INFLUENCE OF FOLIAR SPRAY WITH SEAWEED EXTRACTS ON GROWTH, SETTING AND YIELD OF TOMATO DURING SUMMER SEASON

Nour, K. A. M.; N. T. S. Mansour and W. M. Abd El-Hakim Hort. Res. Inst., Agric. Rec. Center, Egypt. Veg. Res. Dept.,

ABSTRACT

Two field trials were conducted during two successive summer seasons of 2008 and 2009 at the Experimental Farm, El Kassasein Research Station, Ismailia Governorate, to elucidate the effect of foliar spray with seaweed extracts (without, 1g/I and 2g/II) and four tomato hybrids (Master R.S., K615, K111 and K 306) as well as their interaction on growth, dry weight, flowering, fruit setting, physical characters, yield and chemical constituents of tomato plants (*Lycopersicon esculentum* Mill.) during summer season under sandy soil conditions.

Tomato hybrid K615 recorded the highest values of leaf area, number of leaves/plant, leaves and total dry weight, and fruit diameter, while the hybrid K306 gave the highest values of plant height, setting percentage, fruit length, number of fruits/plant, yield /plant and total yield /fed. As well as K% content in fruits.

Spraying tomato hybrids with seaweed extracts at a rate of 1g/ I recorded maximum values of plant growth characters, leaves and total dry weight, while spraying the plants with seaweed at 1 or 2g/ I reflected the highest values of setting percentage, number of fruits/plant, yield/plant and total yield /fed. as well as total soluble solids as compared to the control. The interaction treatment between the hybrid K615 and foliar spray with seaweed extracts at 2g/ I gave the highest values of leaves number/plant, number of shoots/plant, leaf area, dry weight, fruit diameter, number of fruits/plant, N% and protein % as well as total soluble solids. On the other side, the combination between tomato hybrid K306 and foliar spray with seaweed extracts at 2g/ I gave the best values of plant height, number of shoots/plant, setting percentage, fruit length, yield/plant and total yield /fed. as well as K% content in fruits. **Keywords:** Seaweed, tomato hybrids, growth, flowering, setting and yield.

INTRODUCTION

The tomato (Lycopersicon esculentum Mill.) is one of the most important as well as popular vegetables allover the world as well as in Egypt. It is found in the market throughout the year months. In Egypt, it takes first rank among the vegetables. In addition, tomato represents one of the most important vegetable crops for local consumption and exportation.

It is fairly well known that temperature has a marked effect on fruit setting tomato. Fruit set is usually poor when the temperature is either relatively low or relatively high.

Seaweeds are the macroscopic marine algae found attached to the bottom in relatively shallow costal waters. They grow in the intertidal, shallow and deep sea areas up to 180 meter depth and also in estuaries and backwaters on the solid substrate such as rocks, dead corals and pebbles. Seaweed zone is one of the conspicuous and wide-spread biotope in the shallow marine environment. The seaweeds are totally different from higher plants as they neither have true leaves, stems and roots or vascular system none specialized sex organs (Thirumaran *et al.*, 2009a).

The use of seaweeds as manure in farming practice is very ancient and common practice among the Romans and also practiced in Britain, France, Spain, Japan and China. There are also records of culture of seaweeds for manure in Ireland and South Africa (Thirumaran et al., 2009a). Seaweeds are used either directly or after compositing or burning being made into a meal. Case of seaweed, especially species of Sargassum has been used in parts of coastal Kerala as manure for coconut plantation. Experiments on the use of seaweed as manure have been carried out by Thivy (1960) who showed higher rate of growth and higher yield in crop plants. Bhosle et al. (1975) prepared a seaweed liquid fertilizer and studied its effects on *Phaeseouls vulgaris*. Seaweed extracts, as foliar nutrient sprays, have been used in horticulture for several decades (Blunden, 1991).

Studies conducted with seaweed sprays under controlled experiments resulted in higher earlier yields and larger fruit size in tomatoes (Verkleij, 1992). Plants treated with 112fl oz/acre seaweed concentrate had a higher marketable yield, elemental concentrations of tomato fruits were not affected by seaweed spray (Csizinszky, 1994).

Temple and Bomke (1989) showed that seaweed application caused an increment in fresh and dry weight of bean leaves. Treating tomato plants with seaweed concentrate exhibited early fruit ripening and total fresh weight of fruits was increased by 17% and number of harvested fruits were improved by about 10% (Crouch and Van Staden, 1992). Hamed (1997) on sweet pepper concluded that seaweed extracts significantly increased total yield, P and K percentage as compared with the control. El-Aidy et al. (2002) reported that foliar application of seaweed extracts significantly increased plant height, leaves number, leaf area, dry weight of leaves / plant, TSS% and acidity of sweet pepper. Awad et al. (2006) indicated that foliar application of seaweed extracts at dose (2g/l) significantly increased plant height, foliage dry weight. total tuber yield, number of tubers / plant and NPK percentage of potato. Treating seeds of Abelmoschues esculentus and Cyamopsis tetrogonolaba (L) Taub. of lower concentration (20%) of seaweed liquid fertilizer showed better response in terms of shoot and root length, number of leaves as compared to other concentrations (Thirumaran et al., 2009 a and b).

Regarding tomato hybrids, Marmand cultivar showed significantly higher nitrogen, phosphorus and potassium contents as well as early and total yield than V.F.N.-8 and Pritchard cultivars (Hewedy, 1988). Ben-Oliel et al. (2005) reported that fruit TSS and titratable acidity were significantly increased in tomato hybrid R-144; while yield was slightly decreased as compared with other hybrids (R-175, FA 612 and FA 624). Tomato hybrid Avinash-2 produced more fruit than the nonhybrid cv. Pant T3 (Almeselmani et al.2010).

MATERIALS AND METHODS

The present work was carried out during two successive summer seasons of 2008 and 2009 at the Experimental Farm, El Kassasein Research Station, Ismailia Governorate, to evaluate the effect of foliar spray with seaweed extracts (without, 1g/l and 2g/l) and four tomato hybrids (Master

R.S., K615, K111 and K 306) as well as their interactions on growth, dry weight, yield, flowering, fruit setting and chemical constituents of tomato (*Lycopersicon esculentum* Mill.) grown under sandy soil conditions using drip irrigation system.

The physical and chemical properties of the experimental soil are given in Table 1.

Table1: The physical and chemical properties of the tested soil during 2008 and 2009 seasons

		w						
Physical prope	rties		Chemical properties					
Sand (%)	2008	2009		2008	2009			
Silt (%)	96.5	95.6	Organic matter	0.03	0.08			
Clay	1.7	1.6	Available K (ppm)	52	64			
Field capacity	1.8	2.8	Available P (ppm)	5.5	6.2			
Wilting point	6.5	6.8	Available N (ppm)	5.4	6.9			
Available water	2.4	2.5	Calcium carbonate (%)	0.18	0.26			
	4.5	4.5	рH	8.1	8.1			
Water holding capacity	13.8	14.5						

This experiment included 12 treatments, which were the combinations between three concentrations of Seaweed extracts (without, 1 and 2g/l) and four tomato hybrids (Master R.S., K615, K111 and K306) seeds of Master R.S. hybrid were obtained from Horticulture Research Institute, Agriculture Research Center, Giza Egypt, while the other hybrids were obtained from Kansouh (2002).

Seaweed extracts (Algifert) as powder from *Ascophyllum nodosum* and biological fertilizer contains appreciable quantities of nutrients, phytohormones, amino acids and vitamins (Table2). It was obtained from Sidasa Egypt Company.

Treatments were arranged in a split plot design with three replicates, tomato hybrids were assigned randomly in the main plots, while sub-plots were devoted to seaweed extracts. The seeds of tomato hybrids were sown in nursery of foam trays on 1st and 4th of March in 2008 and 2009 seasons, respectively, and transplanted on 4th and 7th of April 2008 and 2009 seasons, respectively, the plot area was $15 \, \mathrm{m}^2$, plants were spaced at 40cm apart. Every plot consisted of 3 dripper lines 4m in length and 1.25m in width with about 30 plants in every plot. One dripper line was left between each two experimental plots without spraying as a guard row to avoid the overlapping (contamination) of spraying solution. One dripper line $(5 \, \mathrm{m}^2)$ was earmarked for samples and the other two dripper lines $(10 \, \mathrm{m}^2)$ were earmarked for estimating yield and its components.

Seaweed extracts were applied as foliar spray, three times by 10 days intervals, beginning 30 days after transplanting (30, 40 and 50 days from transplanting). The untreated plants (control) were sprayed with tap water. The normal agriculture practices of tomato under drip irrigation system were followed according to the recommendations of Agriculture Ministry. The treatments carried out in this study were as follows:

Nour. K. A. M. et al.

A. Main plots (tomato hybrids)

- 1. Master R.S.
- 2. K615
- 3. K111
- 4. K306
- B. Sub-plots (foliar application)
- 1. Control (tab water).
- 2. Seaweed extracts 1g/l.
- 3. Seaweed extracts 1g/l.

Table 2: Chemical analysis of seaweed extracts (Algifret)*

Components (%)							
Appearance	Brownish-black crystals						
Solubility in water	100% soluble						
Typical analysis:-							
Maximum moisture		6.5 %					
Organic matter	j	44-5%					
Ash (minerals)		44-55%					
Elements:-							
Macro elements (%)		(ppm)	Micro elements				
Total nitrogen (N)	1.0-2.0	Boron (B)	75-150				
Available phosphoric acid (P ₂ O ₅)	2.0-4.0	Iron (Fe)	75-250				
Soluble potash(K ₂ O)	18.0-22.0	Manganese(M	n) 8-12				
Sulfur (S)	1.0-2.0	Copper (Cu)	1-10				
Magnesium (Mg)	0.2-0.5	Zinc (Zn)	25-75				
Calcium (Ca)	0.1-0.2						
Carbohydrates -	Alginic acid, Mannitol, Laminarin						
-Naturally occurring growth promoters	Cytokinins, Auxins , Gibberellins						
Amino acids (average g of amino acid/ 10	0 g of prot	ein) : -					
Alanine	3.81	Lysine	1.33				
Arginine	0.22	Methionine	1.39				
Aspartic	5.44	Phenylalinine	2.82				
Cystine	trace	Proline	4.42				
Glutamic acid	7.69	Serine	0.14				
Glycine	3.16	Threonine	1.27				
Histidine	0.42	Tyrosine	1.80				
Isoleucine	1.94	Valine	3.46				
Leucine	4.84		l				
Vitamins (ppm) :-							
Provit.	40.0	C	200-400				
B1	6.8	D	4.0				
B2	6.0	E	70.0				
B12	0.04	Niacin	70.0				

^{*}Norwegin institute of Seaweed Research Oslo, Norway

Data recorded

1. Growth parameters

A random sample of three plants was taken from every plot at 60 days from transplanting in both seasons of study for evaluating the growth characters of tomato plants expressed as: plant height (cm), number of both leaves and shoots / plant, leaf area and total dry weight (leaves + branches) / plant (g), (the samples were dried in an electric oven at 70°C till constant weight).

2. Flowering characters

A random sample of three plants from each plot (in the second season only) were labeled and the following data were recorded: number of both flowers and fruits on the first four trusses, total number of flowers / plant, total number of fruits / plant and fruit set percentage = (total number of fruits/plant) / (total number of flowers/plant) × 100; that was calculated on different trusses as well as per plant.

3. Physical characters

At each picking time, a representative sample of five fruits from each experimental plot was taken for determining the following characteristics: fruit length (cm), fruit diameter (cm) and fruit index (fruit length / fruit diameter). Total soluble solids (T.S.S.) were determined in fruits samples taken especially for chemical characteristics, the full-ripe fruits were blended and filtrated through muslin cloth and then through filter paper No. 1, the total soluble solids was determined in the filtrate by using Calr Zeis refractometer.

4. Yield and its components

Fruits of each plot were harvested at full-ripe (maturity) stage, and then counted, weighed and the following data were calculated: number of fruits/plant, average fruit weight, individual plant yield and total yield / fed.

5. Fruit chemical constituents

Dried fruits were finely ground separately and digested with sulfuric acid and percholoric acid (3:1). Nitrogen, phosophorus and potassium were determined according to the method described by Kock and Mc-Meekin (1924), Murphy and Riley (1962) and Brown and Lilliland (1946), respectively.

6. Total protein (%)

The previously determined nitrogen of dry fruits was used for calculating total crude protein by multiplying N- values by 6.25 (A.O.A.C. 1980).

7. Statistical analysis

Obtained data were subjected to the analysis of variance according to Snedecor and Cochran (1980). Duncan's multiple range test was used for the comparison among treatments (Duncan, 1955).

RESULTS AND DISCUSSION

Vegetative Characters Effect of tomato hybrids

Data presented in Table 3 reveal that there was a significant difference between tomato hybrids in plant height, number of leaves / plant and plant leaf area. However, such differences did not reach to the level of significance in plant height during the first season and number of shoots per plant during both seasons of study. In this respect, the highest values of number of leaves were recorded by hybrid Master R. S. while the hybrid K615 recorded the highest values of leaf area and number of shoots / plant. On the other side, the tallest plants were recorded by hybrid K111. Such differences among the tested tomato hybrids in growth parameters may be due to the differences in their genetic potential. These results are in agreement with those reported by Hewedy (1988) and Ben-Oliel et al. (2005) on tomato.

Effect of seaweed extracts

Data in Table 3 show also the effect of foliar spray with seaweed extracts on vegetative growth of tomato hybrids. It is obvious from the data that increasing the dose of applied seaweed extracts from 0.0 up to2g/l led to a marked stimulative effect on growth parameters as compared with the control treatment in both seasons, with the exception of number of shoots per plant. These results might be attributed to the beneficial effect of seaweed extracts contain naturally occurring supplying nutrients, plant growth hormones (auxins, cytokines and gibberellins) as well as other plant biostimulants; e.g. amino acids, vitamins that could maintain photosynthetic rates, improve plant resistances, delay plant senescence and control cell division (Kusima,1989; Crouch and Van Standen,1992). These results are in agreement with those obtained by Temple and Bomke (1989) on beans, El-Aidy et al. (2002) on sweet pepper and Awad et al. (2006) on potato.

Table 3: Effect of tomato hybrid, seaweed extracts and their combinations on vegetative growth of tomato hybrids at 60 days after transplanting during 2008 and 2009 seasons

		T				Growth c	haracte	rs / plan	t	
Treatr	nents	20	008 Seas	on		2009 Season				
Tomato hybrids			Leaves No.	Shoots No.	Leaf area (cm²)	Plant height (cm)	Leaves No.	Shoots No.	Leaf area (cm²)	
Master R.S.		52.8a	70.2a	6.9a	1580ab	54.8b	73.4a	7.1a	1628a	
K615		53.9a	68.1a	7.3a	1691a	55.5ab	70.4a	7.1a	1701a	
K111		56.6a	66.8ab	6.6a	1538b	60.5a	71.3a	7.0a	1615a	
K306		56.8a	57.6b	6.0a	1456b	58.9ab	58.7b	5.9a	1492b	
	Control	49.7b	59.8b	5.8a	1409b	49.5b	59.4b	5.9a	1418a	
	1 gm/l	57.5a	64.6ab	7.2a	1575ab	61.9a	69.3a	7.2a	1642a	
	2 gm 1	57.9a	72.7a	7.1a	1714a	60.8a	76.7a	7.3a	1768a	
	Control	49.8f	67.3b-d	5.7bc	1421c-e	50.7f	70.3d	6.0bc	1427ef	
Master R.S.	1 gm/l	54.2de	69.0bc	7.7a	1579bc	58.0cd	73.7cd	8.0a	1672a-d	
	2 gm /l	54.5cd	74.3ab	7.3ab	1737ab	55.7de	76.3bc	7.3ab	1785ab	
	Control	48.7f	59.7e-g	7.0a-c	1517cd	45.3g	56.0fg	6.3bc	1469d-f	
K615	1 gm/l	56.3b-d	66.0с-е	7.3ab	1731ab	59.8cd	70.3d	7.0a-c	1742a-c	
	2 gm /l	56.8b-d	78.7a	7.7a	1824a	61,3bc	85.0a	8.0a	1892a	
	Control	50.0f	59:3e-g	5.3c	1378de	51.2ef	60.7ef	5.7c	1449d-f	
K111	1 gm/l	61.2a	64.7c-f	7.7a	1492cd	69.0a	72.3cd	8.0a	1623b-e	
	2 gm /i	58.7ab	76.3a	6.7a-c	1745ab	61.3bc	81.0ab	7.3ab	1776ab	
	Control	50.3ef	52.7g	5.3c	1323e	51.0ef	50.7g	5.7c	1327f	
K306	1 gm/l	58.5a-c	58.7fg	6.0a-c	1498cd	60.7bc	61.0ef	5.7c	1530c-f	
	2 gm /l	61.7a	61.3d-f	6.7a-c	1548c	65.0ab	64.3e	6.3bc	1620b-e	

Values having the same alphabetical letter (s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test

Effect of interaction

The results in Table 3 illustrate the effect of the interaction between tomato hybrids and foliar spray with seaweed extracts on vegetative characters. It is obvious from the data that there were significant differences among most of the interaction treatments on all studied vegetative characters. These results are true in both growing seasons. In general, the interaction between tomato hybrid K615 and foliar spray with seaweed

extracts at a rate of 2g/l gave the highest values of number of leaves and shoots as well as leaf area as compared with other interaction treatments which recorded the lowest values in both seasons.

Dry Weight

Effect of tomato hybrids

The results listed in Table 4 clearly show the effect of tomato hybrids on dry weight of different organs of tomato plant at 60 days from transplanting; such results indicate that there were significant differences among the four hybrids in both growing seasons regarding all studied characteristics except shoots dry weight. In general, the hybrid K615 recorded the maximum values of leaves and total dry weight, followed by Master R.S. and K11, while K306 ranked the last one. The effect of tomato hybrids on dry weight might owe much to the increase in vegetative plant growth characters (Table3). These results matched with those reported by Hewedy (1988) and Ben-Oliel et al. (2005) on tomato.

Table 4: Effect of tomato hybrid, seaweed extracts and their combinations on dry weight of tomato hybrids at 60 days after transplanting during 2008 and 2009 seasons

Values having the same alphabetical letter (s) dld not significantly differ at 0.05 level of

		Dry weight (g / plant)								
Treatn	nents		2008 Sea	son	2009 Season					
Tomato hybrids	Seaweed extracts	Leaves	Shoots	Total	Leaves	Shoots	Total			
Master R.S.		37.82ab	19.77a	57.59ab	39.80a	21.03a	60.83at			
K615		40.49a	21.21a	61.70a	41.45a	21.56a	62.97a			
K111		36.85b	19.26a	56.11b	39.64a	20.90a	60.54at			
K306		34.88b	18.17a	53.05b	36.31b	19.08a	55.39b			
	Control	33.77b	17.59a	51.36b	33.69b	18.01a	51.70b			
	1 gm/l	37.72ab	19.73a	57.45ab	40.70ab	21.25a	61.92a			
	2 gm /l	41.04a	21.50a	62.54a	43.52a	22.66a	66.19a			
	Control	34.05c-e	17.64b-d	51.69de	35.57e-g	19.76bc	55.33fg			
Master R.S.	1 gm/l	37.81bc	19.90a-d	57.71bc	40.55b-d	21.12a-c	61.67c-			
	2 gm /l	41.61ab	21.78ab	63.39ab	43.29a-c	22.20ab	65.49b-			
	Control	36.34cd	18.83a-d	55.17cd	33.92fg	17.94cd	51.86g			
K615	1 gm/l	41.45ab	21.70a-c	63.15ab	43.69a-c	22.64ab	66.21a-			
	2 gm /l	43.68a	23.11a	66.79a	46.74a	24.09a	70.83a			
	Control	33.00de	17.37cd	50.37de	34.18fg	18.08cd	52.26g			
K111	1 gm/l	35.75с-е	18.52b-d	54.27cd	40.21b-d	21.05a-c	61.26c-			
	2 gm /l	41.80ab	21.89ab	63.69a	44.55ab	23.57a	68.12a			
	Control	31.69e	16.51d	48.20e	31.08g	16.27d	47.35∤			
K306	1 gm/l	35.88cd	18.79a-d	54.67cd	38.35d-f	20.18bc	58.53e			
	2 gm /l	37.08cd	19.21a-d	56.29cd	39.51c-e	20.79a-c	60.30d			

significance according to Duncan's multiple range test.

Effect of seaweed extracts

Data in Table 4 illustrate the effect of seaweed extracts on dry weight of tomato hybrids. It is markedly shown that foliar spraying with seaweed extracts at the highest rate (2g/l) on tomato hybrids plants had positive significant effect on dry weight of leaves and total dry weight as compared with untreated plants. The increment in dry weight of different plant organs

might owe much to the increase in plant growth (Table 3). These results were in accordance with those reported by Temple and Bomke (1989) on beans, Ei-Aidy et al. (2002) on sweet pepper and Awad et al. 2006 on potato.

Effect of interaction

According to the effect of the interaction between tomato hybrids and foliar spray with seaweed extracts on dry weight of tomato plant. It is obvious from data in Table 4 that the interaction treatments reflected significant effect on dry weight of different organs of tomato plant, these results were true during both seasons of study. It is obvious that the interaction between tomato hybrid K615 and foliar spray with seaweed extract at a rate of 2g/l was the superior treatment, while the interaction between tomato hybrid K111 and without foliar spray with seaweed extract (0.0) recorded the lowest values of dry weight.

Flowering and Fruit Setting Effect of tomato hybrids

Data of the effect of tomato hybrids on flowering, fruiting and fruit setting percentage on different trusses and the total per plant are shown in Table 5. The results declare that the studied hybrids were differently affected in flowering, fruiting and fruit setting (%) which appeared on different trusses. All tomato hybrids did not show any significant effect on number of flowers and setting(%)on different trusses except number of flowers on first truss. It is also clear that, number of fruits per plant was at maximum values on first truss, but it was minimum on third one. In addition, it is of interest to observe that K306 hybrid recorded the highest values of number of both flowers and fruits per plant as well as average of setting %.

These differences in flowering characters may be due to the genetic constitution of the hybrids. Obtained results are in agreement with those obtained by Hewedy (1988) on tomato.

Effect of seaweed extracts

Presented data in Table 5 indicate the effect of foliar spray with seaweed extracts on flowering, fruiting and fruit setting. In general, it is evident that spraying tomato hybrids with seaweed extracts had insignificant effect on flowering of different trusses as well as total per plant.

Regarding number of fruits on different trusses, it was significantly affected by foliar spray with seaweed extracts and it was maximum on first truss, followed by second truss. It is also clear from the obtained results that, increasing the dose of applied seaweed extracts was associated with marked stimulative effect on number of fruits. On the other hand, foliar spray with seaweed extracts reflected a significant effect on setting percentage except on first and second trusses. Setting percentage was at maximum on second truss, while the minimum was on fourth truss followed by third truss.

Effect of interaction

According to the effect of the interaction between tomato hybrids and foliar spray with seaweed extracts on flowering, fruiting and fruit setting, it is obvious from data in Table 5 that the interaction treatments reflected significant effect on flowering of different trusses as well as total per plant.

Table 5: Effect of tomato hybrid, seaweed extracts and their combinations on flowering, fruiting and fruit setting percentage of tomato hybrids during 2009 season

T		F	irst trus:	5	Se	cond tru	ıss	TI	ird tru	SS	Fo	urth tru	SS	Total	plant	
Treatn Tomato hybrids	Seaweed	No. of flowers	No. of fruits	Setting %	No. of flowers	No. of fruits	Setting %	No. of flowers	No. of fruits	Setting %	No. of flowers	No. of fruits	Setting %	No. of flowers	No. of fruits	Average setting %
Master R.S.		17.3a	10.6a	60.9a	14.6a	8.8a	59.8a	11.7b	6.8b	57.7a	12.8a	7.0b	54.6a	56.5a	33.1a	58.4a
K615		16.6ab	10.2a	60.5a	13.2a	8.0a	61.4a	13.4a	7.7a	57.7a	13.4a	7.5ab	55.8a	56.6a	33.5a	59,2a
K111		14.7b	9.4a	63.9a	14.3a	9.0a	62.9a	11.9b	7.0ab	58.6a	13.6a	7.8a	57.3a	54.4a	33.1a	60.9a
K306		15.9ab	10.0a	63.6a	15.9a	10.1a	63.3a	12.5ab	7.5ab	60.0a	13.1a	8.6ab	57.5a	57.4a	35.2a	61.2a
	Control	15.3a	8.7a	57.4a	13.8a	7.8a	56.6a	12.1a	6.4b	53.1b	12.6a	6.4b	51.1b	53.7a	29.3b	54.6a
	1 gm/l	17.7a	11.1a	63.2a	14 4a	9.1a	62.9a	13.3a	8.0a	60.2ab	14.1a	8.0a	56.8ab	59.4a	36.1a	60.9a
	2 gm /l	15.4a	10.2a	66.1a	15.3a	10.1a	66.3a	11.9a	7.4ab	62.2a	13.0a	7.9a	60.9a	55.6a	35.7a	64.3a
	Control	12.4de	7.1e	58.1a	15.6ab	8.3cd	53.2c	11.8c-d	6.4bc	54.3с-е	12.3ef	6.1d	49.7f	52.1e	27.9d	63.7d
Master R.S.	1 gm/l	19.6a	12.0ab	61.4a	13.2bc	8.3cd	61,9a-c	12.0b-d	7.0b	58.6b-d	13.6a-d	7.4b	54.5de	58.4a-c	34.7bc	59.4a-d
	2 gm /l	20.0a	12.7a	63.5a	15.1a-c	9.7a-c	64.4ab	11.5cd	6.9b	60.2ab	12.4d-f	7.4b	59.6a-c	59.0a-c	36.7a-c	62.2ab
	Control	16.4b	9.2c-e	56.5a	12.2c	7.1d	58.6a-c	13.1а-с	6.8bc	52.0e	12.9c-e	6.5cc	50.41	54.6de	29.6d	54.3d
K615 ,	1 gm/l	17.3b	10.7a-d	61.9a	14.7a-c	8.9b-d	61.1a-c	14.1a	8.4a	59.6a-c	14.3ab	8.1a	56.7cd	60.4ab	36.1a-c	59.8a-d
	2 gm /l	16.0bc	10.6a-d	63.2a	12.6c	8.1cd	64.6ab	13.0a~c	8.0a	61.5ab	13.1b-f	7.9ab	60.4ab	54.7de	34.6bc	63.4a
	Control	16.0bc	9.4b-e	58.7a	13.3bc	7.6d	57.4bc	11.8b-d	6.2c	52.5e	13.0c-f	6.8c	52.3ef	54.1de	30.0d	55.4b-d
K111	1 gm/i	16.4b	10.6a-d	64.7a	13.1bc	8.2cd	62.4a-c	13.5ab	8.2a	60.7ab	14.5a	8.4a	57.9b-d	57.5b-d	35.4a-c	61.6a-c
	2 gm /l	11.7e	8.0de	68.4a	16.4a	11.3a	68.9a	10.4d	6.5bc	62.4ab	13.2b-f	8.1a	61.6ab	51.7e	33.9c	65.6a
	Control	16.4b	9.2c-e	56.4a	14.2a-c	8.1cd	57.1bc	11.6cd	6.2c	53.5de	12.1f	6.3cd	52.1ef	54.3de	29.8d	54.9cd
K306	i gm/i	17.3b	11.2а-с	65.0a	16.5a	10.8ab	65.4ab	13.4ab	8.3a	62.0ab	13.9a-c	8.1a	58.3bc	61.1a	38.4a	62.9a
	2 gm /l	14.0cd	9.6b-e	69.4a	16.9a	11.4a	67.5ab	12.6a-c	8.1a	64.4a	13.4a-e	8.3a	62.0a	56.9cd	37.4ab	65.8a

Values having the same alphabetical letter (s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test

Regarding number of fruits on different trusses, it was significantly affected by the interaction treatments, the maximum values were recorded by the interaction between K306 hybrid and foliar spray with seaweed at a rate of 1g or 2g/l in all trusses except first truss. On the other hand, the interaction treatment between K306 hybrid and foliar spray with seaweed extracts at a rate of 2g/l reflected significant effect on setting percentage on all trusses as well as average of setting percentage, setting percentage was maximum on first truss while the minimum was on fourth truss followed by third truss

Physical fruit characters Effect of tomato hybrids

Data presented in Table 6 clearly indicate that tomato hybrid K306 recorded the highest values of different studied physical fruit characters; i.e., fruit length, fruit diameter and fruit shape index as compared with other hybrids. These results might be attributed to hereditary differences between hybrids.

Effect of seaweed extracts

Results in Table 6 show the effect of foliar spray with seaweed extracts on physical characters of tomato fruits; i.e., fruit length, fruit diameter and fruit shape index. It is obvious from the data that spraying tomato hybrids with seaweed extracts did not reflect any significant effect on physical characters of tomato fruits.

Table 6. Effect of tomato hybrid, seaweed extracts and their combinations on physical characteristics of tomato hybrids during 2008 and 2009 seasons

		Physical characteristics / plant								
Treatme	ents		2008 Sea		2009 Season					
Tomato hybrids	Seaweed extracts	Fruit length (cm)	Fruit diameter (cm)	Fruit index (L/D)	Fruit length (cm)	Fruit diameter (cm)	Fruit Index (L/D)			
Master R.S.		5.72c	5.80a	1.00ab	5.99b	6.14b	0.98bc			
K615		5.73c	6.29a	0.91b	5.95b	6.54a	0.91c			
K111		6.03b	5. 58a	1.08a	6.60a	5.97b	1.11a			
K306		6.74a	6.23a	1.09a	6.95a	6.69a	1.05ab			
	Control	5.97a	6.06a	0.99a	6.28a	6.53a	0.97a			
	1 gm/l	5.95a	6.05a	0.99a	6.33a	6.26a	1.02a			
	2 gm /l	6.24a	5.81a	1.08a	6.51a	6.23a	1.05a			
·	Control	5.87d	6.65ab	0.88f	6.04c-e	6.85b	0.88d			
Master R.S.	1 gm/l	5.36e	5.46de	0.99de	5,68de	5.79f	0.98b-d			
	2 gm /l	5.93d	5.28e	1.12b	6.25b-d	5.79f	1.08a-c			
	Control	5.28e	5.63c-e	0.94ef	5.62e	5.89ef	0.96b-d			
K615	1 gm/l	6.05cd	6.98a	0.87f	6.21b-d	7.03b	0.88d			
	2 gm /l	5.86d	6.27bc	0.93ef	6.00с-е	6.71bc	0.90d			
	Control	5.88d	5.26e	1.12b	6.36bc	5.78f	1.10ab			
K111	1 gm/l	5.88d	5.41de	1.09bc	6.73ab	5.87ef	1.15a			
	2 gm /l	6.32bc	6.07b-d	1.04b-d	6.70ab	6.26de	1.07a-c			
	Control	6.87a	6.71ab	1.03b-d	7.08a	7.59a	0.93cd			
K306	1 gm/l	6.50b	6.36ab	1.02c-e	6.70ab	6.34cd	1.06a-c			
	2 gm /l	6.87a	5.61de	1.23a	7.08a	6.15d-f	1.16a			

Values having the same alphabetical letter (s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test

Effect of interaction

Data presented in Table 6 illustrate the effect of the interaction between tomato hybrids and foliar spray with seaweed extracts on physical characters of tomato fruits. Results declared that there were significant differences among the interaction treatments on all studied physical characters of tomato fruits, these results were true in both growing seasons. In general, the interaction between tomato hybrid K306 and foliar spray with seaweed extracts at 2g/l gave the maximum values of fruit length and fruit index as compared with other interaction treatments.

Yield and its Components Effect of tomato hybrids

Results in Table 7 illustrate the effect of tomato hybrids on yield and yield components; i.e., average fruit weight, number of fruits per plant, yield per plant and total yield per feddan. It is obvious from the data that no significant differences were found among the tested tomato hybrids in this respect. In addition, tomato hybrid K306 was superior as compared with the other hybrids, since it gave the uppermost values. These results might be attributed to the good balance between flowering and vegetative growth at flowering stage, higher percentage of fruit setting, increasing average fruit parameters (length, diameter and weight), number of flowers per cluster and to the hybrid effect. These results are in agreement with those reported by Hewedy (1988), Ben-Oliel et al. (2005) and Almeselmani et al. (2010) on tomato.

Effect of seaweed extracts

The results listed in Table 7 clearly show the effect of seaweed extracts on yield and yield components of tomato hybrids, the results indicate that foliar spray with seaweed at a rate of 2g/l gave the highest results on yield and yield components, but without reaching to the statistical level, the increases occurred on yield and its components might be attributed to the increasing in vegetative growth parameters (Table3). Similar results were reported by Verkleij, (1992); Csizinszky (1994) and Crouch and Van Staden (1992)on tomato, Hamed (1997) and El-Aidy et al. (2002) on sweet pepper and Awad et al. (2006) on potato.

Effect of interaction

Effect of the interaction between tomato hybrids and foliar spray with seaweed extracts on yield and yield components is shown in Table 7. It is evident from these results that such interaction treatments generally had a promotive effect on average fruit weight, number of fruits per plant, yield per plant and total yield per feddan. The interaction treatment between tomato hybrid K306 and foliar spray with seaweed extracts at 2g/l resulted in the maximum values of the above mentioned yield parameters as compared with other interaction treatments.

Chemical Constituents Effect of tomato hybrids

The results reported in Table 8 show the effect of tomato hybrid on chemical constituents of tomato fruits expressed as N, P, K and protein percentage as well as total soluble solids (T.S.S.), such results indicate that all tomato hybrids (Master R.S., k615, k111 and K306) had insignificant effect on chemical constituents of tomato fruits except P%.

Table 7: Effect of tomato hybrid, seaweed extractsand their combinations on yield and yield components of tomato hybrids during 2008 and 2009 seasons

	_				Yield and yle	ld componer	nts			
Treatmer	nts		20	08 Season		2009 Season				
Tomato hybrids	Seaweed extracts	Average fruit weight (g)	Number of fruits / plant	Yield / plant (g)	Total yield (ton/fed.)	Average fruit weight (g)	Number of fruits / plant	Yield / plant (g)	Total yield (ton/fed.)	
Master R.S.	JALI TOLO	122.2a	26.9b	3.287a	27.614a	117.7a	28 1a	3.303a	27.752a	
K615		109.3a	29.9a	3.281a	27.565a	114.1a	30.7a	3.509a	29.480a	
K111		109.9a	30.5a	3.337a	28.034a	110.5a	31.4a	3.464a	29.100a	
K306		111.7a	31.6a	3.546a	29.793a	117.3a	31.9a	3.751a	31.511a	
	Control	113.5a	26.5a	2.996a	25.165a	111.7a	27.9a	3.112a	26.143a	
	1 gm/l	110.8a	30.6a	3.396a	28.525a	115.4a	30.5a	3.519a	29.566a	
	2 gm /l	115.6a	32.1a	3.697a	31.063a	117.7a	33.1a	3.889a	32.673a	
	Control	128.4a	23.3d	2.988bc	25.105bc	120.9ab	25.1d	3.037de	25.517de	
Master R.S.	1 gm/l	112.6b-d	29.1a-c	3.286a-c	27.608a-c	115.3a-c	28.3b-d	3.268c-e	27.452с-е	
	2 gm /l	125.7ab	28.5bc	3.586ab	30.128ab	117.0a-c	30.8a-c	3.605a-d	30.287a-d	
	Control	101.5d	26.8cd	2.718c	22.832c	103.8d	28.4b-d	2.948e	24.768e	
K615	1 gm/l	116.9a-d	29.2a-c	3.419a-c	28.721a-c	120.9ab_	30.1a-c_	3.637a-d	30.554a-d	
	2 gm /l	109.6cd	33.8a	3.707ab	31.141ab	117.4a-c	33.6a	3.942ab	33.119ab	
	Control	121.1a-c	25.8cd	3.134bc	26.325bc	112.8b-d	27.1cd	3.054de	25.660de	
K111	1 gm/l	101.8d	32.6ab	3.321a-c	27.896a-c	105.4d	32.4ab	3.419b-e	28.726b-e	
	2 gm /l	106.9cd	33.3ab	3.557ab	29.880ab	113.3a-d	34.6a	3.918ab	32.913ab	
	Control	103.0d	30.4a-c	3.143bc	26.399bc	109.2cd	31.3a-c	3.408b-e	28.629b-e	
K306	1 gm/l	111.9b-d	31.8ab	3.556ab	29.876ab	119.9ab_	31.3a-c_	3.753a-c	31.531a-c	
	2 gm /l	120.2a-c	32.9ab	3.938a	33.105a	122.9a	33.3a	4.092a	34.373a	

Values having the same alphabetical letter (s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

Table 8. Effect of tomato hybrid, seaweed extract and their combinations on chemical constituents of tomato hybrids during 2008 and 2009 seasons

		Chemical constituents										
Treatmer	nts		200	08 Seasor	1	2009 Season						
Tomato hybrids	Seaweed extracts	N%	P%	К%	Protein %	TSS	N%	Р%	К%	Protein %	TSS	
Master R.S.		1.846a	0.364b	1.43a	11.54a	4.83a	1.784a	0.348b	1.27a	11.15a	5.11a	
K615		1.820a	0.321b	1.37a	11.38a	4.67a	1.741a	0.278c	1.33a	10.88a	4.89a	
K111		1.831a	0.500a	1.32a	11.44a	4.11a	1.727a	0.412a	1.35a	10.79a	4.56a	
K306	1	1.798a	0.305b	1.49a	11.24a	4.56a	1.719a	0.292bc	1.46a	10.75a	4.94a	
	Control	1.728a	0.367a	1.46a	10.80a	4.00a	1.650a	0.324a	1.37a	10.32a	4.29b	
	1 gm/l	1.832a	0.343a	1.33a	11.45a	1.58b	1.735a	0.312a	1.32a	10.85a	4.91ab	
	2 gm /l	1.911a	0.406a	1.42a	11.94a	5.04a	1.843a	0.364a	1.36a	11.52a	5.42a	
	Control	1.748a-c	0.345с-е	1.52a	10.93a-c	4.33b-d	1.715bc	0.335bc	1.34ab	10.72b-d	4.67b-e	
Master R.S.	1 gm/l	1.904ab	0.331с-е	1.34b-d	11.90ab	4.83a-c	1.763a-c	0.292c	1.18b	11.02a-c	5.00a-c	
	2 gm /l	1.886a-c	0.417bc	1.43a-c	11.79a-c	5.33a	1.875a	0.417ab	1.30ab	11.72a	5.67a	
	Control	1.729bc	0.335с-е	1.30cd	10.81bc	4.00cd	1.616c	0.292c	1.30ab	10.10d	4.17de	
K615	1 gm/l	1.806a-c	0.292de	1.34b-d	11.29a-c	4.67a-c	1.720bc	0.292c	1.39ab	10.75b-d	4.83b-d	
	2 gm /l	1.925a	0.335с-е	1.47ab	12.03a	5.33a	1.887a	0.250c	1.30ab	11.79a	5.67a	
	Control	1.735a-c	0.417bc	1.47ab	10.84bc	3.67d	1.627c	0.335bc	1.39ab	10.17cd	4.00e	
K111	1 gm/l	1.834a-c	0.500ab	1.21d	11.46a-c	4.17b-d	1.709bc	0.417ab	1.34ab	10.68b-d	4.67b-e	
	2 gm /l	1.924a	0.583a	1.30cd	12.02a	4.50a-d	1.844ab	0.500a	1.34ab	11.52ab	5.00a-c	
	Control	1.701c	0.374cd	1.56a	10.63c	4.00cd	1.644c	0.335bc	1.47a	10.28cd	4.33с-е	
K306	1 gm/l	1.784a-c	0.250e	1.43a-c	11.15a-c	4.67a-c	1.750a-c	0.250c	1.39ab	10.94a-d	5.17ab	
	2 gm /l	1.908ab	0.292de	1.47ab	11.93ab	5.00ab	1.764a-c	0.292c	1.52a	11.03a-c	5.33ab	

Values having the same alphabetical letter (s) did not significantly differ at 0.05 level of significance according to Duncan's multiple range test.

Tomato hybrid K111 recorded the highest values of P% as compared with other hybrids. Obtained results contradict with those reported by Hewedy (1988) and Ben-Oliel et al. (2005) on tomato.

Effect of seaweed extracts

Presented data in Table 8 indicate the effect of foliar spray with seaweed extracts on chemical constituents of tomato fruits. In general, it is evident that spraying tomato plants with seaweed extracts at a rate of 2g/l significantly increased T.S.S. and gave the best results of N, P, K and protein (%) but without reaching to the statistical level. These results are in harmony with those reported by Hamed (1997) and El-Aidy et al. (2002) on sweet pepper and Awad et al. (2006) on potato.

Effect of interaction

According to the effect of the interaction between tomato hybrids (Master R.S., k615, k111 and K306) and foliar spray with seaweed extracts on chemical constituents of tomato fruits, it is obvious from such data in Table 8 that all the interaction treatments reflected significant effect on all parameters of chemical constituents, the combination between K615 and foliar spray with seaweed extracts at 2g/l seemed to be superior in this regard.

Recommendation

From the previous results of this investigation it could be recommend that, spraying tomato hybrids K306 or K615 with seaweed extracts at a rate of 2g/l were the superior treatments for enhancing growth, dry weight, setting, physical characters, and yield and its components as well as chemical constituents of tomato fruits grown in summer season under sandy soil conditions.

REFERENCES

- A.O.A.C. (1980). Association of Official Agriculture Chemists Official Method of Analysis 13th Ed. Washington, D.C.
- Almeselmani, M., R. C. Pant and B. Singh (2010). Potassium Level and physiological response and fruit quality in hydroponically grown tomato. International J. Vegetable Sci., 16 (1): 85-99.
- Awad, El- M. M., N. S. Youssef and Z. S. El-Shall (2006). Effect of foliar spraying with seaweed extracts and inorganic fertilizers levels on growth, yield and quality of potato crop. J. Agric. Sci., Mansoura Univ., 31 (10): 6549-6559.
- Ben-Oliel, G., S. Kant, M. Naim, H. D.Rabinowitch, G. R. Takeoka, R.G.Buttery and U. Kafkafi (2005). Effect of ammonism to nitrate ratio and salinity on yield and fruit quality of large and small tomato fruit hybrids J. of Plant Nutrition, 27 (10): 1795-1812.
- Bhosle, N. B., V. K. Dhargalkar and A. G. Untawale (1975). Effect of seaweed extract on the growth of *Phaseolus vulgaris* L. Indian J. Marine Sci., 4: 207-210.

- Blunden, G. (1991). Agricultural uses of seaweed and seaweed extracts. p.66-81 In: M. D. Guiry and G. Blunden (Eds.) Seaweed resources in Europe: Uses and potential, J. Wileyand Sons, Ltd. Chichester, U.K.
- Brown, J. D. and O. Lilliland (1946). Rapid determination of potassium and sodium in plant material and soil extracts by flame photometry. Proc. Amer. Soc. Hort. Sci., 48:341-346.
- Crouch, I. J. and J. Van Staden (1992). Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. Journal of Applied Phycology, 4: 291-296.
- Csizinszky, A. A. (1994). Yield response of tomato cv. Agriset 761, to seaweed spray, micronutrient and N and K rates. Proc. Fla. State Hort. Soc., 107: 139-142.
- Duncan, B. D. (1955) Multiple range and multiple F-test Biometrics., 11:1-42.
- El-Aidy, F., A.I. El-Zawily., B. I. El-Sawy, and E. M. Hamed (2002). Effect of seaweed extracts on sweet pepper plants grown under protected cultivation. 2nd Inter. Conf. Hort. Sci., 10-12 Sept. Kafr El-Sheikh, Tanta Univ., Egypt.
- Hamed, E. M. (1997).Studies on seaweed extracts and shoot pruning on sweet pepper yield under plastic greenhouse. M.Sc. Thesis, Fac. Agric., Tanta Univ., Egypt.
- Hewedy, A. M. (1988). Effect of some physiological treatments on some tomato varieties. Ph.D. Thesis, Fac. Agric., Zagazig Univ., Egypt.
- Kansouh, A. M. (2002). Developing high-yielding lines of tomato (*Lycopersicon esculentum* Mill) by selection. 2nd Inter. Conf. Hort. Sci., 10-12 Sept. Kafr El-Sheikh, Tanta Univ., Egypt, 28:152-164.
- Kock, F.G. and T. L. Mc-Meekin (1924). The chemical analysis of food and food products. Determination of total nitrogen by Nislar Solution. J. Amer. Chem. Soc., 46: 2066.
- Kusima, P. (1989). The effect of foliar application of seaweed extract on potato. J. Agric. Sci. Finl., 61 (5):371-377.
- Murphy, J. and J. P. Riley (1962). A modified single solution method for the determination of phosphate in natural water, Anal. Chim. Acta., 27: 31-36.
- Snedecor, G. W. and W. G. Cochran (1980). Statistical Methods. 7th ed. The lowa State Univ., Press, Amer., Iowa, USA.
- Temple, W. P. and A. A. Bomke (1989). Effect of kelp (*Macrocystis integrifolia*) on soil chemical properties and crop response. Plant and Soil, 105: 213-222.
- Thirumaran, G., M. Arumugam, R. Arumugam and P. Anantharaman (2009a). Effect of seaweed liquid fertilizer on growth and pigment concentration of *Cyamopsis tetrogonolaba* (L) Taub. American-Eurasian J. Agron.,2 (2): 50-56.
- Thirumaran, G., M. Arumugam, R. Arumugam and P. Anantharaman (2009b). Effect of seaweed liquid fertilizer on growth and pigment concentration of *Abelmoschus esculentus* (I) medikus. American-Eurasian J. Agron., 2 (2): 57-66.
- Thivy, F. (1960). Seaweed utilization in India. Proceedings of the Symposium of Algology. ICAR, New Delhi., 345-365.

Verkleij, F. N. (1992). Seaweed extract in agriculture and horticulture: A review Biological Agriculture and Horticulture., 8: 309-324.

تأثير الرش الورقى بمستخلصات الأعشاب البحرية على النمو والعقد و المحصول في الطماطم في العروة الصيفية

خالد عطية محمود نور، ناصر توفيق سليمان منصور و وائل محمد عبد الحكيم القسام بحوث الخضر - معهد بحوث البساتين - مركز البحوث الزراعية

أجريت تجربتان حقليتان خلال موسمى صيف ٢٠٠٨ و ٢٠٠٩ فسى مزرعسة التجسارب البحثية بمحطة بحوث البساتين بالقصاصين ، محافظة الأسماعيلية ، لدراسة تأثير استجابة أربعسة من هجن الطماطم المحليسة (ماسستر K306 , K111 , K615 , R.S) للسرش السورقى بمستخلصات الأعشاب البحرية (بدون رش، اجم/لتر، ٢جم/لتر) والتفاعل بينهم على النمو والسوزن الجاف والتزهير والعقد والصفات الفيزيائية للثمار والمحصول والمحتوى الكيماوى لثمار الطمساطم في العروة الصيفية تحت ظروف الأراضى الرملية.

سجل هجين الطماطم K615 على القيم بالنسبة للمساحة الورقية موعدد الأوراق/نبات ، والوزن الجاف لملأوراق الوزن الجاف الكلى / نبات ، والنسبة المنوية لعقد الثمار، وقطر الثمرة، ومتوسط عدد الثمار على النبات، بينما سجل الهجين 6306 أعلى القيم بالنسبة لإرتفاع النبات ، و النسبة المنوية لعقد الثمار ، وطول الثمرة ، وعدد الثمار /نبات ، و محصول النبات ، و المحصول الكلى للفدان، والتمبة المتوية لمحتوى الثمار من البوتاسيوم.

أدى الرش الورقى لمستخلصات الأعشاب البحرية بمعدل ٢جم/لتر إلى الحسصول علسى الفضل القيم بالنسبة لصفات النمو الخضرى ،و الوزن الجاف للأوراق،و الوزن الجاف الكلى /ببات ،بينما أدى الرش بتركيز ١ أو ٢جم/لتر إلى زيادة النسبة المنوية لعقد الثمار ،و عدد الثمار علسى النبات ،ومتوسط محصول النبات ،ومتوسط المحصول الكلى للفدان، ونسبة المواد الصلبة الذانبسة الكلية مقارنة بالكنترول.

سجلت معاملة التفاعل بين الهجين 615 والسرش السورقى بمستخلصات الأعشاب البحرية بمعدل ٢جم/لتر أعلى القيم بالنسبة لعدد الأوراق ، وعدد الأفرع ، و المساحة الورقيسة ، و الوزن الجاف للأوراق والأفرع ، والوزن الجاف الكلى /نبات ، و قطر الثمرة ، وعدد الثمار /نبات، و محتوى الثمار من النيتروجين والبروتين، و المواد الصلبة الذائبة الكلية. في حين سجلت معاملة التفاعل بين الهجين 6306 والرش الورقى بمستخلصات الأعشاب البحرية بمعدل ٢جم/لتر أفضل القيم بالنسبة لإرتفاع النبات ، و عدد الأفرع ، و النسبة المنويسة لعقسد الشمسار ، وطسول الثمسرة ، ومحصول النبات ، و المحصول الكلى للفدان، ومحتوى الثمار من البوتاسيوم.

قام بتحكيم البحث

i.c / محمود محمد زغلول كلية الزراعة – جامعة المنصورة i.c / المتولي عبد السميع الغمريني كلية الزراعة – جامعة الزقازيق