementing the use of grass or protein rich legumes in the diet of the cattle. In many countries fodder beets serve as the reliable winter storage of feed. In other countries fodder beets play an important role in supplying forage in dry periods late in the summer. In nature, water is usually the most limiting factor for plant growth. This is also the case in home or commercial landscapes. If plants do not receive adequate rainfall or irrigation, the resulting drought stress can reduce growth more than all other environmental stresses combined.

Drought can be defined as the absence of rainfall or irrigation for a period of time sufficient to deplete soil moisture and injure plants. Drought stress occur when water loss from the plant exceeds the ability of the plant's roots to absorb water and when the plant's water content is reduced enough to interfere with normal plant processes. Using drought tolerant plants in the landscape can reduce the likelihood of plant injury due to drought stress. In this respect, Howell *et al.* (1987) indicated that prolnging irrigation interval from 3 to 7 weeks decreased growth and yield of sugar beet (*Beta vulgaris* L.) plants. Also, Sepaskhah and Kamgar-Haghighi (1997) mentioned that root yield of sugar beet decreased with increasing irrigation interval from 6 up to 10 days. In addition, Abdallah and Yassen (2008) found that extension irrigation interval from 14 up to 28 days decreased foliage fresh weight / plant, foliage dry weight and root diameter of fodder beet plants.

Gibberellic acid is a simple gibberellin, promoting growth and elongation of cells. It affects decomposition of plants and helps plants grow if used by small amounts, but eventually plants develop tolerance for it. Gibberellic acid stimulates the cells of germinating seeds to produce mRNA molecules that code for hydrolytic enzymes. Also, gibberellic acid is a very potent hormone whose natural occurrence in plants controls their development. Since GA3 regulates growth, applications of very low concentrations can have a profound effect while too much will have the opposite effect. It is usually used in concentrations between 0.01-1.0 mg/L. In this respect, Bora and Sarma (2006) on pea, reported that increasing gibberellic acid (GA3) from 10 to 1000 µg m/L increased growth and yield characters. Ibrahim et al. (2007) studied the effect of some bioregulators (GA3, IAA, benzyl adenine at the rate of 100 ppm or growth retardant ancymidol at the rate of 100 ppm) on growth, yield and its components, photosynthetic pigments, mineral ions contents as well as the seed yield quality (represented by total carbohydrate and protein contents) of Vicia faba L. They found that application of all the used treatments led to significant changes in the following items: plant height, average number of leaves, leaf area per plant and the dry weight of the shoot. However, Aman et al. (2009) on groundnut, pointed out that some of the plant growth regulators (Brassinolides, triacontanol, GA3, and NAA) were effective significantly in inducing enhanced pod vield, number of pods per plant, pod weight per plant and shelling percentage. They refered also that, in the plants treated with triacontanol and GA3, the total number of flowers produced per plant was increased. Islam et al. (2010) on Vigna mungo L. mentioned that increasing spray with GABA (a mixture of GA3 and ABA) from 0.25 to 1.0 mg/L increased plant height, number of branches per plant, number of leaves per plant, total chlorophyll content, number of pods per plant, pod length, number of seeds per pod and seed yield compared by the control (fresh water).

Potassium plays an important role in the growth and development of plants, as activates enzymes, maintains cell turgor, enhances photosynthesis, reduces respiration, helps transport sugars and starches, aids in nitrogen uptake and is essential for protein synthesis. In addition, to plant metabolism, potassium improves crop quality because it extends the grain filling period, helps with grain filling and kernel weight, strengthens straw, increases disease resistance, and helps the plant better withstand stress. Some investigators found that potassium fertilizer increased growth, yield of Beta vulgaris L., among whom Milford et al. (2000) who mentioned that increasing potassium fertilizer from 0 up to 600 kg K/ha. increased root vield of sugar beet. Also, Abdel-Mawly and Zanouny (2004) reported that total root yield and top yield of sugar beet plants increased as K fertilizer increased. Romer et al. (2004) showed that root yield of sugar beet increased with increasing potassium fertilizer from 0 up to 524 kg K / ha. In addition, Abd El-Lateef (2009) found that raising potassium concentration added as spraying or soil application caused gradually increasing in root length, root diameter, fresh and dry weight of roots and tops / plant, leaf area, fresh and dry vield of roots and tops/ fed., crude protein, total carbohydrate, nitrogen and potassium content of fodder beet plants.

The aim of this study was to evaluate the effect of three irrigation intervals i.e. 8, 16 and 24 days, three levels of potassium fertilizer (0, 100 and 150 K₂O / fed.) and three levels of gibberellic acid (tap water, 200 and 400 ppm) on growth, yield and chemical composition of fodder beet (*Beta vulgaris* L.) grown in calcareous soil at Mariut region.

MATERIALS AND METHODS

Two field experiments were conducted during the two winter growing years of 2006 – 2007 and 2007 – 2008 at the experimental station of Desert Research Center at Mariut, Alexandria Governorate, Egypt, to study the effect of irrigation intervals, potassium fertilizer and gibberellic acid on growth, yield and chemical composition of fodder beet (*Beta vulgaris* L.). The soil of this farm is sandy clay loam in texture and calcareous in nature. The physical and chemical properties of the experiment soil at the depth of 0-30 and 30-60 cm, were determined according the methods described by Piper (1950) and Jackson (1958) respectively. The results of these determinations are shown in Tables (1 and 2). The following factors were used:

A-Irrigation intervals

By using three irrigation intervals (8, 16 and 24 days) Flooding irrigation system was used.

B- Gibberellic acid (GA₃)

1- Tap water (control)2- 200 ppm (0.2 g/L.)3- 400 ppm(0.4 g/L.)

C- Potassium fertilizer rates

1- Control (without fertilizer) 2- 100 kg K_2O / fed. 3- 150 kg K_2O / fed.

Each potassium level splited two equal doses the first dose was added after 30 days from sowing and the second one at 45 days from sowing, potassium was added in the form of potassium sulfate (48%K2O).

Twenty seven of treatments were arranged in split split plot design (S.S.P.D.) with four replicates according to Gomez and Gomez (1984). The main plots were devoted to the irrigation interval; the subplots were occupied by the gibberellic acid while the sub-sub plots were assigned for potassium fertilizer.

All the experimental plots were received 20 m³ organic manure (sheep dung) and 300 kg calcium superphosphate (15.5% P_2O_5)/feddan as a basal application during preparation the soil; i.e. before seed sowing. Also, 200 kg ammonium sulphate (20.5% NH₄SO₄) and potassium sulphate (48-50% K₂O) was side dressed at the rate of 150 kg/feddan, These chemical fertilizers were divided into two equal parts and applied after one and two months from sowing in each season.

Fodder beet seeds were sown on October 15^{th} in the first and second seasons. The experimental plot area 10.5 m^2 (3 x 3.5 m), consisting of 6 ridges, each of 50 cm width and 3.5 m length, 50 cm were between hills and four seeds were planted in each hill. Regular irrigation was carried out for the whole experiment, one week from sowing. Analysis of irrigation water were given in Table (3).

Data recorded were as follows:

A- Growth characters

Five plants were taken at random from the middle rows of each sub-plot. Plant Samples were taken after 120 and 150 days from sowing date. The samples were carefully uprooted and the following data were recorded for each sample:-

- 1- Top dry weight / plant
- 2- Leaf area index (LAI). It was calculated by using the following equation

LAI =
$$\frac{\text{Leaf area per plant (cm^2)}}{\text{Plant ground area (cm^2)}}$$

3- Specific leaf weight (SLW)

SLW
$$(mg/cm^2) =$$

Leaf dry weight (mg)
Leaf area per plant (cm^2)

B- Yield characters

The plants grown in three middle rows were harvested after 180 days after sowing from the of each plot to record the following data:

1- Root diameter (cm) / plant

- 2- Top / roots ratio
- 3- Fresh and dry weights of roots and top / plant
- 4- Fresh and dry yields of roots and top (ton /fed.)

C- Chemical composition

Chemical composition was determined in roots at 180 days from sowing date. Total nitrogen was determined by using micro-Kjeldahl method as described by Peach and Tracey (1956). Crude protein was calculated by multiplying total nitrogen by 6.25. Total carbohydrates were estimated calorimetrically applying the phenol sulphuric acid method as adopted by Dubois *et al.* (1951). Values were expressed as g/100g dry wt. Crude fiber was determined by using the method described in A.O.A.C. (1970). Sodium and potassium were measured by flame photometer as described by Irri (1976). The total chlorophyl content was determined in the leaf as percentage by Aminota SPAD chlorophyll meter (model SPAD520) according to Yadava, (1986).

All data were statistically analysed according to Snedecor and Cochran (1967). The differences between means were tested by L.S.D. at 5% level (Steel 1960).

Table (1): Mechanica	l properties of the experimental soil.
----------------------	--

Denth (ma)	Partic	le size distribu	ition (%)		6.11
Deptn (cm)	Coarse sand	Fine sand	Silt	Clay	Son texture
0-30	3.12	4916	18.90	28.82	Sandy clay loam
30-60	2.66	50.02	20.28	27.04	Sandy clay loam

Table (2): Chemical properties of the experimental soil.

D d		Fe	Saturation soluble extract										
Depth	pH	EC	So	luble anior	ns (meq /	Soluble cations (meq / L)							
(cm)	1000	(us/m)	Co'3	HCO'3	SO'4	Cl.	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K ⁺			
0-30	7.8	4.30	-	4.37	17.73	16.67	8.85	6.32	22.90	0.70			
30-60	7.9	3.60		1.76	14.00	15.50	5.95	3.01	21.70	0.60			

Table (3): Chemical analysis of the irrigation water of Mariut research station.

pH	EC (dS/m)	S	Soluble ani	ons (meg/	l)	Soluble cations (meg/l)					
pii		Ca ₃	Hco'3	So 4	Cľ	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K ⁺		
7.30	3.43	0.00	8.74	8.30	16.56	6.44	7.76	18.26	1.14		

RESULTS AND DISCUSSION

A-Effect of each of the applied individual factors (irrigation interval, gibberellic acid and potassium fertilizer)

1-Growth characters and yield:

It is clear from results presented in Tables (4, 5 and 6) that prolonging irrigation interval from 8 up to 24 days had a significant decrease on top dry weight, leaf area index, specific leaf weight at 120 and 150 day from sowing (Table 4), and the same effect was observed also on root diameter, top / roots ratio, fresh and dry weight of roots and top (Table 5), fresh and dry yields of roots and top at 180 days from sowing during 2006/2007 and 2007/2008 took the same trend in their response to irrigation intervals (Table 6). The reduction in growth and yield characters as a result of prolonging irrigation interval might be due to water stress, which is caused by insufficient soil moisture, is among the chief causes of poor growth or poor health in plants. It is responsible for slow growth and, in severe cases, dieback of stems. It also makes plants more susceptible to disease and less tolerant of insect feeding. Similar results were obtained by Sepaskhah and Kamgar- Haghighi (1997), Mirzali *et al.* (2005) and Abdallah and Yassen (2008)

Also, data presented in Tables (4, 5 and 6) showed that growth and yield characters of fodder beet were significantly affected by gibberellic application during both years. Gibberellic application at the concentration of 400 ppm increased top dry weight, leaf area index and specific leaf weight at 120 and 150 day after sowing (Table 4), root diameter, fresh and dry weight of roots and top / plant (Table 5), fresh and dry yields of roots and top / fed. at 180 days after sowing (Table 6) comprised with control (tap water), these results were obtained through both seasons. The increasing in growth and yield may be due to gibberellins stimulate growth in the roots and leaves. Inside the roots the gibberellins stimulate cell division and cell elongation. Many researchers mentioned the importance role of gibberellins in plants. In this regard, Ibrahim *et al.* (2007) on *Vicia faba* L., Aman *et al.* (2009) on groundnut and Islam *et al.* (2010) on *Vigna mungo* L.

In addition, the data recorded in Tables (4, 5 and 6) illustrated that increasing potassium rates from 0 up to 150 kg K_2O / fed. to fodder beet plants under Mariut conditions exerted a statistical significant increase in top dry weight, leaf area index, specific leaf weight (Table 4), root diameter, top / roots ratio, fresh and dry weight of roots and top (Table 5), fresh and dry yields of roots and top (Table 6). Such effect was true in both seasons. The increases in growth and yield may be attributed to adequacy of potassium applied at soil and this turn favoures the absorption of different minerals and consequently caused an increase in the amount of metabolites synthesized by the plants. Supporting results were obtained by Milford *et al.* (2000), Abd El-Mawly and Zanouny (2004) and Vijay *et al.* (2009).

S	easons	2006	/2007	2007	/2008	2006	/2007	2007	/2008	200	6/2007	200	7/2008
Ch	aracters		Toip dry	weight (g)			leaf are	a index		spe	cific leaf w	eight (mg/	cm ²)
Tr	eatments	120 days	150 days	120 days	150 days	120 days	150 days	120 days	150 days	120 days	150 days	120 days	150 days
ion	8 days	49.74	77.15	43.22	65.89	4.61	5.18	4.292	4.811	10.73	14.88	10.00	14.18
rigat	16 days	43.56	70.30	38.44	61.22	<mark>4.4</mark> 7	<mark>4.9</mark> 6	3.813	4.651	9.69	14.13	10.00	14.07
Ξ	24 days	37.52	58.67	31.56	51.89	4.00	4.50	3.611	4.168	9.34	12.99	8.63	13.03
L.S.	D. at 5%	1.48	0.67	0.63	4.65	0.10	0.01	0.022	0.010	0.25	0.10	0.14	0.84
rlic	Tap water	36.22	63.37	32.00	53.44	4.217	4.686	3.713	4.325	8.51	13.46	8.538	12.97
abbi	200 ppm	43.70	67.81	37.33	60.11	4.365	4.911	3.913	4.558	9.981	13.75	9.45	13.88
0	400 ppm	50.89	74.93	43.89	65.44	4.495	5.048	4.091	4.747	11.26	14.79	10.64	14.43
L.S.	D. at 5%	0.75	0.68	0.55	2.84	0.07	0.01	0.024	0.018	0.22	0.17	0.14	0.24
m	Control	37.48	63.30	31.11	53.11	<mark>4.0</mark> 3	4.52	3.644	4.159	8.93	12.85	8.466	12.71
tassi	100 kg / fed	43.48	65.67	38.00	58.33	4.16	4.61	3.655	4.292	9.77	13.67	9.519	13.31
Po	150 kg /fed.	44.52	68.70	39.44	60.33	4.37	4.94	3.939	4.639	9.90	13.85	9.561	13.73
L.S.	D. at 5%	0.66	0.56	0.54	3.66	0.07	0.01	0.025	0.039	0.17	0.13	0.15	0.25

Table (4): Effect of irrigation interval, gibberellic acid and potassium fertilizer on leaves dry weight, leaf area index and specific leaf weight of fodder beet plants at 120 and 150 day from sowing during winter season of 2006/2007 and 2007/2008.

S	easons	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	
Ch	aracters	Root diameter (cm)		Top	roots	Root fresh weight		Root dry weight		Top fresh weight		Top dr	Top dry weight	
Tre	atments			ratio		(g) / plant		(g) / plant		(g) / plant		(g) / plant		
ion	8 days	12.97	12.01	0.243	0.252	1165.89	1028.00	266.56	227.10	518.04	473.40	64.56	56.44	
rigat	16 days	12.24	11.35	0.255	0.270	1086.33	855.10	243.37	186.70	507.93	428.00	61.33	49.78	
Ξ	24 days	11.32	10.77	0.227	0.262	977.11	766.00	214.26	164.80	423.93	379.90	48.89	42.67	
L.S.	D. at 5%	0.08	0.06	0.013	0.002	6.46	50.11	1.22	7.63	2.33	10.40	0.252	0.63	
rlic	Tap water	11.63	10.83	0.251	0.264	1002.00	799.40	220.80	172.60	470.20	399.10	55.56	45.11	
abbi	200 ppm	12.20	11.42	0.232	0.266	1071.00	859.60	239.40	187.40	462.20	423.60	55.78	49.11	
0	400 ppm	12.70	11.89	0.241	0.253	1156.00	990.60	264.00	218.60	517.50	458.70	63.44	54.67	
L.S.	D. at 5%	0.04	0.03	0.027	0.011	5.29	19.59	1.38	6.38	4.39	6.85	0.547	0.58	
m	Control	11.07	10.54	0.249	0.270	971.44	777.70	211.37	167.20	447.48	391.40	52.78	44.56	
tassi	100 kg / fed	11.49	10.70	0.215	0.227	1027.11	863.00	234.78	190.60	463.59	405.10	56 .78	47.89	
Po	150 kg /fed.	12.50	11.52	0.233	0.259	1100.89	892.80	248.33	195.10	480.74	431.60	58.00	50.11	
L.S.	D. at 5%	0.04	0.04	0.027	0.005	7.32	15.06	1.86	3.52	4.77	3.15	0.542	0.46	

Table (5): Effect of irrigation interval, gibberellic acid and potassium fertilizer on root diameter, leaves / roots ratio and fresh and dry weight of roots and leaves of fodder beet plants at 180 days from sowing during winter season of 2006/2007 and 2007/2008.

Se	asons	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	
Cha	racters	Root fr	esh yield	Root dry yield		Top fre	esh yield	Top dry yield		
Trea	atments	(Ton / fed.)		(Ton / fed.)		(Ton	/ fed.)	(Ton / fed.)		
5 8 days		48.967	43.192	11.195	9.540	21.758	19.882	2.711	2.364	
rigat	16 days	45.626	35.914	10.222	7.839	21.333	17.980	2.576	2.087	
L	24 days	41.039	32.173	8.999	6.920	17.805	15.960	2.053	1.793	
L.S.I). at 5%	0.316	2.157	0.050	0.329	0.179	0.437	0.027	0.026	
rlic	Tap water	42.092	33.582	9.274	7.250	19.753	16.763	2.333	1.888	
abbı	200 ppm	44.980	36.100	10.06	7.873	19.412	17.792	2.343	2.061	
0	400 ppm	48.561	41.643	11.09	9.176	21.730	19.261	2.665	2.295	
L.S.I). at 5%	0.181	0.818	0.057	0.269	0.208	0.288	0.027	0.025	
m	Control	40.801	32.660	8.878	7.029	18.794	16.441	2.217	1.863	
tassi	100 kg / fed	43.139	36.253	9.861	7.997	19.471	17.013	2.385	2.012	
Po	150 kg /fed.	46.237	37.501	10.430	8.195	20. <mark>1</mark> 91	18.132	2.436	2.104	
L.S.E). at 5%	0.029	0.633	0.078	0.149	0.287	0.132	0.023	0.021	

Table (6): Effect of irrigation interval, gibberellic acid and potassium fertilizer on fresh and dry yields of roots and leaves of fodder beet plants at 180 days from sowing during winter season of 2006/2007 and 2007/2008.

2- Chemical composition:

Results in Table (7) revealed that crude protein percentage, total carbohydrate percentage, potassium content in roots and total chlorophyll in leaves of fodder beet were significantly decreased by increasing irrigation interval from 8 up to 24 days during 2006/2007 and 2007/2008 seasons. On the contrary, crude fiber percentage and sodium were increased by increasing irrigation intervals in two experimentation years. The depression in protein content may be due to disturbance in energy metabolism in plants grown under the longest irrigation interval. These results are in agreement with those obtained by Abdallah and Yassen (2008) on Fodder beet.

Also, results in Table (7) indicated also that by increasing gibberellic spraying from 0 up to 400 ppm, crude protein, total carbohydrate, crude fiber, potassium content in roots and total chlorophyll in leaves of fodder beet were significantly increased in both years, while sodium content significantly decreased with increasing gibberellic acid up to 400 ppm in the first and second years. These findings are in agreement with those obtained by Ibrahim *et al.* (2007) and Islam *et al.* (2010)

The same Table showed that all chemical components under study i.e. crude protein, total carbohydrate, crude fiber, potassium and sodium content in roots and total chlorophyll in leaves of fodder beet were significantly responded to potassium fertilizer application in two experimentation years. Increasing potassium fertilizer application from 0 up to 150 kg K₂O / fed. increased crude protein, total carbohydrate and potassium content in roots as well as total chlorophyll in leaves with the first and second season. On the contrary, control treatment (nil potassium treatment) gave the highest crude fiber and sodium content as compared with all the other fertilizer treatments during both seasons. Similar results were obtained by Ahmed (1997) who mentioned that raising potassium application caused gradual increasing in crude protein and total carbohydrate of fodder beet plants. In addition, Abd El-Lateef (2009) reported that increasing potassium fertilizer increased crude protein, total carbohydrate, nitrogen and potassium content of fodder beet plants.

_
Biol.
Chem.
Environ
. Sci.,
2010,
S
(3),
79-106

Table (7): Effect of irrigation interval, gibberellic acid and potassium fertilizer on crude protein, total carbohydrate, crude fiber, potassium and sodium in roots as well as total chlorophyll in leaves of fodder beet plants at 180 days from sowing during winter season of 2006/2007 and 2007/2008.

5	Seasons	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008	2006/ 2007	2007/ 2008
Cl	naracters	Crude	protein	Total carb	ohydrate	Crude fiber		Total chlorophyll		Potassium		Sodi	um
Tr	eatments		%	%		%		(mg \100g)		%		%	
uo	8 days	11.32	10.11	57.11	54.56	12.47	13.96	35.27	33.29	3.12	2.76	0.77	0.91
igat	16 days	10.66	9.78	56.09	54.11	12.72	14.76	34.83	32.56	2.76	2.54	0.96	1.11
E	24 days	9.88	9.52	53.24	53.54	13.15	15.56	34.33	32.21	2.51	2.27	1.13	1.31
L.S	.D. at 5%	0.01	0.02	0.02	0.06	0.03	0.13	0.09	0.06	0.03	0.02	0.08	0.06
·lic	Tap water	10.25	9.52	52.87	53.72	12.36	14.17	34.49	32.43	2.58	2.34	1.13	1.27
abbı	200 ppm	10.67	9.85	56.55	54.01	12.79	14.79	34.80	32.72	2.78	2.52	0.92	1.09
0	400 ppm	10.94	10.05	57.02	5 <mark>4.4</mark> 8	13.19	15.32	35.15	32.91	3.04	2.71	0.81	0.98
L.S	.D. at 5%	0.04	0.03	0.02	0.03	0.02	0.10	0.10	0.04	0.02	0.02	0.05	0.02
Ę	Control	9.71	9.56	50.66	48.32	13.09	15.07	31.30	29.26	2.37	2.23	1.07	1.22
tassiı	100 kg / fed	10.22	8.91	53.26	53.75	12.80	14.78	34.37	32.39	2.80	2.44	0.93	1.11
Po	150 kg /fed.	10.68	9.82	56.16	54.1	11.15	12.99	34.83	32.72	2.85	2.58	0.77	0.89
L.S	.D. at 5%	0.03	0.03	0.02	0.03	0.03	0.11	0.07	0.03	0.02	0.02	0.02	0.02

B- Effect of the mutual effect between: (Irrigation intervals x Gibberellic acid, Irrigation intervals x Potassium and Gibberellic acid x Potassium)

1- Growth characters and yield:

It is clear from data in Table (8) that the mutual effect between the irrigation intervals and gibberellic acid on top dry weight / plant, leaf area index and specific leaf weight of fodder beet at 120 and 150 day from sowing were significant through both seasons except top dry weight after 150 days and leaf area index after 120 days during the first season. The highest mean values were obtained with irrigation every 8 days and sprayed with 400 ppm gibberellic acid at 120 and 150 days from sowing with the two seasons.

Top dry weight and leaf area index of fodder beet were significantly affected by the interaction between irrigation intervals and potassium fertilizer at 120 and 150 day from sowing at the second season only, while this interaction had a significant effect on specific leaf weight at 120 and 150 day from sowing at the first season only. Irrigation every 8 days and 150 kg K₂O/fed. gave the highest values of top dry weight, leaf area index and specific leaf weight of fodder beet at 120 and 150 day from sowing through both seasons. Similar results were reported by Mazher *et al.* (2007) and Bajehbaj *et al.* (2009).

Top dry weight / plant was significantly affected by the interaction between gibberellic acid and potassium fertilizer at 120 and 150 day during the second season and at 120 day at the first one. The highest value of top dry weight, leaf area index and specific leaf weight were obtained when gibberellic acid and potassium fertilizer were added at the highest rate of 400 ppm and 150 kg K_2O / fed., respectively.

Data reported in Table (9) indicate that the interaction between irrigation intervals and gibberellic acid had a significant effect on root diameter and fresh weight of roots and top / plant of fodder beet with 2006/2007 and 2007/2008 seasons, while such interaction had a significant effect on top/roots ratio and roots and top dry weights at the first season only. Spraying with 400 ppm gibberellic acid under irrigation every 8 days gave the highest value of growth parameters through the two seasons. As for the interaction between irrigation intervals and potassium fertilizer, there were a significant effect on root diameter, top / roots ratio, fresh and dry weight of roots / plant of

fodder beet by the two seasons, but fresh and dry weights of top per plant were significantly responded to that interaction at the second season only. Irrigation every 8 days and fertilized by 150 kg K₂O / fed. produced the highest values of growth characters through both seasons compared with those of other interaction factors.

Table (8): Effect of the first order interactions on top dry weight, leaf area index and specific leaf weight of fodder beet plants at 120 and 150 day from sowing during winter seasons 2006/2007 and 2007/2008.

Se	asons	2006 /	2007	2007	2008	2006/	2007	2007/	2008	08 2006 / 2007 2007 / 2008			
Cha	iracters	lea	ves dry (g	y weigł)	nt	le	af are	a ind	ex	spe	ecific le (mg/	af wei cm ²)	ght
Irrigati	on intervals	Day	s from s	owing da	ate	Days	from :	sowing	date	Day	s from s	sowing o	late
(days)	120	150	120	150	120	150	120	150	120	150	120	150
	Irrigatio	n interv	als x gi	bberel	lic acid	l (ppn	n)						
	T.W	43.22	71.11	36.00	57.33	4.45	4.99	4.13	4.56	9.69	14.25	8.68	12.95
dave	200	49.22	76.67	43.67	67.33	4.61	5.20	4.34	4.83	10.66	14.74	10.02	14.44
uays	400	56.78	83.67	50.00	73.00	4.78	5.35	4.41	5.04	11.83	15.64	11.30	15.14
16	T.W	36.00	65.33	35.67	56.33	4.31	4.77	3.59	4.46	8.31	13.68	9.89	13.57
dave	200	43.22	68.78	36.00	61.33	4.48	5.01	3.82	4.67	9.61	13.72	9.35	14.14
days	400	51.44	76.78	43.67	66.00	4.60	5.11	4.03	4.82	11.14	14.99	10.77	14.49
24	T.W	29.44	53.67	24.33	46.67	3.89	4.30	3.42	3.95	7.53	12.46	7.05	12.38
dave	200	38.67	58.00	32.33	51.67	4.00	4.53	3.58	4.18	9.67	12.78	8.98	13.05
uays	400 44.44 64.33 38.00 57.33 4.10 4.68 3.84 4.3					4.37	10.81	13.74	9.86	13.66			
L.S.I	D. at 5%	1.31	N.S	0.95	4.92	N.S	0.01	0.04	0.03	0.38	0.29	0.24	0.16
	Irrigatio	n interv	als x po	otassiu	m (kg	K_2O/f	ed)						
	Con.	43.78	72.44	36.33	59.00	4.40	4.82	4.05	4.34	9.92	15.00	8.94	13.88
a	100	50.11	76.67	43.67	66.67	4.64	5.28	4.33	4.96	10.77	14.50	10.04	14.04
uays	150	55.33	82.33	49.67	72.00	4.80	5.43	4.49	5.13	11.50	15.13	11.02	14.61
16	Con.	36.89	64.11	31.33	54.00	4.26	4.73	3.52	4.18	8.63	13.55	8.88	13.72
dave	100	43.56	70.44	39.00	62.00	4.47	4.99	3.86	4.78	9.72	14.08	10.07	13.96
days	150	50.22	76.33	45.00	67.67	4.67	5.17	4.06	4.99	10.71	14.75	11.06	14.52
24	Con.	31.78	53.33	25.67	46.33	3.83	4.27	3.36	3.96	8.25	12.47	7.58	12.33
dave	100	36.78	59.00	31.33	52.33	4.01	4.54	3.63	4.17	9.21	12.97	8.57	13.18
uays	150	44.00	63.67	37.67	57.00	4.16	4.70	3.85	4.38	10.55	13.54	9.74	13.58
L.S.I). at 5%	N.S	1.00	0.96	6.81	N.S	0.02	0.04	0.07	0.30	0.23	N.S	N.S
	Gibberel	lic acid	x potas	sium(l	g K ₂ O	/fed)							
	Con.	30.89	58.78	26.33	47.00	4.01	4.45	3.47	3.96	7.64	13.15	7.54	12.46
T.W	100	36.33	62.67	32.00	54.00	4.24	4.74	3.75	4.43	8.51	13.20	8.50	12.91
	150	41.44	68.67	37.67	59.33	4.40	4.88	3.92	4.59	9.38	14.04	9.57	13.55
	Con.	37.56	62	30.67	53.33	4.16	4.63	3.66	4.15	8.99	13.35	8.32	13.38
200	100	43.67	68.11	37.33	61.00	4.38	4.99	3.93	4.67	10.01	13.60	9.44	13.91
	150	49.89	73.33	44.00	66.00	4.56	5.11	4.14	4.86	10.95	14.30	10.59	14.34
	Con.	44.00	69.11	36.33	59.00	4.32	4.74	3.80	4.37	10.17	14.52	9.53	14.09
400	100	50.44	75.33	44.67	66.00	4.50	5.09	4.14	4.83	11.18	14.75	10.75	14.37
	150	58.22	80.33	50.67	71.33	4.67	5.31	4.34	5.05	12.43	15.09	11.65	14.83
L.S.I). at 5%	0.61	N.S	1.01	6.81	N.S	0.02	0.04	N.S	N.S	0.23	N.S	N.S

T.W. = Tap water Con. = Control

Table (9): Effect of the first order interactions on root diameter, top / roots ratio and fresh and dry weight of roots and top of fodder beet plants at 180 days from sowing during winter seasons 2006/2007 and 2007/2008.

		2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/
		2007	2008	2007	2008	2007	2008	2007	2008	2007	2008	2007	2008
Irrig	ation	Dertil		T (Root	fresh	Root	t dry	Тор	fresh	Тор	dry
inte	rvals	Root di	ameter	1 op /	roots	wei	ght	wei	ght	we	ight	wei	ight
(da	ys)	(C)	m)	ra	10	(g) / J	plant	(g) /j	plant	(g) /	plant	(g) /	plant
	Irrigat	tion int	tervals	x gibbo	erellic	acid (ppn	n)						
0	T.W	12.31	11.57	0.240	0.259	1086.33	919.30	243.22	201.00	475.67	441.30	58.33	51.67
ð	200	13.03	12.05	0.241	0.258	1157.00	1003.00	264.33	221.30	511.44	474.70	63.67	56.00
uays	400	13.56	12.42	0.247	0.239	1254.33	1163.00	292.11	259.00	567.00	504.30	71.67	61.67
16	T.W	11.79	10.71	0.295	0.271	1015.00	777.00	222.56	168.00	550.78	399.30	65.33	45.00
dave	200	12.29	11.40	0.235	0.279	1078.67	823.70	241.11	179.30	468.67	427.00	56.67	49.67
uays	400	12.62	11.93	0.233	0.260	1165.33	964.70	266.44	212.70	504.33	457.70	62.00	54.67
24	T.W	10.79	10.20	0.219	0.263	905.00	702.00	196.67	148.70	384.11	356.70	43.00	38.67
dave	200	11.28	10.80	0.221	0.260	977.33	752.30	212.78	161.70	406.56	369.00	47.00	41.67
uays	400	11.90	11.32	0.243	0.261	1049.00	843.70	233.33	184.00	481.11	414.00	56.67	47.67
L.S.D.	at 5%	0.24	0.06	0.047	N.S	9.00	33.95	2.40	N.S	7.62	11.87	0.95	N.S
	Irrigat	tion int	tervals	x potas	ssium (kg K ₂ O/f	ed)						
Q	Con.	11.69	11.08	0.254	0.259	1048.00	900.30	232.78	196.30	484.00	429.00	59.33	50.00
8 davs	100	13.31	12.19	0.234	0.251	1194.67	104500) 274.78	231.00	516.33	481.30	64.33	57.33
uays	150	13.91	12.78	0.240	0.246	1255.00	1140.0	0 292.11	254.00	553.78	510.00	70.00	62.00
16	Con.	11.12	10.52	0.265	0.282	967.67	747.00	210.78	160.30	467.67	394.00	55.33	45.00
deve	100	12.64	11.48	0.245	0.271	1119.00	860.70	251.89	188.00	506.89	434.30	61.33	50.67
uays	150	12.95	12.04	0.253	0.257	1172.33	957.70	267.44	211.70	549.22	455.70	67.33	53.67
24	Con.	10.41	10.01	0.229	0.269	898.67	685.70	190.56	145.00	390.78	351.30	43.67	38.67
dave	100	11.54	10.90	0.221	0.256	989.00	772.30	218.33	166.30	419.00	379.00	48.33	42.33
uays	150	12.02	11.42	0.233	0.260	1043.67	840.00	233.89	183.00	462.00	409.30	54.67	47.00
L.S.D.	at 5%	0.08	0.07	0.047	0.008	12.00	26.62	3.29	40.57	N.S	5.86	N.S	0.82
	Gibbe	rellic a	cid x p	otassiu	m(kg I	$X_2O/fed)$							
	Con.	10.67	10.14	0.266	0.272	897.67	702.67	190.11	148.67	438.67	366.33	50.67	40
T.W	100	11.89	10.85	0.238	0.261	1026.67	810.00	228.56	175.33	462.67	402.00	54.67	45.67
	150	12.33	11.50	0.250	0.260	1082.00	885.67	243.78	193.67	509.22	429.00	61.33	49.67
	Con.	11.07	10.50	0.231	0.274	974.00	748.00	211.67	160.67	415.44	382.33	49.00	43.67
200	100	12.53	11.60	0.228	0.261	1090.00	878.00	244.78	191.33	463.11	427.67	56.00	49.33
	150	13.00	12.16	0.238	0.262	1149.00	952.67	261.78	210.33	508.11	460.67	62.33	54.33
	Con.	11.49	10.97	0.252	0.263	1042.67	882.33	232.33	192.33	488.33	425.67	58.67	50.00
400	100	13.06	12.12	0.234	0.256	1186.00	990.33	271.67	218.67	516.44	465.00	63.33	55.33
	150	13.54	12.58	0.238	0.241	1240.00	1099.0	0 287.89	244.67	547.67	485.33	68.33	58.67
L.S.D.	at 5%	0.08	0.01	0.047	N.S	12.00	N.S	N.S	N.S	8.43	5.86	0.96	0.82

The interaction between gibberellic acid application and potassium fertilizer rates had a significant effect on fresh and dry weights of top /plant and root diameter of fodder beet during both seasons. Whereas, such effect was observed also on top/roots ratio and root fresh weight / plant at the first season only. The maximum values of the most growth characters through both seasons were obtained by using 400 ppm gibberellic acid and adding 150 kg K2O/ fed.

Results presented in Table (10) showed clearly that the mutual effect between irrigation intervals and gibberellic acid had a significant effect on root fresh yield in 2006/2007 and 2007/2008 seasons. Whereas, the rest yield studied yield characters i.e. root dry yield and fresh and dry yield of top were responded significantly to this interaction at the first season only. The maximum values were obtained by irrigation interval every 8 days with 400 ppm gibberellic acid for fresh and dry yields of roots and top of fodder beet plant through the first and second seasons.

The interaction between irrigation intervals and potassium fertilizer rates had a significant effect on fresh and dry yield of roots through the two growing seasons, while yield of fresh and dry top were significantly responded to this interaction in the second year only. The highest values of fresh and dry yield of roots and top were obtained at 8 days with 150 kg $K_2O/$ fed. at both seasons.

The effect of interaction between gibberellic acid and potassium on fresh and dry yields of top of fodder beet was significant with the first and second season, also this interaction had a significant effect on root fresh yield at the first season only, gibberellic acid sprayed at 400 ppm with 150 kg $K_2O/$ fed. for fresh and dry yields of roots and top produced the highest values through the both seasons.

Table (10): Effect of the first order interactions on fresh and dry yields of roots and top of fodder beet plants at 180 days from sowing during winter seasons 2006/2007 and 2007/2008.

		2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/
		2007	2008	2007	2008	2007	2008	2007	2008
Irrigation	intervals	Root fre	sh yield	Root di	ry yield	Top fre	sh yield	Top dr	y yield
(da	iys)	Ton	fed.	Ton	fed.	Ton	fed.	Ton	fed.
	Irrigatio	n interva	ls x gibbe	rellic acio	d (ppm)				
0	T.W	45.626	38.612	10.215	8.452	19.978	18.536	2.450	2.157
o	200	48.594	42.112	11.102	9.297	21.481	19.936	2.674	2.349
days	400	52.682	48.860	12.269	10.870	23.814	21.182	3.010	2.586
	T.W	42.63	32.630	9.347	7.048	23.133	16.770	2.744	1.881
16 days	200	45.304	34.594	10.127	7.539	19.684	17.934	2.380	2.086
	400	48.944	40.516	11.191	8.930	21.182	19.222	2.604	2.293
	T.W	38.01	29.484	8.260	6.249	16.133	14.98	1.806	1.626
24 days	200	41.048	31.600	8.937	6.784	17.075	15.500	1.974	1.748
	400	44.058	35.430	9.800	7.727	20.207	17.390	2.380	2.006
L.S.D. at 5%		0.314	1.417	0.31	N.S	0.144	N.S	0.047	N.S
	Irrigatio	n interva	ls x potas	sium (kg	K ₂ O/fed)				
0	Con.	44.016	37.814	9.777	8.245	20.328	18.018	2.492	2.088
dava	100	50.176	43.904	11.541	9.707	21.686	20.216	2.702	2.412
uays	150	52.710	47.866	12.269	10.67	23.259	21.420	2.940	2.591
	Con.	40.642	31.370	8.853	6.742	19.642	16.550	2.324	1.881
16 days	100	46.998	36.148	10.579	7.895	21.290	18.242	2.576	2.116
	150	49.238	40.222	11.233	8.88	23.0679	19.138	2.828	2.264
	Con.	37.744	28.798	8.003	6.099	16.413	14.756	1.834	1.619
24 days	100	41.538	32.440	9.170	6.982	17.598	15.920	2.030	1.784
	150	43.834	35.280	9.823	7.679	19.404	17.190	2.296	1.976
L.S.D.	at 5%	0.511	1.316	0.138	0.072	N.S	0.234	N.S	0.037
	Gibbere	llic acid x	potassiu	m(kg K ₂ C	D/fed)				
	Con.	37.702	29.512	7.985	6.261	18.424	15.386	2.128	1.672
T.W	100	43.120	34.020	9.599	7.360	19.432	16.884	2.296	1.907
	150	45.444	37.198	10.239	8.128	21.387	18.018	2.576	2.085
	Con.	40.908	31.416	8.890	6.754	17.449	16.058	2.058	1.822
200	100	45.78	36.876	10.281	8.041	19.451	17.962	2.352	2.078
	150	48.258	40.012	10.995	8.825	21.341	19.348	2.618	2.282
	Con.	43.792	37.058	9.758	8.072	20.510	17.878	2.464	2.094
400	100	49.812	41.594	11.410	9.183	21.691	19.530	2.660	2.328
	150	52.080	46.158	12.091	10.274	23.002	20.384	2.870	2.464
L.S.D.	at 5%	0.511	N.S	N.S	N.S	0.160	0.234	0.041	0.037

2- Chemical composition

Data in Table (11) demonstrated that the interaction between irrigation intervals and gibberellic acid had a significant effect on crude protein and crude fiber in roots of fodder beet at the first season and on total carbohydrate at the second one and was significant also on potassium percentage during the two growing seasons. In this respect, the combination of irrigation interval at 8 days x 400 ppm gibberellic acid recorded the maximum values of crude protein, total carbohydrate, total chlorophyll and potassium percentage during 2006/2007 and 2007/2008 seasons.

The interaction between irrigation intervals and potassium fertilizer on fodder beet was significant on crude protein and potassium percentage through both seasons. The highest value of crude protein, total carbohydrate, total chlorophyll and potassium percentage obtained from 8 days irrigated with 150 kg K₂O/ fed. through the first and second seasons.

The interaction between gibberellic acid and potassium fertilizer had a significant effect on crude protein percentage during the two seasons. Gibberellic acid sprayed at 400 ppm with 150 kg $K_2O/$ fed. produced the highest values of crude protein, total carbohydrate, total chlorophyll and potassium percentage for both seasons.

C- Effect of the second order interactions (irrigation intervals, gibberellic acid and potassium rates)

1- Growth characters and yield:

According to results given in Table (12), the interaction among irrigation intervals, gibberellic acid and potassium fertilizer had a significant effect on top dry weight / plant at 120 and 150 day from sowing during 2006 / 2007 seasons. Treatments irrigated every 8 days, sprayed by 400 ppm gibberellic acid and fertilized by 150 kg K₂O/ fed. recorded the highest values of top dry weight, leaf area index, specific leaf weight at 120 and 150 day from sowing during both seasons.

Results presented in Table (13) showed clearly that the interaction between irrigation interval, gibberellic acid and potassium fertilizer had a significant effect on root diameter, top / roots ratio and fresh and dry weight of top at 2006/2007 and 2007/2008 seasons. Irrigation every 8 days, addition of 150 kg K_2O / fed. and 400 ppm

gibberellic recorded the highest values of root diameter and fresh and dry weight / plant of roots and top with the first and second seasons.

Table (11): Effect of the first order interactions on crude protein, total carbohydrate, crude fiber, potassium and sodium in roots as well as total chlorophyll in leaves of fodder beet plants at 180 days from sowing during winter seasons 2006/2007 and 2007/2008.

		2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/	2006/	2007/	
		2007	2008	2007	2008	2007	2008	2007	2008	2007	2007 2008		2008	
Irrigation intervals (days)		Crude protein %		Total carbohydrate %		Crude fiber %		To chlor (mg)	Total chlorophyll (mg \100g)		Potassium %		Sodium %	
I	rrigat	ion inte	rvals x	gibber	ellic ac	id (pp	m)			~				
8 davs	T.W	11.01	9.81	56.69	54.19	12.05	13.30	34.95	33.05	2.95	2.57	0.90	1.09	
	200	11.37	10.19	57.15	54.46	12.44	13.94	35.29	33.33	3.10	2.75	0.74	0.87	
days	400	11.59	10.33	57.48	55.04	12.93	14.63	35.58	33.5	3.31	2.97	0.66	0.78	
10	T.W	10.23	9.51	56.18	53.87	12.33	14.23	34.45	32.31	2.50	2.34	1.15	1.25	
16 days	200	10.72	9.81	56.49	54.08	12.75	14.80	34.81	32.59	2.76	2.55	1.00	1.10	
days	400	11.02	10.04	57.05	54.39	13.09	15.27	35.23	32.8	3.03	2.73	0.84	0.98	
24	T.W	9.52	9.24	55.74	53.11	12.69	14.99	34.06	31.94	2.28	2.11	1.33	1.46	
24	200	9.91	9.55	56.00	53.49	13.20	15.64	34.30	32.24	2.47	2.27	1.12	1.29	
days	400	10.21	9.78	56.53	54.01	13.56	16.06	34.64	32.44	2.78	2.44	0.93	1.17	
L.S.D.	at 5%	0.08	N.S	N.S	0.06	0.04	N.S	N.S	N.S	0.04	0.04	N.S	N.S	
Irrigation intervals x potassium (kg K ₂ O/fed)														
8 days	Con.	11.00	9.91	56.71	54.33	12.76	14.24	34.77	33.01	2.56	2.36	0.88	1.01	
	100	11.33	10.08	57.10	54.57	12.50	13.99	35.33	33.33	3.27	2.89	0.75	0.91	
	150	11.65	10.34	57.51	54.79	12.16	13.64	35.72	33.54	3.53	3.04	0.68	0.82	
16 days	Con.	10.31	9.56	56.12	53.73	13.07	15.11	34.43	32.22	2.36	2.25	1.08	1.25	
	100	10.70	9.80	46.54	54.17	12.75	14.79	34.83	32.59	2.80	2.58	0.933	1.11	
uays	150	10.97	10.00	57.06	54.44	12.35	14.39	35.23	32.88	3.12	2.79	0.87	0.98	
24	Con.	9.36	9.21	55.66	53.2	13.44	15.85	33.92	31.94	2.20	2.08	1.25	1.42	
dave	100	10.01	9.57	56.13	53.55	13.16	15.57	34.33	32.23	2.48	2.28	1.11	1.32	
uays	150	10.27	9.78	56.46	53.86	12.85	15.26	34.75	32.46	2.86	2.46	1.02	1.18	
L.S.D.	at 5%	0.05	0.06	N.S	0.05	0.05	N.S	N.S	0.05	0.04	0.04	N.S	0.03	
G	libber	ellic aci	d x pot	assiun	n(kg K ₂	O/fed)					-			
	Con.	9.90	9.24	55.71	53.38	12.67	14.49	34.08	32.13	2.20	2.03	1.27	1.39	
T.W	100	10.29	9.50	46.17	53.78	12.37	14.18	34.54	32.47	2.60	2.40	1.11	1.27	
	150	10.58	9.81	56.73	54.00	12.03	13.84	34.85	32.70	2.92	2.59	1.01	1.14	
	Con.	10.25	9.61	56.13	53.70	13.09	15.09	34.36	32.43	2.34	2.24	1.05	1.20	
200	100	10.76	9.89	56.55	54.02	12.79	14.79	34.78	32.77	2.81	2.59	0.89	1.09	
	150	10.99	10.05	56.97	54.32	12.5	14.50	35.26	32.97	3.18	2.74	0.81	0.97	
	Con.	10.52	9.82	56.64	54.18	13.50	15.62	34.68	32.61	2.58	2.42	0.90	1.08	
400	100	10.98	10.06	57.06	54.49	13.25	15.38	35.18	32.92	3.13	2.76	0.79	0.98	
	150	11.32	10.26	57.34	54.76	12.83	14.96	35.59	33.21	3.41	2.96	0.74	0.88	
L.S.D. at 5%		0.05	0.06	N.S	0.05	0.05	N.S	0.13	N.S	0.04	N.S	0.03	N.S	

Table (12): Effect of the second order interactions on top dry weight, leaf area index and specific leaf weight of fodder beet plants at 120 and 150 day from sowing during winter seasons 2006/2007 and 2007/2008.

Irrigation intervals (days)	P	2006/2007							2007/2008						
	c aci	120 day 150 day							120 day 150 day						
	relli	Potassium (kg K ₂ O/fed)							Potassium (kg K2O/fed)						
(days)	ppp	Con.	100	150	Con.	100	150	Con.	100	150	Con.	100	150		
						Тој	p dry w	veight	(g)		111				
8 days	T.W	38.33	43.33	48.00	67.33	70.00	76.00	30.00	36.00	42.00	49.00	58.00	65.00		
	200	43.33	50.67	53.667	71.00	77.00	82.00	37.00	44.00	50.00	61.00	68.00	73.00		
	400	49.67	56.33	64.33	79.00	83.00	89.00	42.00	51.00	57.00	67.00	74.00	78.00		
16 days	T.W	30.33	36.33	41.33	61.00	64.00	71.00	30.00	36.00	41.00	50.00	57.00	62.00		
	200	37.33	42.33	50.00	62.00	69.33	75.00	29.00	36.00	43.00	53.00	63.00	68.00		
	400	43.00	52.00	59.33	69.33	78.00	83.00	35.00	45.00	51.00	59.00	66.00	73.00		
	T.W	24.00	29.33	35.00	48.00	54.00	59.00	19.00	24.00	30.00	42.00	47.00	51.00		
24 days	200	32.00	38.00	46.00	53.00	58.00	63.00	26.00	32.00	39.00	46.00	52.00	57.00		
	400	39.33	43.00	51.00	59.00	65.00	69.00	32.00	38.00	44.00	51.00	58.00	63.00		
L.S.D. at	5%		2.01		1.73				N.S		N.S				
			leaf area index												
8 days	T.W	4.21	4.50	4.64	4.70	5.07	5.19	3.90	4.19	4.30	4.12	4.70	4.86		
	200	4.40	4.62	4.80	4.82	5.34	5.43	4.10	4.40	4.53	4.30	5.01	5.19		
	400	4.59	4.81	4.96	4.95	5.43	5.68	4.16	4.41	4.65	4.60	5.18	5.35		
	T.W	4.13	4.32	4.50	4.58	4.81	4.92	3.32	3.62	3.83	4.03	4.59	4.77		
16 days	200	4.22	4.51	4.71	4.79	5.03	5.20	3.51	3.84	4.10	4.13	4.86	5.01		
	400	4.43	4.57	4.80	4.81	5.14	5.39	3.73	4.11	4.26	4.39	4.90	5.19		
	T.W	3.70	3.90	4.07	4.06	4.32	4.52	3.21	3.43	3.63	3.75	3.99	4.13		
24 days	200	3.86	4.01	4.15	4.26	4.60	4.71	3.38	3.56	3.80	4.01	4.13	4.39		
	400	3.94	4.11	4.25	4.47	4.71	4.86	3.51	3.89	4.11	4.12	4.40	4.61		
L.S.D. at	5%	N.S			0.04				0.10		N.S				
			specific leaf weight (mg/cm ²)												
	T.W	9.10	9.63	10.34	14.32	13.79	14.64	7.69	8.59	9.76	12.29	12.79	13.78		
8 days	200	9.84	10.96	11.18	14.73	14.41	15.09	9.03	9.99	11.00	14.32	14.25	14.75		
	400	10.82	11.72	12.96	15.96	15.29	15.67	10.10	11.60	12.30	15.03	15.07	15.31		
	T.W	7.35	8.40	9.19	13.31	13.31	14.43	9.03	9.93	10.70	13.32	13.49	13.92		
16 days	200	8.84	9.39	10.60	12.95	13.77	14.43	8.24	9.34	10.50	13.59	14.22	14.61		
	400	9.71	11.37	12.35	14.40	15.18	15.40	9.39	10.9	12.00	14.26	14.18	15.03		
	T.W	6.48	7.51	8.60	11.83	12.50	13.05	5.92	6.97	8.26	11.77	12.44	12.94		
24 days	200	8.28	9.67	11.07	12.37	12.62	13.37	7.70	8.98	10.30	12.23	13.25	13.67		
	400	9.98	10.45	11.99	13.21	13.80	14.20	9.11	9.76	10.70	12.98	13.86	14.14		
L.S.D. at 5%		0.51				N.S			0.46		N.S				

Table (13): Effect of the second order interactions on root diameter, top / roots ratio and fresh and dry weight of roots and top of fodder beet plants at 180 days from sowing during winter season of 2006/2007 and 2007/2008.

	P	2006/2007 2007/2008							2006/2007 2007/2008						
Irrigation	c aci		Potassium							Potassium					
intervals				(kg Kg	O/fed))	(kg K ₂ O/fed)								
(days)	ibbe	Con.	100	150	Con.	100	150	Con.	100	150	Con.	100	150		
	0		Ro	ot dian	neter (o	cm)	Top / roots ratio								
	T.W	11.08	12.65	13.21	10.65	11.69	12.37	0.246	0.231	0.243	0.266	0.264	0.249		
8 days	200	11.74	13.42	13.94	11.09	12.29	12.78	0.243	0.237	0.243	0.272	0.251	0.251		
	400	12.25	13.87	14.57	11.49	12.59	13.18	0.273	0.234	0.234	0.239	0.239	0.238		
	T.W	10.78	12.14	12.45	10.08	10.62	11.44	0.323	0.277	0.287	0.277	0.271	0.265		
16 days	200	11.12	12.74	13.02	10.39	11.66	12.15	0.234	0.234	0.237	0.290	0.281	0.267		
	400	11.45	13.04	13.38	11.09	12.17	12.54	0.239	0.225	0.235	0.279	0.262	0.239		
	T.W	10.14	10.89	11.34	9.68	10.25	10.68	0.229	0.207	0.221	0.273	0.249	0.266		
24 days	200	10.34	11.44	12.05	10.02	10.85	11.54	0.215	0.213	0.233	0.261	0.252	0.268		
	400	10.76	12.28	12.66	10.33	11.59	12.03	0.242	0.242	0.245	0.273	0.266	0.246		
L.S.D. at	5%	0.13			0.11				0.082		0.140				
		ŀ	Root fr	esh we	ight (g) / plan	ıt	Root dry weight (g) / plant							
	T.W	978	1112	1169	795	918	1045	211	251	267	171	201	231		
8 days	200	1058	1174	1239	854	1034	1120	235	270	288	186	228	250		
	400	1108	1298	1357	1052	1184	1254	252	303	321	232	264	281		
	T.W	897	1045	1103	685	789	857	189	231	247	145	171	188		
16 days	200	959	1108	1169	715	835	921	209	248	266	153	182	203		
	400	1047	1204	1245	841	958	1095	234	276	289	183	211	244		
	T.W	818	923	974	628	723	755	170	203	217	130	154	162		
24 days	200	905	988	1039	675	765	817	191	216	231	143	164	178		
	400	973	1056	1118	754	829	948	211	236	253	162	181	209		
L.S.D. at	5%		20		N.S				6		N.S				
			Top fre	esh wei	ght (g)	/ plan	t	Top dry weight (g) / plant							
	T.W	430	474	523	397	448	479	52	58	65	45	53	57		
8 days	200	465	515	555	433	479	512	57	64	70	50	56	62		
	400	557	560	584	457	517	539	69	71	75	55	63	67		
	T.W	526	540	586	365	407	426	61	64	71	40	46	49		
16 days	200	416	476	514	385	437	459	49	58	63	44	51	54		
	400	461	505	547	432	459	482	56	62	68	51	55	58		
	T.W	360	374	411	337	351	382	39	42	48	35	38	43		
24 days	200	366	398	456	329	367	411	41	46	54	37	41	47		
	400	447	485	512	388	419	435	51	57	62	44	48	51		
L.S.D. at 5%			15			33		2			2				

Data illustrated in Table (14) recorded that the second order interaction was significant on fresh yield of roots and top through the first and second seasons. The maximum values of fresh and dry yield of roots and top were obtained by irrigated every 8 days, gibberellic acid spraying at 400 ppm with 150 kg $K_2O/$ fed. at both seasons.

	-	20	006/200	07	20	007/20	08	20	006/200	07	2007/2008				
Irrigation intervals (days)	rellic aci		Potassium (kg K ₂ O/fed)												
	libbe	Con.	100	150	Con.	100	150	Con.	100	150	Con.	100	150		
	0		Root dry yield (ton/fed.)												
8 days	T.W	41.08	46.70	49.10	33.39	38.56	43.89	8.86	10.56	11.23	7.20	8.45	9.70		
	200	44.44	49.31	52.04	35.87	43.43	47.04	9.87	11.34	12.10	7.81	9.59	10.50		
	400	46.54	54.52	56.99	44.18	49.73	52.67	10.60	12.73	13.48	9.73	11.10	11.80		
	T.W	37.67	43.89	46.33	28.77	33.14	35.99	7.95	9.72	10.37	6.11	7.16	7.88		
16 days	200	40.28	46.54	49.10	30.03	35.07	38.68	8.78	10.43	11.17	6.44	7.65	8.53		
	400	43.97	50.57	52.29	35.32	40.24	45.99	9.83	11.59	12.15	7.68	8.87	10.20		
	T.W	34.36	38.77	40.91	26.38	30.37	31.71	7.14	8.53	9.11	5.48	6.47	6.81		
24 days	200	38.01	41.50	43.64	28.35	32.13	34.31	8.02	9.07	9.72	6.01	6.89	7.46		
	400	40.87	44.35	46.96	31.67	34.82	39.82	8.85	9.91	10.64	6.81	7.60	8.77		
L.S.D. at	5%		0.89			1.32			0.24 N.S						
		Top fresh yield (ton/fed.)							Top dry yield (ton/fed.)						
	T.W	18.07	19.91	21.95	16.67	18.82	20.12	2.18	2.44	2.73	1.88	2.21	2.38		
8 days	200	19.52	21.63	23.30	18.19	20.12	21.50	2.39	2.69	2.94	2.08	2.37	2.59		
	400	23.39	23.52	24.53	19.19	21.71	22.64	2.10	2.98	3.15	2.31	2.66	2.80		
	T.W	22.09	22.68	24.63	15.33	17.09	17.89	2.56	2.69	2.98	1.66	1.92	2.07		
16 days	200	17.47	19.99	21.59	16.17	18.35	19.28	2.06	2.44	2.65	1.85	2.13	2.28		
	400	19.36	21.20	22.99	18.14	19.28	20.24	2.35	2.60	2.86	2.13	2.30	2.45		
	T.W	15.11	15.71	17.58	14.15	14.74	16.04	1.64	1.76	2.02	1.48	1.60	1.81		
24 days	200	15.36	16.73	19.14	13.82	15.41	17.26	1.72	1.93	2.27	1.53	1.73	1.98		
(2) 	400	18.77	20.36	21.49	16.30	17.60	18.27	2.14	2.39	2.60	1.85	2.03	2.15		
L.S.D. at 5%			0.28		0.41				0.07		N.S				

Table (14): Effect of the second order interactions on fresh and dry yields of roots and top of fodder beet plants at 180 days from sowing during winter season 2006/2007 and 2007/2008.

2- Chemical composition

Results in Table (15) revealed that the second order interaction had a significant effect on crude protein and sodium percentage in roots of fodder beet plant during the two seasons. Also, this interaction had a significant effect on crude fiber and potassium percentage through the first season, while total carbohydrate and total chlorophyll were significantly responded to that interaction at the second season. Moreover, irrigated plants every 8 days, sprayed with gibberellic acid 400 ppm and addition of 150 kg K₂O/ fed. was the best interaction treatment as compared with all treatments during the two seasons.

Table (15): Effect of the second order interactions on crude protein, total carbohydrate, crude fiber, potassium and sodium in roots as well as total chlorophyll in leaves of fodder beet plants at 180 days from sowing during winter season 2006/2007 and 2007/2008.

	24	20	006/20	07	2007/2008			2006/2007			2007/2008				
Irrigation	ic aci	Potassium							Potassium						
intervals	rell	(kg K ₂ O/fed)							(kg K ₂ O/fed)						
(days)	ddi.	Con.	100	150	Con.	100	150	Con.	100	150	Con.	100	150		
			Cr	ude pr	otein	%			Tota	l carbo	hydra	te %			
8 days	T.W	10.74	11.01	11.29	9.55	9.74	10.15	56.24	56.65	57.18	54.03	54.15	54.39		
	200	11.05	11.38	11.67	10.05	10.19	10.33	56.74	57.20	57.52	54.22	54.47	54.69		
	400	11.21	11.59	11.98	10.14	10.32	10.54	57.15	57.45	57.84	54.74	55.08	55.29		
	T.W	9.89	10.23	10.57	9.26	9.48	9.78	55.67	26.12	56.75	53.43	54.00	54.18		
16 days	200	10.37	10.78	11.02	9.59	9.84	10.00	56.02	56.37	57.08	53.69	54.13	54.42		
	400	10.68	11.08	11.31	9.82	10.07	10.22	56,66	57.14	57.35	54.08	54.38	54.71		
	T.W	9.07	9.62	9.87	8.92	9.29	9.51	55.23	55.74	56.25	52.69	53.2	53.44		
24 days	200	9.34	10.12	10.27	9.20	9.63	9.81	55.63	56.07	56.3	53.18	53.45	53.85		
64 	400	9.67	10.28	10.68	9.51	9.79	10.03	56.12	56.59	56.84	53.73	54.01	54.29		
L.S.D. at	5%	0.09			0.10			N.S			0.09				
			(Crude	fiber %	ó		Т	otal ch	loroph	hyll (mg \100g)				
	T.W	12.32	12.08	11.75	13.57	13.33	13.00	34.37	35.08	35.41	32.78	33.09	33.29		
8 days	200	12.74	12.42	12.15	14.24	13.92	13.65	34.81	35.28	35.78	33.07	33.38	33.55		
	400	13.21	13.01	12.58	14.91	14.71	14.28	35.14	35.62	35.98	33.18	33.52	33.79		
	T.W	12.65	12.28	12.05	14.55	14.18	13.95	34.12	34.45	34.79	32.00	32.31	32.62		
16 days	200	13.15	12.77	12.32	15.20	14.82	14.37	34.41	34.76	35.25	32.2	32.67	32.89		
	400	13.41	13.19	12.67	15.59	15.37	14.85	34.75	35.29	35.65	32.45	32.8	33.14		
	T.W	13.05	12.74	12.28	15.35	15.04	14.58	33.74	34.08	34.35	31.62	32.00	32.19		
24 days	200	13.39	13.18	13.03	15.83	15.62	15.47	33.87	34.29	34.75	32.01	32.25	32.47		
-	400	13.87	13.56	13.24	16.37	16.06	15.74	34.15	34.62	35.14	32.19	32.43	32.71		
L.S.D. at	5%		0.08		N.S				N.S		0.08				
				Potassi	um %			Sodia			um %				
	T.W	2.39	3.12	3.33	2.15	2.68	2.88	1.07	0.86	0.77	1.23	1.09	0.94		
8 days	200	2.51	3.27	3.52	2.35	2.89	3.02	0.85	0.73	0.65	0.95	0.87	0.80		
	400	2.78	3.41	3.75	2.59	3.10	3.22	0.73	0.65	0.61	0.84	0.78	0.73		
	T.W	2.19	2.46	2.85	2.04	2.37	2.60	1.29	1.12	1.05	1.35	1.27	1.13		
16 days	200	2.35	2.79	3.14	2.29	2.58	2.77	1.01	0.87	0.81	1.27	1.09	0.95		
	400	2.55	3.15	3.38	2.41	2.79	3.00	0.95	0.81	0.75	1.12	0.97	0.86		
	T.W	2.03	2.22	2.59	1.89	2.14	2.30	1.45	1.34	1.21	1.59	1.46	1.34		
24 days	200	2.16	2.37	2.88	2.09	2.29	2.43	1.29	1.08	0.98	1.39	1.31	1.16		
	400	2.40	2.84	3.11	2.25	2.40	2.66	1.02	0.92	0.86	1.28	1.19	1.05		
L.S.D. at 5%		0.06				N.S		0.05			0.06				

Conclusion

Under Mariut conditions, it could be concluded that, the highest growth, yield and quality of fodder beet forage was detected by irrigated every 8 days and spraying by 400 ppm gibberellic acid as well as added 150 kg $K_2O/$ fed.

REFERENCES

- Abdallah E.F. and A.A. Yassen (2008). Fodder beet productivity under fertilization treatments and water augmentation. Australian J. of Basic and Applied Sci., 2(2): 282-287.
- Abd El-Lateef, A.A. (2009). Effect of potassium fertilization on some new fodder beet varieties at South Sinai. J. Agric. Sci. Mansoura Univ., 34 (8): 8905-8914.
- Abdel-Mawly, S.E. and I. Zanouny (2004). Response of sugar beet (*Beta vulgaris*, 1.) to potassium application and irrigation with saline water. Ass. Univ. Bull. Environ. Res., 7 (1):123-136.
- Ahmed, S. Th. (1997). Effect of some fertilization treatments on yield and chemical composition of fodder beet at Ras Sudr region. M. Sc. Thesis, Fac. Agric. Ain Shams, Univ. Cairo, Egypt.
- Aman, V.; C.P. Malik, Y.K. Sinsinwar and V.K. Gupta (2009). Yield parameters responses in a spreading (cv. m-13) and semi-spreading (cv. girnar-2) types of groundnut to six growth regulators. American-Eurasian J. Agric. & Environ. Sci., 6 (1): 88-91.
- Association of Official Agriculture Chemists (A.O.A.C) (1970). Official methods of analysis. Washington, D.C., U.S.A. 11th ed. Pp.832.
- Bajehbaj A. A.; N. Qasimovand and M. Yarnia. (2009). Effects of drought stress and potassium on some of the physiological and morphological traits of sunflower (*Helianthus annuus* L.) cultivars. J. of Food, Agric. & Environment. 7 (3&4): 448-451.
- Bora, R.K. and C.M. Sarma (2006). Effect of gibberellic acid and cycocel on growth, yield and protein content of pea. Asian J. Plant Sci., 5: 324-330
- Dubois, M.; Gillies, K.; Hamilton, J.K.; Rebers, P.A. and Smith, F. (1951). A colourimetric method for determination of sugars. *Nature*: 164: 167-168.

- Gomez, K. A. and A. A. Gomez. (1984). Statistical Procedures for Agriculture Research. A Wiley- Inter Science Publication, John Wiley & Sons, Inc. New York, USA.
- Howell, T. A.; L. H. Ziska, R. L. McCormick, L. M. Burtch and B. B. Fischer (1987). Response of sugar beets to irrigation frequency and cutoff on a clay loam soil. <u>Irrigation Sci.</u>, 8 (1): 1-11.
- Ibrahim, M.E.; M.A. Bekheta, A. El-Moursi and N.A. Gaafar (2007). Improvement of Growth and Seed Yield Quality of *Vicia faba* L. Plants as Affected by Application of Some Bioregulators. Australian J. of Basic and Applied Sci., 1(4): 657-666.
- Irri, A. (1967). Laboratory manual for physiological studies on ric. 3rd ed. (Souchi Youshidu, D.A. Frono, J.H. Cook and K.A. Gomez eds.) 17-23. The International Rice Research Institute, Los Banos, Phillipines.
- Islam, M.R., A.K.M.A. Prodhan, M.O. Islam and M. K. Uddin. (2010). Effect of plant growth regulator (gaba) on morphological characters and yield of black gram (*Vigna mungo* L.). J. Agric. Res., 48 (1): 73-80.
- Jackson, M.L. (1958). Soil chemical analysis. Prentice Hall, Inc. Englewood Cliffs. N. J. p. 498.
- Mazher Azza A.M.; A.A. Yassen and Z. Sahar Zaghloul. (2007). Influence of foliar application of potassium on growth and chemical composition of Bauhinia variegate seedling under different irrigation intervals. World J. of Agric. Sci., 3 (1): 23-31.
- Milford, G.F.J.; M. J. Armstrong, P.J. jarvis, B.J. Houghton, D.M. Bellett-Travers, J. Jones and R.A. Leigh (2000). Effect of potassium fertilizer on the yield, quality and potassium offtake of sugar beet crops grown on soils of different potassium status. J. of Agric. Sci., 135: 1-10.
- Mirzali, M.R.; S.M. Rezvani and J. Gohari (2005). Effect of water stress in different stages on yield and some physiological properties of sugar beet. Sugar Beet 21 (1): 1-14.
- Peach, K. and M.R. Tracey (1956). Modern methods plant analysis Vol.1 Springer Verlage, Berlin, 4: 643.

- Piper, C.S. (1950). Soil and plant analysis. Univ. Adelaide. Interscience publishers. Inc. New York.
- Romer W; C. Norbert ;S. Bernd; M. Bernward (2004). Response of sugar beet (Beta vulgaris var. altissima) to potassium fertilization. J.of plant nutrition and soil sci., 167 (6): 726-735.
- Sepaskhah A. R. and A. A. Kamgar-Haghighi (1997). Water use and yields of sugar beet grown under every-other-furrow irrigation with different irrigation intervals. Agric. Water Management. 34 (1): 71-79.
- Snedecor, G.W. and W.G. Cochran (1967). Statistical methods. 6th ed. Iowa State Univ., Press, Ames, Iowa, U.S.A.
- Steel, G.D.R. (1960). Principles and procedures of statistics. New York McGraw-Hill Book Co., pp. 481.
- Vijay, N., A. Kumar and A. Bhoite, (2009). Influence of nitrogen, phosphorus and potassium fertilizer on biochemical contents of *Asparagus racemosus* (willd.) root tubers. Res. J. Environ. Sci., 3: 285-291.
- Yadava, U.L. (1986). A rapid and non-destructure method to determine chlorophyll in intact leaves. Hort.Sci., 21: 1449-1450.

الاستجابة الفسيولوجية لنبات بنجر العلف للتأثير المتبادل لفترات الرى والتسميد البوتاسي والرش بحمض الجبرلين بمنطقة مريوط

سعيد ثابت أحمد

قسم البيئة النباتية والمراعى- مركز بحوث الصحراء - المطرية - القاهرة – مصر.

أقيمت تجربتان حقليتان على نبات بنجر العلف بمحطة بحوث مريوط بمحافظة الإسكندرية خلال موسمى 2007/2006 و 2008/2007 و ذلك لدراسة تأثير ثلاثة فترات من الرى (8 و 16 و 24 يوم) وثلاثة مستويات من الرش بحمض الجبرلين (بدون – 200 و 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 201 – 200 كجم 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 كجم 400 جزء في المليون) وثلاثة مستويات من الرش بحمض الجبرلين (بدون – 200 و 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 كجم 100 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 و و 200 جزء 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 حيث 400 جزء في المليون) وثلاثة مستويات من التسميد البوتاسي (صفر – 200 مور 200 جزء 200 جزء 200 جزء 200 جزء 200 جنون و 200 جزء 200 جزء 200 جزء 200 جامع مندقة مرتين حيث وضعت فترات الري في القطع الرئيسية والرش بالجبرلين في القطع الفر عية و التسميد البوتاسي في القطع تحت الفرعية موز عة في أربعة مكررات. وكانت أهم النتائج المتحصل عليها مايلي:-

- 1- أدت زيادة فترات الرى من 8 إلى 24 يوم إلى نقص معنوى في صفات الوزن الجاف للعرش / نبات ودليل مساحة الأوراق والوزن النوعى للأوراق عند 120 و 150 يوم من الزراعة وقطر الجذر والوزن الغض والجاف للجذور والعرش / نبات والمحصول العلفى الغض والجاف للجذور والعرش / نبات والمحصول العلفى في جذور نبات بنجر العلف ومحتوى الكلوروفيل الكلى في الأوراق عند 180 يوم من في جذور نبات بنجر العلف ومحتوى الكلوروفيل الكلى في الأوراق عند 180 يوم من الزراعة. وعلى المنات العلم والبوتاسيوم للغري الخلي والكربو هيدرات الكلية والبوتاسيوم خي حذور العرش / نبات والمحصول العلفى الغض والجاف للجذور والعرش / نبات والمحصول العلفى الغض والجاف الجذور والعرش / نبات والمحصول العلفى الغض والجاف للجذور والعرش / فرات الغض والبوتاسيوم في جذور نبات بنجر العلف ومحتوى الكلوروفيل الكلى في الأوراق عند 180 يوم من الزراعة. وعلى العكس أدت زيادة فترات الرى إلى زيادة نسبة الألياف الخام والبوتاسيوم خلال موسمى 2007/2006 و 2008/2007.
- 2- أدت زيادة تركيزات حمض الجبرلين من صفر إلى 400 جزء في المليون إلى زيادة الوزن الجاف للعرش / نبات ودليل مساحة الأوراق والوزن النوعى للأوراق وقطر الجذر والوزن الغض والجاف للجذور والعرش / نبات والمحصول العلفي الغض والجاف للجذور والعرش / فدان والبروتين الكلى والكربو هيدرات الكلية والبوتاسيوم في جذور نبات بنجر العلف ومحتوى الكلوروفيل الكلى في الأوراق ونقص في نسبة الألياف الخام والصوديوم.
- 3- أدت زيادة التسميد البوتاسى من صفر إلى 150 كجم بو¹ / فدان إلى زيادة الوزن الجاف للعرش / نبات ودليل مساحة الأوراق والوزن النوعى للأوراق وقطر الجذر والوزن الغض والجاف للجذور والعرش / فدان والجاف للجذور والعرش / فدان والبروتين الكلى والكربو هيدرات الكلية والبوتاسيوم ونقص في نسبة الألياف الخام والصوديوم خلال موسمى الدراسة.
- 4- أدى التفاعل بين فترات الرى والرش بحمض الجبرلين والتسميد البوتاسي إلى تأثير معنوى على صفات قطر الجذر ونسبة العرش إلى الجذور والوزن الغض والجاف للعرش / نبات والمحصول العلفى الغض للجذور والعرش للفدان لنبات بنجر العلف ونسبة البروتين خلال موسمى 2007/2006 و 2008/2007.