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ABSTRACT

Ulva factuca and Carolina meditermean were collected from Balteem Coast of
Egypt. These two algae represented the most common species in two major divisions
Chlorophycophyta and Rhodophycophyta which occur in Balteem coast. Treatment of
both algae with CdCl, at various concentrations (50-250 ymol) resulted in an increase
in the activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC
1.11.1.8), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR,
EC 1.6.4.2). The increase in the activities of the four enzymes was proportional with
the lower CdCl; concentrations. However, the higher concentrations (200 and 250
pmol) of CdCl, resulted in reduction of enzymes activities in both algae. In addition,
CdCl2 increased the reduced glutathione (GSH) and decreased the oxidized
glutathione (GSSG) contents of both algae. Also, the contents of proline and glycine
betaine (GB) as well as lipid peroxidation increased with the lower concentrations of
CdChk and decreased at the higher concentrations However, lipid peroxidation
increased continuously with increasing CdCl; concentrations,
Keywords: Ulva lactuca, Carolina mediterrmean, Lipid peroxidation, Antioxidant
enzymes, Reduced glutathione, Oxidized glutathione, Proline, Glycine
betaine. -

INTRODUCTION

Macroalgal communities provide nutrition, reproduction, and an
accommodating environment for other living organisms in marine ecosystems
(McClanahan ef al., 2002). Because they contain proteins, carbohydrates and
other nutritional elements. Macroalgae are one of the most important
organisms. , :

Algae contain several enzymatic and nonenzymatic antioxidant
defense systems to maintain the concentration of ROS (O, and H,0;) to
protect cells from damage (Abd El-Baky ef al, 2004). The main cellular
components susceptible to damage by these ROS are lipids, proteins,
carbohydrates and nucleic acids (Susuki & Mittler, 2006). Damages in the
polyunsaturated fatty acids of cell membrane under stress may result in a
failure in the permeability of cell membrane and cause cell death (Gutteridge
& Halliwell, 2000).

The primary scavenging enzymatic antioxidant defense system
include superoxide dismutase (SOD), calalase (CAT), giutathione reductase
(GR) and ascorbate peroxidase (APX) (Mittler ef al., 2004).

GSH is an important non-enzymatic antioxidant in macroalgae. It has
been documented that GSH can remove ROS, such as OH, O, ,'0, and
alkyl peroxide, and also protect proteins from the oxidation of protein thiol
groups (Noctor et al., 2002).

Cd has so far unknown roles in living organisms, and are toxic even at
very low concentrations (Nies, 1999). Heavy metals in general affect algae
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through cell lysis, growth inhibition, reduced photosynthesis, disrupted
calcification, disturbances in ‘sexual reproduction, and changes in
bioluminescence (Ku'pper et al,, 2002). In addition, heavy metals induce the
production of reactive oxygen species (ROS) and cause a disbalance in the
cellular oxidative status (Okamoto et af,, 2001a & 2001b).

Heavy metals block functional groups of proteins, displace and/or
substitute essential metals, induce conformational changes, denature
enzymes and disrupt cells and organelle integrity (Hall, 2002). Different heavy
metals have been reported to affect macroalgae by interacting with enzymes
and inhibiting their normal functions (Van Assche & Clijsters, 1990).

Cadmium is one of the most toxic water pollutants which penetrate into
environment mainly through industrial processes and phosphate fertilizers.
The bases of Cd toxicity are still not completely understood, but it might result
from its high affinity for sulfydryls (Sch™utzend “ubei & Polle, 2002).

Thus, the aim of the present investigaticn is to study the effect of CdCl,
at different concentrations (50-250 pmol) on the antioxidant enzymes and
non-antioxidant compounds in Ulva lactuca and Carolina mediterrnean
collected from Baiteem coast of Egypt.

MATERIALS AND METHODS

Location of collection

One station along Balteem coast of Egypt was chosen for collecting the
algae under investigation, the algae were taken for analysis.
Algal Material

The algae used in this study were Ulva lactuca and Carolina
mediterrnean. These algae represent the most common species in the two
major divisions Chlorophycophyta and Rhodophycophyta which occur in this
area. Some samples of Ulva lactuca and Carolina mediterrnean were
transported in ice-box directly to the laboratory. These samples were washed
with distilled water several times and purified from sand and epiphytes before
using in the extraction of antioxidant enzymes and non-antioxidant enzyme
systems.
Identification of aigae

Algal taxa were identified according to Nasr (1947), Aleem (1978)
and Ei-Nagger (1980).

Treatment with CdCl, )

The thalli were treated with 20 m! of CdCl; at various concentrations
(50, 100, 150, 200, 250 pmol) or 20 mi of distilled water {control) for 24 h.
After treatment, the thalli were used for preparation of the extract for
measuring enzymic and nonenzymic antioxidants. Ail the treatments were
carried out on orbital rotating plates (60 rpm) in light (150 umol m? s™) at 28
[+]

c
Preparation of algal extract -

Samples of Ulva lactuca and Carolina med:ten‘nean were used for
enzyme extraction as follow. The thallus was ground in 100 mM phosphate
buffer (pH 7.0}, 1.0 mM DTT and then centrifuged at 5000 g for 20 min. The
supernatant was collected and used for determination of the contents of non-
enzymic antioxidants as well as the activities of antioxidant enzymes.
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Determination of enzymes activities:
Superoxide dismutase (SOD, EC 1.15.1.1):

SOD activity was assayed by measuring the inhibition of
photochemical reduction of NBT (Giannopolitis & Reis, 1997).

Catalase (CAT, EC 1.11.1.6):

Catalase activity was measured according to Kato & Shimizu {1987).
Ascorbate peroxidase (APX, EC 1.11.1.11):

APX activity was determined according to the method of Nakano &
Asada (1981).

Glutathione reductase (GR, EC 1.6.4.2):

Assay of GR was based on the method described by Carlberg and
Mannervik (1985) and depends on the oxidation of NADPH at 340 nm.
Determination of glutathione (GSH):

The GSH content of algal cell extracts was measured by reaction with
5,5 dithiohis-2-nitrobenzoic (DTNB) according to Silber et al. {(1992).
Estimation of proline content:

The proline content was estimated by the method of Bates et al. (1973).
Estimation of glycine betaine (GB} content:

GB concentration in Ulva lactuca and Carolina mediterrnean extract
was determined according to the method of Wyn Jones & Storey (1977).
Determination of lipid peroxidation

The assay principle is that malondialdehyde (MDA), a secondary
product of lipid peroxidation, reacts with thiobarbituric acid (TBA) in acidic
medium and the absorbance was read at 532 nm (Heath & Packer, 1968).
Statistical analysis

All the data in the present study are expressed as mean + SE obtained
from three measurements.

RESULTS AND DISCUSSION

Studying the effect of various CdCl; concentrations (50-250 umol) on
SOD activities (Fig. 1) in both U. lactuca and C. mediterrnean, revealed that
U. lactuca expressed lower activity than that expressed by C. mediterrnean.
The Cd induction of SOD activity has also been cbserved in the marine
microalgae Tetraselmis gracilis (Okamoto et al, 1996). In the marine
dinoflagellate Gonyaulax polyedra, the activity of SOD was induced by
exposure to acute Cd (Okamoto & Colepicolo, 1998).

The reduction in the level of SOD activity at high concentration of CdCl,
in present investigation could be due to the inhibition of the enzyme through
reaction with —SH group required for enzyme catalysis. Also, the reduction
could be due to the increase of superoxide anion radical during its
metabolism.

CdCl, induced catalase activity in U factuca and C. mediterrnean at
the lower concentrations (Fig 2). However, C. mediterrnean expressed higher
catalase activity than U. factuca. The induction of CAT activity by Cd has
been observed in the red macroalgae Gracifaria tenuistipitata (Colién ef al.,
2003).
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The observed reduction of catalase activity at the higher concentrations
of CdCi; may be explained by insufficient supply of NADPH, which is required
for the activation of catalase for its regeneration from its inactive form.
Decline in the catalase activity under high stress condition may be due to
increased accumulation of H;O; thereby leading to augmented lipid
peroxidation

The activity of peroxidase was increased in both algae progressively
with increasing of CdCl; concentrations (Fig. 3). U. lactuca expressed lower
GR activity than C. mediterrmean when treated with CdCl; at the wvarious
concentrations (Fig. 4).

The present data show that proline content was apparently increased
at the lower concentrations of CdCl; but decreased at the higher ones. (Fig.
5). In addition, C. mediterrnean showed higher activity than U. laciuca
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. mediterrnean expressed higher content of GB compared to that of
U lactuca (Fig. 6) and there was corresponding increase in GB content on
freaiment with the lower CdCl, concentrations. However, there was a
decrease in its content at the higher concentrations.

The content of GSH as antioxidant was increased in both UJ. lactuca
and C. mediterrnean (Fig. 7) under treatment with various concentrations of
CdCl,. On the other hand, GSSG content was reduced particularly with C.
mediterrnean (Fig. 8). It was remarkable that the reduction of GSSG content
in both algae was dependent on CdCl, concentration. Under metal stress
canditions seaweeds may use GSH primarily to counter oxidative stress from
exposure to a mixture of toxic metals.
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Cd-induced increase of GSH was also observed in hyphomycetes
(Miersch et al., 1997). The increase in GSH content has been reported also
for plant and algal cells subjected to stress by metals (Okamoto et al., 2001
a;Lavoie et al, 2009). Such increase in GSH content might be an important
defense response to stresses as has been found in Cd-stressed plants
(Pietrini et af, 2003) although defense against stress situation sometimes
QCCurs irrespggtive of the GSH concentration (Potters et al., 2004).
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Fig. 8: Effect of CdCl, on GSSG content.

Glutathione is used for synthesis of phytochelatins, which perform the
intracellular sequestration of heavy metal ions in plants and algae (Ahner &
Morel, 1995, Cobbett & Goldsbrough, 2002). Furthermore, the increase in
GSH content under Cd stress was reported to be essential for the synthesis
of phytochelatins, which tends to form stable complexes with Cd and
minimize the toxicity of free metal ions (Srivastava ef al, 2004). GSH is able
to modify metal toxicity by altering the rates of metal uptake and elimination
(Kang, 1892) and by chelating metal ions in cells (Freedman et al., 1989). In
addition, the increase in GSH protects SH-containing enzymes from oxidation
{lannelli et al, 2002) and GSH is essential as electron denor for the
generation of ascorbic acid as another antioxidant in plant cells. Glutathione
chelates Cd through sulfhydryl coordination (Rabenstein, 1989).

However, glutathione concentration in Ulva lacfuca and Carofina
mediterrnean was declined at the higher concentrations of CdCl, These
results are In agreement with those reported for Gracilaria tenuistipitata
(Collén et af., 2003) and in the marine green macroalgae Enteromorpha linza
(Malea et al., 2006) under heavy metal stress.

The lowered levels of GSH in algal extract under high metal stress
conditions represent as excess free radical production, which may be due to
the binding of heavy metal with various sulfhydryls that exist in the cell
(Vijayavel et al., 2006).

The effect of CdCl; on lipid peroxidation of U. lactuca and C.
mediterrnean at various concentrations (50-250 pmol) was investigated and
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the results are illustrated in Fig. 9. The resuits indicate that there was a
correlation between CdCl, concentrations and lipid peroxidation in both
algae. The results also show that lipid peroxidation was higher in C.
mediterrnean than U, jactuca. 1t has been reported that Cd treatment resulted
in an increase of membrane integrity loss (Sch’utzend “ubel & Polle, 2002).
Cd does not appear to generate free radicals, but it does elevate lipid
peroxidation which resuits indirectly in ROS production (Gutteridge &
Halliwell, 1988).

Marine phytoplankton are likely to be one of the important sources of
low molecular weight thiols such as glutathione in surface seawater, since
thiols have been shown to correlate well with Chi a levels in coastal seawater
{Al-Farawati & Van Den Berg, 2001). Thus, it is important to understand
possible controls on the intracellular concentrations of these compounds in
marine algae.

in conclusion, both U. lactuca and C. meditermean expressed
appreciable activities of antioxidant enzymes as well as nonenzymic
antioxidants under Cd-stress. These resuits suggest that both algae can be
used as a source of antioxidants.
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Fig. 9: Effect of CdCl, on lipid peroxidation..
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