PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF BACTERIAL CONTAMINANTS ISOLATED FROM EGYPTIAN PROCESSED MEATS

Elgazzar M. M. M. and Mohammed M. A. M.

Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University.

ABSTRACT

A total of 60 Egyptian processed meat samples, categorized as 30 raw samples (10 every of frozen packaged ground beef, butchers' ground beef and frozen packaged beef sausage) besides 30 cooked samples (10 each of fried beef sausage, beef luncheon and fried hamburger) purchased from supermarkets, butchers' shops and restaurants in Mansoura city-Egypt, were subjected for both phenotypic and genotypic bacteriological analyses. The former analysis was done at the laboratory of Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, Egypt, while the latter works were conducted at the Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.

Plates of plate count agar revealed the presence of aerobic mesophiles in the tissues of all surveyed raw and cooked samples. Whilst the Enterobacteriaceae organisms were detected in 30%-80% of raw processed meat samples, besides 30% every of beef luncheon and fried hamburger samples, meanwhile fried beef sausage samples, the violet red bile glucose agar plates could not detect such organisms in their tissues. Concerning the occurrence of coagulase-positive Staphylococcus aureus organisms, the plates of Baird-Parker agar combined with coagulase test (tube method) showed 30%, 80% and 60% incidence of this organism in frozen packaged ground beef, butchers' ground beef and frozen packaged beef sausage, in addition to 30%, 40% and 20% were obtained in fried beef sausage, beef luncheon and fried hamburger samples, respectively. Furthermore, the tissues of raw processed meats exhibited the presence of Bacillus cereus organisms by a prevalence of 60-90%, whereas, cooked processed ones possessed 50-90%, after their suspension being inoculated onto the dried surface of plates of mannitol egg-yolk polymyxin agar.

The aforementioned agar plates showed the bacterial counts per gram of surveyed Egyptian raw and cooked processed meats as 10^5 - 2.8×10^9 with a mean of 1.3×10^8 - 8.5×10^8 and 3×10^4 - 7.2×10^7 with an average of 4.7×10^6 - 2.6×10^7 aerobic mesophilic organisms; 10^4 - 2.6×10^6 with a mean of 1.3×10^4 - 5.8×10^5 and 5×10^2 - 7×10^3 with an average of 2.8×10^3 - 4.1×10^3 Enterobacteriaceae organisms; 1.6×10^2 - 2×10^5 with a mean of 8.5×10^2 - 6×10^4 and 10^2 - 1.5×10^4 with an average of 2.4×10^2 -

 $6.8x10^3$ S. aureus "coagulase-positive" organisms; besides $6x10^2$ - $5.1x10^5$ with a mean of $1.2x10^4$ - 10^5 and 10^3 - 1.1_10^5 with an average of $1.2x10^4$ - $5.3x10^4$ B. cereus organisms, consecutively.

Microbiological risk assessment of tested processed meats, through comparing different bacterial populations contained in their tissues with the corresponding recommended limits resulted in 90-100% of cooked (ready-to-eat) processed meat samples, in addition to 40 - 70% of raw ones exceeded the recommended limits of aerobic mesophiles ($10^4 - 10^5$ organisms per gram for cooked and 10^7 organisms per gram for raw meats). None of the cooked meats was contaminated with Enterobacteriaceae organisms by levels more than the recommended limit (10^4 per gram). Additionally, out of the examined cooked processed meats, 40% beef luncheon and 10% fried hamburger besides none of fried beef sausage samples contained S. aureus "coagulase-positive" organisms by populations more than the recommended limit (10^3 per gram), on the other hand, the analyzed raw meats exhibited 30% frozen packaged beef sausage, 20% butchers' ground beef and none of frozen packaged ground beef samples harbored the same organisms by levels more than the recommended limit (10^4 per gram). Finally, 10% samples each of beef luncheon and fried hamburger were contaminated with B. cereus organisms by levels more than the recommended limit ($<10^5$ per gram), while none of fried beef sausage samples exceeded such limit.

A sum of 67 bacterial strains, isolated from both raw and cooked processed meat samples, distributed as 13 strains recovered from frozen packaged ground beef, 16 from butchers' ground beef and 25 from frozen packaged beef sausage, in addition to 2 from fried beef sausage, 8 from beef luncheon besides 3 strains from fried hamburger samples. Phenotypic (conventional) and genotypic (16S rRNA gene sequencing) analyses of these bacteria identified them as 13 Escherichia coli; 7 Enterobacter hormaechei; 8 strains each of Enterobacter cloacae and Pseudomonas aeruginosa; 5 Enterobacter sakazakii; 3 strains every of Enterobacter aerogenes, Enterococcus faecalis and Pseudomonas stutzeri; 2 strains each of Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Citrobacter freundii and Enterococcus faecium; besides one strain every of Enterobacter asburiae, Pantoea agglomerans, Proteus mirabilis, Serratia marcescens, Staphylococcus aureus, Staphylococcus cohnii and Staphylococcus xylosus.

INTRODUCTION

Processed meats are considered an excellent source of high quality proteins containing a good balance of essential amino acids and having a high biological value, a good source of most B-complex vitamins and also contribute significant levels of minerals including iron, copper, zinc, sodium, potassium and magnesium.

Risk assessment denotes the scientific evaluation of known or potential adverse health effects resulting from human exposure to foodborne hazards. Risk from microbiological hazards is of immediate and serious concern to human health. One of the difficulties associated with microbiological risk assessment is in determining the number of microorganisms in food at given time, i.e. estimating the exposure of an individual to the microorganism. The numbers of bacteria in food can be changed at all stages of food production and processing depending on the nature of the food and the way it is handled, stored and processed (Walls and Scott, 1997).

Accurate identification of bacterial isolates is an essential task for microbiological laboratories. Traditional phenotypic identification is difficult and time-consuming, and when phenotypic methods are used to identify bacteria, interpretation of test results can involve a substantial amount of subjective judgement requires the recognition of differences in morphology, growth, enzymatic activity, and metabolism to define genera and species. Phenotypic variability among strains belonging to the same species also results in some bacterial isolates presenting characteristics that are atypical for identification. To get around the pitfalls of the conventional methods, identification techniques based on nucleic acid amplification may offer a good alternative. Full and partial 16S rRNA gene sequencing methods have emerged as useful tools for identifying phenotypically aberrant microorganisms as it is a more objective identification tool, unaffected by phenotypic variation or technologist bias, and has the potential to reduce laboratory errors (Petti et al., 2005).

Therefore, the overall objectives of this work were intended to assess the microbiological risk in some popular Egyptian processed meats comprising ground beef, beef sausage,

hamburger and beef luncheon through: (1) estimating the total bacterial counts of aerobic mesophiles, Enterobacteriaceae, S. aureus "coagulase-positives" and B. cereus per each gram of the examined processed meats and (2) accurate identification of isolated bacteria by using 16S rRNA gene sequencing.

MATERIALS AND METHODS

A total of 60 Egyptian processed meat samples, categorized as 30 raw samples (10 every of frozen packaged ground beef, butchers' ground beef and frozen packaged beef sausage) besides 30 cooked samples (10 each of fried beef sausage, beef luncheon and fried hamburger) purchased from supermarkets, butchers' shops and restaurants in Mansoura city, Egypt. Each sample was approximately represented by 100 grams. Each of all samples was aseptically packed into a polyethylene bag then marked and transferred -in icebox with a minimum of delay- to the laboratory of Food Hygiene and Control Department, Faculty of Veterinary Medicine, Mansoura University, wherein the preliminary bacteriological analyses were done.

[A] Preliminary bacteriological analyses (in Egypt):

Ten grams from each processed meat sample were homogenized with 90 ml of 0.1% sterile peptone water (Oxoid CM0009) for 1 min in a laboratory blender for obtaining an original dilution of 1:10, from which serial dilutions were prepared (AOAC, 1990), for the following analyses:

(1) Aerobic plate count (ICMSF, 1978):

A tenth ml from each prepared serial dilution was transferred and evenly spread over a dry surface of duplicated, previously prepared sterile plate count agar medium (Oxoid CM0325). The surface of inoculated plates was allowed to dry for 15 min before being placed inverted with control plates in the incubator adjusted at 30oC for 48 h. The bacterial colonies were enumerated and the aerobic plate count per gram of the examined sample was then calculated and recorded.

(2) Enterobacteriaceae count (ISO, 1993a):

Duplicated sets of sterile Petri dishes were inoculated with 1-ml amounts of the chosen range of prepared dilutions. A quantity of about 15ml of violet red bile glucose agar (Oxoid CM0485), melted and cooled to 45°C, was added to each inoculated Petri dish, then mixed well and allowed to set. Another 5 ml of the same agar/temperature was finally overlain every plate, which left to solidify, then incubated at 30°C for 24 h. Typical colonies of Enterobacteriaceae (red surrounded by precipitation of bile salts in the medium and having 0.5 mm or more in diameter) were enumerated and the Enterobacteriaceae count per gram of the examined sample was calculated and recorded.

(3) Staphylococcus aureus "coagulase-positive" count (AOAC, 1984):

From the previously prepared serial dilutions, 0.2 ml from selected dilutions were transferred and evenly spread onto dried surfaces of duplicate plates of Baird-Parker selective agar (Oxoid CM0275) with egg-yolk tellurite emulsion, then incubated at 37°C for 48 h. Colonies exhibiting typical morphology, greyblack to jet-black, circular, smooth, convex, 2-3 mm in diameter with a narrow white entire margin and may show an opaque zone

surrounded by a zone of clearing extended 2-5 mm in the opaque medium, were considered a presumptive *S. aureus*. The top part of five suspected colonies was picked up and inoculated into test tubes containing 5 ml of sterile brain heart infusion broth (Oxoid CM0225) then incubated at 37°C for up to 24 h for biochemical confirmation and coagulase test then the coagulase-positive S. aureus count per gram of the examined sample was calculated and recorded.

(4) Bacillus cereus count (ISO, 1993b):

From each prepared serial dilutions, 0.1 ml was aseptically transferred and evenly spread onto dried surfaces of duplicate plates of sterile mannitol egg-yolk polymyxin agar (MYP, Oxoid CM0929) (Polymyxin B supplement, Oxoid SR0099E) then incubated at 30°C for 24-48 h. The typical colonies (dry, rough surface with a pink to purple base and surrounded by a ring of dense precipitate) were enumerated. The typical colonies were picked up and spread on nutrient agar slopes then incubated at 37°C for 24 h for confirmation then B. cereus count per gram of the examined samples was calculated and recorded.

[B] Confirmatory bacteriological analyses by genotyping "16s rRNA gene sequencing" (in Osaka/Japan):


These analyses were taken place at Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan, for accurate identification of the whole aforementioned bacterial strains isolated from the surveyed Egyptian processed meats- by the aid of reference strains of Cronobacter sakazakii (RIMD0377001). A sum of 67 different bacterial strains, picked up from the different agar plates after being

recovered from the tissues of surveyed samples of both raw and cooked processed meats, distributed as 13 strains recovered from frozen packaged ground beef, 16 from butchers' ground beef and 25 from frozen packaged beef sausage, in addition to 2 strains each of fried beef sausage, 8 from beef luncheon besides 3 strains from fried hamburger samples, were analyzed by partial 16S rRNA gene sequencing (Hall et al., 2003) using 16S-1 primer (5' - CAGGAAACAGCTATGACCGSITRAIRCA TGCAAGTCG-3') and 16S-2 primer (5'-TATTACCGCRGCTGCTGG-3'), by the aid of DNA thermal cycler [GeneAmp® PCR System 9700 (Applied Biosystems, USA)]. In a 200µl-PCR tube, a total of 25µl PCR mixture consisted of 14.75µl distilled water, 5µl 10x PCR buffer, 2.5µl deoxyribonucleotide triphosphate (dNTPs) mixture, 0.25µl each of, 2µl DNA template (extracted from each strain) and 0.25µl ExTag DNA polymerase (Takara, Japan), were placed then subjected for a temperature program involved the initial denaturation of the DNA template at 94°C for 2 min, followed by 30 cycles; every of them comprised the denaturation at 94°C for 30 s, primer annealing at 55°C for 30 s and synthesis of complementary chain at 72°C for 45 s, then ended by an additional extension at 72°C for 5 min. The amplified DNA fragments or amplicons (about 770 base pairs) were subjected to electropho-

Figure (1): Agarose gei electrophoresis of polymerase chain reaction products obtained using DNA extracted from pure cultures identified using partial (770 bp) 16S rRNA gene sequencing. iane M: DNA 100 bp marker, lane 1: positive control (Cronobacter sakazakii reference strain RIMD 0377001), lane 2-6: Different bacterial strains obtained from processed meats.

resis in 1.5% Agarose gel, stained for 30 min in ethidium bromide solution (0.5μg/ml), viewed under a UV Transilluminator having a wave length of 302nm (BioDoc-It Systems) (Figure, 1); then each DNA fragment, was excised with its agarose gel and subjected for purification using QIAquick Gel Extraction Kit (Qiagen, Germany) then subjected for nucleotide sequencing by the aid of ABI Prism 3100 DNA Sequencer (Applied Biosystems, USA) according to standard protocol for cycle sequencing. The resultant partial 16S rRNA gene sequences were compared with those available in the online GenBank database. The mean length of the sequences was 700± 60 nucleotides. Identification of 67 bacterial isolates into species level was defined as a 16S rRNA sequence similarity of ≥99% with that of the prototype strain sequence in GenBank, whilst genus-level identification was defined as a 16S rRNA sequence similarity of ≥97% with that of the prototype strain sequence in GenBank. A failure to identify was defined as a 16S rRNA sequence similarity score of lower than 97% with those deposited in GenBank (Stackebrandt and Goebel, 1994).

The data obtained in this study were statistically analyzed according to methods described by Snedecor (1971).

RESULTS & DISCUSSION

Presence of different bacterial populations in tested both 3 types of raw and 3 types of cooked Egyptian processed meats (10 samples for each type) was described in Table (1) that denotes the contamination of all surveyed raw and cooked samples with aerobic mesophiles (100% each), whilst the occurrence of Enterobacteriaceae organisms were represented by all types of raw meats where found in 80% frozen packaged beef sausage, 60% butchers' ground beef and 30% frozen packaged ground beef samples, meanwhile such occurrence was only limited to 30% samples each of beef luncheon and fried hamburger among the surveyed types of cooked meats. Similarly, the coagulase-positive organisms of S. aureus were detected in raw meats by extremely higher prevalence than that found in cooked ones, as 80% butchers' ground beef, besides 60% and 30% in frozen packaged beef sausage and frozen packaged ground beef samples, respectively, while this bacterial contamination was restricted to 40% beef luncheon, 30% fried beef sausage and 20% fried hamburger samples. Additionally, the percentages of B. cereus-contaminated samples of raw meats were moderately higher than those of cooked ones, as represented for raw meats by 90% each of frozen packaged ground beef and frozen packaged beef sausage, besides 60% of butchers' ground beef, whilst these percentages for cooked meats were represented by 90% fried hamburger in addition to 50% each of fried beef sausage and beef luncheon samples.

Inevitable contamination with aerobic mesophilic bacteria, detected in all tissues of surveyed both raw and cooked meat samples,

can be explained by the literatures of **Dickson** and Anderson (1992) who emphasized that carcass surfaces often become heavily contaminated during dressing, even with using a current slaughterhouse technology, in addition to the declaration of Doyle et al. (2001) which mentioned that the microorganisms in processed meats originate not only from the meat itself, but also from the non-meat ingredients like spices, fillers and salts. The numbers and percentages of both Enterobacteriaceae- and S. aureus- contaminated raw samples were almost equal as well as fewer than that of B. cereus-contaminated raw ones: these findings may be attributed to the multiple sources of processed meats contamination with the latter organisms as Varnam and Evans (1991) mentioned that the meat additives -like spices and fillers- contribute in the high incidence of processed meats contamination with B. cereus organisms. Viewing the Enterobacteriaceae and S. aureus contaminants in both types of surveyed ground beef samples, they were detected in more manually prepared- butchers' ground beef samples than that determined in frozen packaged ground beef; these results agree with literature of Dworkin et al. (2006) which emphasized the food handlers -particularly those having infected cuts and sores- besides utensils, air, soil and water are considered among the major sources of meat contamination with these organisms during manufacturing, packaging and marketing. Furthermore, the occurrence of non-sporeforming Enterobacteriaceae and S. aureus organisms in cooked samples was clearly lower than that detected for sporeforming B. cereus organisms in the same samples; these results is expected owing to the high thermal resistance of bacterial spores

against cooking temperatures (Frazier and Westhoff, 1988).

Comparing the incidence of different bacterial populations -in raw processed meats- obtained in this work with those determined by other workers, higher incidence of Enterobacteriaceae organisms (100%) were detected in both ground beef and sausage samples by Lotfi et al. (1986) and Oteiza et al. (2006). in addition to S. aureus "coagulase-positive" organisms were recovered from 24.7%-38.3% ground beef samples (El-Gohary, 1993 and Kaldes et al., 1994), also Abd El-Aziz (1987) recognized such organisms in 75% of ground beef samples, nearly similar to that obtained in surveyed butchers' ground beef. Higher prevalence of S. aureus organisms in raw fresh and ground beef samples were reported by Roushdy et al. (1983) as 100% and in raw sausage samples by El-Nawawy and Nouman (1981) as 76%, whilst lower incidence of such contaminants were estimated by Abd El-Monem (1998) and Malicki and Bruzewicz (2005) in raw ground beef as 0.8%-20%, as well as by El-Gohary (1993), Ouf (2001) and Hamouda (2005) in raw sausage as 10-48%, besides, Youssef et al. (1985) and Gergis (2005) who could detect these organisms in 60% and 47% of raw ground beef samples, consecutively; both findings were higher than those obtained in frozen packaged ground beef but lower than found in butchers' ground beef samples, however Oteiza et al. (2006) could not isolate such contaminants from 100 Argentina raw sausage samples.

Concerning the percentages of *B. cereus*contaminated samples among raw processed meats, detected by other researchers in relation to those calculated in the present study, almost equal percentages of contaminated ground beef samples -similar to that obtained in frozen packaged ground beef- (72% and 74%) were estimated by Eldaly et al. (1988) and Lotfi et al. (1988), respectively as well as similar to that found in butchers' ground beef (52%-58%) were reported by El-Sayed et al. (1999), Hassan (2001) and Hamouda (2005) in addition to approximately identical B. cereus-contaminated samples of raw sausage (80% and 84%) were evaluated by El-Ghamry (2004) and Hamouda (2005), whilst lower percentages of B. cereus-contaminated samples were recognized by Hafez et al. (1990) and Hassan (1991) as 5.75%-35% in both raw fresh and ground beef; by Eldaly et al. (1988), Nortje et al. (1999), and El-Mossalami (2003) as 9.8%-60% in raw sausage; however, Nortje et al. (1999) could not detect B. cereus organisms in 51 ground beef samples.

The prevalence of different bacterial populations in tested samples of cooked processed meats was at the top (100%) for aerobic mesophiles, followed by 50%-90% samples for B. cereus, then coagulase-positive organisms of S. aureus (0%-40% samples) and Enterobacteriaceae (20%-80% samples). These findings agreed with those reported in many literatures; as ICMSF (1978) and Kiss (1984) mentioned that the high incidence of bacterial contamination in processed meats indicate heavily contaminated raw materials and/or unsanitary processing besides improper timetemperature storage conditions. Furthermore, representation of Enterobacteriaceae contamination by 30% of examined samples of both beef luncheon and fried hamburger can be

explained by the declaration of Doyle et al. (2001) who emphasized that some members of Enterobacteriaceae organisms can survive heat treatment of foods. Also, presence of S. aureus organisms in cooked meat samples indicates a poor sanitation of such meats because those organisms are highly vulnerable to destruction by heat treatment and approximately all sanitizers (FDA, 1998). S. aureuscontaminated samples in ground beef (55.6%) were estimated by Tavakoli and Riazipour (2008), whereas lower contaminated samples (8%-15%) were evaluated in beef luncheon by (Abd El-All, 1993; Ouf, 2001 and Hamouda, 2005), however, Hemeida et al. (1986) could not recover these S. aureus organisms from any sample of locally-manufactured beef luncheon. Furthermore, almost equal B. cereus-contaminated samples were obtained by Lotfi et al. (1988) as 48% of beef luncheon, meanwhile higher contaminated samples (70% and 80%) of beef luncheon were recognized by El-Ghamry (2004) and Hamouda (2005), respectively besides lower contaminated samples (22% and 48%) of ready-to-eat hamburger were determined by Shinagawa et al. (1985) and Ahmed (1991), although Ouf (2001) could not find B. cereus organisms in any sample of beef luncheon.

Intensities of four bacterial populations, estimated in tissues of examined both raw and cooked processed meat samples, were arranged in Table (2) and exhibit the range (minimum-maximum) with mean value \pm standard error of aerobic plate counts (APC) in raw meats as $9x10^5-2x10^9$ and 10^5-7x10^8 with mean values of $2.7x10^8\pm1.9x10^8$ and $1.3x10^8\pm0.78x10^8$ organisms per gram in frozen packaged and butchers' ground beef,

whilst these findings were 2x10⁵-2.8x10⁹ with mean value of 8.5x108+4.4x108 organisms per gram in frozen packaged beef sausage, respectively. These levels were also estimated in cooked meats as $3x10^4$ -6.7x10⁷ with a mean of $1.4 \times 10^7 + 0.75 \times 10^7$ organisms per gram in fried sausage, 2x10⁵-1.6x10⁷ with a mean of $4.7 \times 10^6 + 1.6 \times 10^6$ organisms per gram in beef luncheon, besides 9x10⁵- 7.2×10^7 with a mean of $2.6 \times 10^7 \pm 0.79 \times 10^7$ organisms per gram in fried hamburger samples, successively. Viewing the aforementioned mean counts reveals the aerobic plate counts were found in tissues of cooked (ready-to-eat) processed meats by lower levels than those detected in raw ones: these findings can be explained by the literature of Pearson and Gillett (1997) who emphasized that the cooking of processed meats causing destruction a lot of microorganisms in their tissues by a number depend upon the time and temperature relationship. By comparison, Abd El-Aziz (1979 & 1987) and Ambrosiadis et al. (2004) evaluated the mean values of aerobic plate counts in raw sausage samples by 1.2x108-3.4x108 organisms per gram; almost similar to those found in this work. whilst lower APC mean values (3.55x10³-4x10⁵ organisms per gram) determined in raw ground beef by Hamouda (2005) and Malicki and Bruzewicz (2005) as well as in raw sausage (<102-108 organisms per gram) by El-Nawawy and Nouman (1981), Rheinbaben and Hadlok (1984), El-Khateib (1997) and Oteiza et al. (2006). On the other hand, approximately similar APC mean values in beef luncheon (>106 and 1.7x106 organisms per gram) were estimated by Duitschaever (1977) and Gab-Allah (1990), respectively. whilst lower APC mean values were found in

ready-to-eat hamburger $(2x10^2-1.8x10^3)$ organisms per gram) by **Soliman et al.** (2002), as well as in beef luncheon (<102–9x10⁵) organisms per gram) by **Aiedia** (1995), **Ouf** (2001) and **Hamouda** (2005).

Plates of violet red bile glucose agar estimated the counts of Enterobacteriaceae organisms in tissues of tested raw meats as ranges of 10^4 - $3x10^4$ and $3x10^4$ - $2.6x10^6$ with mean values of $1.3 \times 10^4 \pm 0.87 \times 10^4$ 5.8x10⁵±4.1x10⁵ organisms per gram in frozen packaged and butchers' ground beef and $104-2\times10^6$ with mean of $3.7\times10^5+2.3\times10^5$ organisms per gram in frozen packaged beef sausage samples, successively, whereas the same plates could only detect these contaminants in both beef luncheon and fried hamburger samples, among the tested cooked meats, by ranges of $5x10^2-6_103$ and 10^3 - $7x10^3$ with mean of $2.8x10^3 \pm 1.6x10^3$ and 4.1x10³±1.7x10³ organisms per gram, respectively (Table, 2). Enterobacteriaceae organisms, enumerated in both examined raw and cooked meats, reflect the contamination of their raw materials -comprising fresh meat, fillers and spices- with the intestinal material (Kiss, 1984 and Doyle et al., 2001). Also, detection and counting such enteric organisms in cooked meats like beef luncheon and fried hamburger denote inadequate cooking temperature and/or post-processing contamination. By comparison, Lotfi et al. (1986) and Oluwafemi and Simisaye (2006) estimated the mean value and ranges of Enterobacteriaceae counts in raw samples of both ground beef and sausage by levels of 9x104 and $1.57 \times 10^6 - 5.09 \times 10^8$ organisms per gram. consecutively; higher than those recognized in present study, whereas lower intensities of Enterobacteriaceae populations in raw sausage samples of 9.1×10^4 and $2\times10^2-1.1\times10^5$ organisms per gram were detected by **Lotfi et al.** (1986) and Oteiza et al. (2006), successively.

Inspection of Table (2) reveal the contamination levels of S. aureus "coagulasepositive" organisms in both raw and cooked meat samples: these levels were represented in raw samples by ranges $1.6 \times 10^2 - 1.4 \times 10^3$ $4x10^2-3.5x10^4$ with mean $8.5 \times 10^{2} + 3.6 \times 10^{2}$ and $9.9 \times 10^{3} + 4.8 \times 10^{3}$ organisms per gram in frozen packaged and butchers' ground beef and 103-2x105 with mean of 6 104+3.1.104 organisms per gram in frozen packaged sausage samples, successively, whilst these values in tested cooked meats were 10^2-5x10^2 and $2.3x10^3-1.5x10^4$ with mean of $2.4 \times 10^2 \pm 1.3 \times 10^2$ 6.8x103±2.9x10³ organisms per gram in fried beef sausage and beef luncheon besides $5x10^2-3_103$ with mean of $1.8x10^3\pm1.2x10^3$ organisms per gram in fried hamburger samples, respectively. Several researchers could obtain coagulase-positive organisms of S. aureus in raw meats by counts nearly similar to those estimated in this work, where Abd El-Aziz (1987) and Hamouda (2005) evaluated the mean counts of such organisms in raw ground beef by $6x10^2$ and $4x10^3$ organisms per gram, consecutively, while this value was evaluated as 3.6x104 organisms per gram in raw sausage by Mousa et al. (1993), whilst higher intensities of those organisms were recovered from raw ground beef as a range of $1.5 \times 10^{3} - 1.2 \times 10^{5}$ /g by Roushdy et al. (1983) and Kaldes et al. (1994) as well as from raw sausage as a range of $1.8 \times 10^5 - 2 \times 10^7/g$ by Abd El-Aziz (1987) and Oluwafemi and Sim-

isaye (2006), although lower populations of the same organisms were determined in raw ground beef as a range of 0.3-2.8x10/g by Hassan (2001) and Minematsu et al. (2006) besides from raw sausage as a range of <10- 1.8×10^3 /g by Sumner et al. (1979), El-Mossalami (2003) and Hamouda (2005), however Oteiza et al. (2006) could not isolate these organisms from 100 samples of Argentina raw sausage. Similarly, as well as in beef luncheon as a mean of 5.5x10³ organisms per gram by Gab-Allah (1990), although higher contamination levels of such organisms were evaluated as a range of 7.91x10²-1.8x10³/g in ready-to-eat sausage by **Soli**man et al. (2002), meanwhile lower contamination as a mean of $2x10^2$ organisms per gram were estimated by both Tolba (1994) and Hamouda (2005) in beef luncheon. The aforementioned processed and ready-to-eat meats that contaminated with coagulasepositive organisms of S. aureus represent a significant health hazard, because microbes that normally compete them have been eliminated. Improper storage temperature of such meats also allows staphylococci multiply soon after being introduced into the meats. The enterotoxins produced during cell growth generally do not affect the sensory characteristics of the contaminated meats and may therefore go unnoticed (Jablonski and Bohach, 2001).

Plates of mannitol egg-yolk phenol red polymyxin agar showed the levels of B. cereus contamination in tested both raw and cooked processed meat samples as ranges of 6×10^2 - 5×10^5 and 5×10^3 - 3×10^4 with mean of 6.8×10^4 + 5.4×10^4 and 1.2×10^4 + 0.41×10^4 organisms per gram in frozen packaged and butchers' ground beef besides 6×10^3 - 5.1×10^5

with mean of $10^5 \pm 0.52 \times 10^5$ organisms per gram in frozen packaged beef sausage samples, respectively, for raw meats (Table, 2). Comparing the obtained results with those determined by other workers, approximately identical counts of B. cereus organisms in raw ground beef (10³-4x10⁵ organisms per gram) were estimated by Eldaly et al. (1988) and El-Ghamry (2004) as well as in raw sausage (10^4-10^5) organisms per gram by **Torky** (1995), successively, whereas higher B. cereus counts in raw ground beef were detected by **Hafez et al.** (1990) as a mean of 1.8×10^{5} organisms per gram, in raw sausage by Lotfi et al. (1988) and El-Ghamry (2004) as mean levels of 8.79x10⁵-10⁶ organisms per gram. consecutively, although lower B. cereus populations were recovered in raw ground beef by Lotfi et al. (1988) and Hamouda (2005) as mean counts of $2x10^2$ -2x10³ organisms per gram, in raw sausage by Soliman (1988), Hassan (2001), and Hamouda (2005) as mean counts of 1.5x10³ -3.3x10⁴ organisms per gram.

Using of the same aforementioned bacteriological analysis, for enumerating the B. cereus organisms in tested cooked meats, resulted in their detection by counts ranged from $103-3\times10^4$, 1.4×10^4 - 10^5 and $3\times10^3-1.1\times10^5$ with mean values of $1.2\times104\pm0.51\times10^4$, $5.3\times10^4\pm1.4\times10^4$ and $2.7\times10^4\pm1.1\times10^4$ organisms per gram in cooked tissues of fried beef sausage, beef luncheon and fried hamburger, respectively (Table, 2). Detailed inspection of the obtained mean values of B. cereus counts in tested cooked (ready-to-eat) meats, exhibit that beef luncheon samples contained the highest populations of these organisms whilst the lowest intensities were found in

the tissues of fried beef sausage, whereas fried hamburger samples harbored moderate intensity of B. cereus populations. Similarly, almost equal B. cereus contaminants were detected by Nassif et al. (2002) in grilled (ready-to-eat) sausage as a range of 4x103-3x10⁴ organisms per gram, also by **Ahmed** (1991) and El-Sherif et al. (1991) in cooked hamburger as mean levels of 8.3x104 and 3x104 organisms per gram, respectively, as well as by Lotfi et al. (1988) and El-Ghamry (2004) in beef luncheon as mean levels of $6x10^5$ and $6.23x10^5$ organisms per gram. consecutively, whereas lower contamination levels of B. ccreus organisms were obtained in cooked sausage by Soliman et al. (2002) as a range of $5.6 \times 10^2 - 1.3 \times 10^3$, in ready-to-eat hamburger by Nassif et al. (2002) and Soliman et al. (2002) as ranges of $6x10^{2}-10^{4}$ and $3x10^2$ -3.2x10² organisms per gram, respectively. General view on the intensities of the all four bacterial populations in the tissues of both raw and cooked meats, reveal the highest bacterial populations (represented by aerobic mesophiles) in both raw and cooked sample, followed by Enterobacteriaceae organisms in raw meats then B. cereus organisms in both meats succeeded by coagulasepositive organisms of S. aureus in raw meats.

Results in Table (3) assess the microbiological risk of the surveyed cooked samples of Egyptian processed meats, through comparing the obtained intensities of different bacterial contaminants in their tissues with those limits recommended by **Gilbert et al. (2000)** as 100% each of beef luncheon and fried hamburger samples were contaminated with aerobic mesophiles by APC levels more than the corresponding limit (10⁴ organisms per

gram) in addition 90% of fried beef sausage samples showed the same contaminants by counts exceeded the specified limit (105 organisms per gram), on the contrary, none of the tested cooked samples contained Enterobacteriaceae organisms by levels exceeded the related limit (104 organisms per gram), however, only 40% of beef luncheon besides 10% of fried hamburger samples were among the cooked meat samples that harbored the coagulase-positive organisms of S. aureus by more numbers than the corresponding limit (10³) organisms per gram), finally, the B. cereuscontaminated samples that possessed higher levels of organisms than specified limit (<10⁵ organisms per gram) were restricted to10% every of beef luncheon, fried hamburger and samples. Similar microbiological risk assessment for examined raw meats was also carried out, after comparing their different bacterial contamination levels with the corresponding limits stated by ICMSF (1986), as 70% of frozen packaged ground beef, 60% of frozen packaged beef sausage besides 40% of butchers' ground beef samples were harbored the aerobic mesophiles by APC values exceeded the specified limit (107 organisms per gram), whereas 50% of frozen packaged hamburger, besides 30% and 20% of frozen packaged beef sausage and butchers' ground beef samples, consecutively were contaminated by more organisms of S. aureus "coagulasepositive" than the recommended limit (104 organisms per gram). Microbiological risk assessment of surveyed raw meats, in relation to the obtained counts of both Enterobacteriaceae and B. cereus organisms in their tissues, became impossible due to unavailability of the recommended limits specifying such organisms in raw processed meats (Table, 3).

Phenotypic (conventional) and genotypic characterization of a total of 67 bacterial strains; picked up from the agar plates after being recovered from the tissues of surveyed samples of both raw and cooked processed meats: identified them as 13 Escherichia coli: 7 Enterobacter hormaechei: 8 strains each of Enterobacter cloacae and Pseudomonas aeruginosa; 5 Enterobacter sakazakii; 3 strains every of Enterobacter aerogenes, Enterococcus faecalis and Pseudomonas stutzeri; 2 strains each of Bacillus cereus. Bacillus licheniformis. Bacillus subtilis. Citrobacter freundii and Enterococcus faecium; besides one strain every of Enterobacter asburiae, Pantoea agglomerans, Proteus mirabilis, Serratia marcescens, Staphylococcus aureus, Staphylococcus cohnii and Staphylococcus xylosus (Table, 4). Concerning the origin of the identified 67 bacterial strains, Bacillus cereus originates from butchers' ground beef and frozen packaged beef sausage; Bacillus licheniformis from beef luncheon and fried hamburger; Bacillus subtilis from fried beef sausage and fried hamburger; Citrobacter freundii from frozen packaged ground beef and beef luncheon; Enterobacter aerogenes from frozen packaged ground beef; Enterobacter asburiae from butchers' ground beef; Enterobacter cloacae from all types of raw meats; Enterobacter hormaechei from butchers' ground beef, frozen packaged beef sausage and beef luncheon; Enterobacter sakazakii from frozen packaged ground beef, butchers' ground beef and frozen packaged beef sausage; Enterococcus faecalis from butchers' ground beef and beef

luncheon: Enterococcus faecium from frozen packaged beef sausage; Escherichia coli from all types of raw meats and beef luncheon; Pantoea agglomerans from beef luncheon: Proteus mirabilis from frozen packaged beef sausage; Pseudomonas aeruginosa from all types of raw meats; Pseudomonas stutzeri from frozen packaged beef sausage and fried hamburger; Serratia marcescens from frozen packaged ground beef; Staphylococcus aureus from frozen packaged ground beef; Staphylococcus cohnii from fried beef sausage; besides Staphylococcus xylosus from frozen packaged beef sausage samples (Table, 4). Several researchers could isolate most of the aforementioned bacterial strains from fresh and processed meats; as Enterobacter sakazakii -the new emerging pathogens- from fresh beef, ground beef and sausage (Goullet and Picard, 1986; Watanabe and Esaki, 1994; Kimura et al., 1999 and Leclercq et al., 2002). Also, Eldaly (1983), Sallam (1993), El-Daym (2005) and El-Shopary (2010) could isolate Escherichia coli, Enterobacter aerogenes, Pantoea agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, Citrobacter freundii, Proteus mirabilis, Streptococcus faecalis, Streptococcus faecium, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Shigella spp, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Serratia marcescens organisms in fresh chilled and frozen meats as well as in raw and cooked processed meats like ground beef, sausage, hamburger and beef luncheon samples, similar to those recognized in the present work.

Table (1): Numbers and percentages of Egyptian raw and cooked processed meats, contaminated with different bacterial populations (n*=10 each).

Types of examined samples		Aerobic mesophiles- contaminated samples	Enterobacteriaceae- contaminated samples	Staphylococcus aureus "coagulase positive" - contaminated samples	Bacilius cereus- contaminated samples	
ਸ਼	Frozen packaged ground beef	10 (100%)	3 (30%)	3 (30%)	9 (90%)	
Raw ocessed meats	Butchers' ground beef	10 (100%)	6 (60%)	8 (80%)	6 (60%)	
_ 5	Frozen packaged beef sausage	10 (100%)	8 (80%)	6 (60%)	9 (90%)	
Cooked processed meats	Fried beef sausage	10 (100%)	0 (0%)	3 (30%)	5 (50%)	
	Beef luncheon	10 (100%)	3 (30%)	4 (40%)	5 (50%)	
	Fried hamburger	10 (100%)	3 (30%)	2 (20%)	9 (90%)	

N * = number of examined samples.

Table (2): Bacterial populations per gram of Egyptian raw and cooked processed meats (n*=10 each).

Types of examined samples		Aerobic plate counts			Enterobacteriaceae counts			Staphylococcus aureus "coagulase positive" counts			Bacillus cereus counts		
		Min	Мах	Mean ± SE	Min	Max	Mean ± SE	Min	Max	Mean ± SE	Min	Max	Mean ± SE
Raw processed meats	Frozen packaged ground beef	9xI0 ⁵	2x10°	2.7x10 ⁸ ±1.9x10 ⁸	104	3xl0 ⁴	1,3xi0 ⁴ ±0,87xi0 ⁴	1.6x10 ²	1.4xl0 ³	8.5xl0 ² ±3.6xl0 ²	6xlO ²	5x10 ⁵	6.8xi0 ⁴ ±5.4xi0 ⁴
	Butchers' ground beef	105	7x10 ⁸	1.3x10 ⁸ ±0.78x10 ⁸	3x10 ⁴	2.6x10 ⁶	5.8x10 ⁵ ±4.1x10 ⁵	4xi0 ²	3.5x10 ⁴	9.9xi0 ³ ±4.8xi0 ³	SxIO ³	3x10 ⁴	1.2x10 ⁴ ±0.41x10 ⁴
	Frozen packaged beef sausage	2x10 ⁵	2.8x10 ⁹	8.5x10 ⁸ ±4.4x10 ⁸	104	2xi0 ⁶	3.7x10 ⁵ ±2.3x10 ⁵	103	2x10 ⁵	6xl0 ⁴ ±3.1xl0 ⁴	6xl0 ³	5.1x10 ⁵	10 ⁵ ±0.52x10 ⁵
- 2	Fried beef sausage	3x10 ⁴	6.7xi0 ⁷	1.4xi0 ⁷ ±0.75xl0 ⁷	0	0	0	10²	5x10 ²	2.4xl0 ² ±1.3xl0 ²	103	3x10 ⁴	1.2xi0 ⁴ ±0.51xi0 ⁴
Cooked processed meats	Beef luncheon	2xl0 ⁵	1.6xl0 ⁷	4.7x10 ⁶ ±1.6x10 ⁶	5x10 ²	6xI0 ³	2.8x10 ³ ±1.6x10 ³	2,3x10 ³	1.5x10 ⁴	6.8xi0 ³ ±2.9xi0 ³	1.4x10 ⁴	103	5.3xi0 ⁴ ±1.4xi0 ⁴
	Fried hamburger	9x10 ⁵	7.2x10 ⁷	2.6x10 ⁷ ±0.79x10 ⁷	103	7x10 ¹	4.1x10 ³ ±1.7x10 ³	5xl0 ²	3x10 ³	1.8xl0 ³ ±1.2xl0 ³	3xl0 ³	1.1xi0 ⁵	2.7xl0 ⁴ ±1.1xl0 ⁴

^{1*=} number of examined samples.

Min= minimum.

Max= maximum.

SE= standard error.

Table (3): Microbiological risk assessment of surveyed Egyptian processed meats (n*=10 each), through comparing different bacterial populations contained in their tissues with the recommended limits.

Types of examined samples		Aerobic plate count		Enterobacteriacene count		Simphylococcus aureus "coagulase positive" count		Bacillus careus count	
		Recommend ed flacks**	No. (%) of samples exceeding the Hmits	Recommended limits**	No. (%) of samples exceeding the limits	Recommende d Haitr**	No. (%) of samples exceeding the limits	Reconstructe d limits**	No. (%) of samples exceeding the limits
ъ ф "	Fried beef sausage	105	9 (90%)	10 ⁴	0 (0%)	10 ³	0 (0%)	< 105	0 (0%)
Cooked processed meats	Beef luncheon	104	10 (100%)	104	0 (0%)	10 ³	4 (40%)	< 105	1 (10%)
254	Fried hamburger	104	10 (100%)	104	0 (0%)	10 ³	1 (10%)	< 10 ⁵	1 (10%)
ed	Frozen packaged ground beef	10 ⁷	7 (70%)	NA***		104	0 (0%)	NA	
Raw processed meats	Butchers' ground beef	10 ⁷	4 (40%)	NA		IO ⁴	2 (20%)	NA	
pro	Frozen packaged beef sausage	107	6 (60%)	NA		10 ⁴	3 (30%)	NA	

Table (4): Types and numbers of bacterial strains isolated from Egyptian raw and cooked processed meats, genotyping "16S rRNA gene sequencing" (n*=10 each).

	Types of examined samples									
Types and numbers of	Ra	w processed me	Cooked processed meats							
bacterial strains	Frozen packaged ground beef	Butchers' ground beef	Frozen packaged beef sausage	Fried beef sausage	Beef luncheon	Fried hamburger				
Bacillus cereus (2)	-	1	1	-	-					
Bacillus licheniformis (2)		-	-	-	1	1				
Bacillus subtilis (2)			-	1	_	1				
Citrobacter freundil (2)	1	-	-	•	1					
Enterobacter aerogenes (3)	3			-	•	-				
Enterobacter asburiae (1)	•	i	•	_	-	-				
Enterobacter cloacae (10)	1	2	5	-] -	-				
Enterobacter hormaechei (7)		1	3	•	3					
Enterobacter sakazakii **(5)	2	1	2	-	-	-				
Enterococcus faecalis (3)	-	2	-	. •	ī	-				
Enterococcus faecium (2)	-	-	2	-		-				
Escherichia coll (13)	1	6	5	-	1	-				
Pantoea agglomerans (1)	-	-	-	-	1	-				
Proteus mirabilis (1)	-	-	1	-	-	-				
Pseudomonas aeruginosa (8)	3	2	3	-	-					
Pseudomonas stutzeri (3)	-	-	2	•	•	1				
Serratia marcescens (1)	i	•	-		-	•				
Staphylococcus aureus (3)	1	-	-	•	•	•				
Staphylococcus cohnii (1)	-	-	•	l	-	•				
Staphylococcus xylosus (1)		-	1	•	-	-				
Total strains = (67) ***	(13)	(16)	(25)	(2)	(8)	(3)				

n*= number of examined samples.

**= the current name: Cronobacter sakazakii, according

*** = the obtained strains were picked up from the plates of examined processed meat samples. **= the current name: Cronobacter sakazakii, according to Iverses et al. (2008).

n*= not available.

NA *** = not available.

NA *** = not available.

** = different recommended limits were reported by Gilbert et al. (2000) for ready-to-eat meats whilst for raw meats were stated by ICMSF (1986).

REFERENCES

Abd El-All F. A. (1993): Contamination of meat and meat products with human pathogens. M. V. Sc. Thesis, Fac. Vet. Med., Assiut Univ., Egypt.

Abd El-Aziz A. A. (1979): Studies on hygienic quality of locally manufactured fresh sausage. M. Public Health Sc. Thesis, High Inst. Public Health, Alex. Univ., Egypt.

Abd El-Aziz A. T. (1987): Microbiological load of some meat products as influenced by the hygienic status of the producing plant. M. V. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Abd El-Monem K. M. (1998): Microbiological quality of meat products during preparation, processing and cooking. J. Egypt. Vet. Med. Assoc. 58: 191.

Ahmed I. M. I. (1991): Hygienic quality of marketed ready-to-eat meats. M. V. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Aiedia H. A. (1995): Quality investigation into room kept traditional meat products in Egypt. Ph. D. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Ambrosiadis, J.; Soultos, N.; Abrahim, A. and Bloukas, J. G. (2004): physicochemical, microbiological and sensory attributes for the characterization of Greek traditional sausages. Meat Sci. 66: 279.

AOAC (Association of Official Analytical Chemists) (1984): Official methods of analysis, 14th ed., Washington DC.

AOAC (Association of Official Analytical Chemists) (1990): Official Method of Analysis, 15th ed. Washington, DC.

Dickson, J. S. and Anderson, M. E. (1992): Microbiological decontamination of food animal carcasses by washing and

sanitizing systems: A review. J. Food Prot. 55: 133-140.

Doyle, M. P.; Beuchat, L. R. and Montville, T. J. (2001): Food Microbiology: Fundamentals and Frontiers. 2nd ed. ASM Press. Washington, DC.

Duitschaever, C. L. (1977): Bacteriological evaluation of some luncheon meat in the Canadian retail markets. J. Food Prot. 40: 382.

Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K. and Stackebrandt, E. (2006): The Prokaryotes A Handbook on the Biology of Bacteria, 3rd ed. Springer Science+Business Media, LLC.

Eidaly, E. A. (1983): Sanitary status of meat serving establishments. Ph. D. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Eldaly, E. A.; Saleh, E. and El-Galii, Y. (1988): Prevalence of Bacillus cereus in some meat products. Bull. Fac. Sci. Zag. Univ. 10: 25-30.

El-Daym, W. F. A. (2005): Food poisoning agents in some meat products. Ph. D. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

El-Ghamry, S. T. (2004): Incidence and public health importance of Bacillus cereus in meat and some meat products. M. V. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

El-Gohary, A. H. (1993): Sausage and minced meat as a source of food poisoning microorganisms to man. Assiut Vet. Med. J. 30: 146.

El-Kateib T. S. (1997): Microbiological status of Egyptian salted meat (Basterma) and fresh sausage. J. Food Safety 17: 141-150.

El-Mossalami, E. I. K. (2003): Risk assessment of ready prepared meat products. Ph. D. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

El-Nawawy, F. A. and Nouman, T. M. (1981): Investigation into the microbial quality of fresh raw sausage. Fleischwirtschaft 61: 6.

El-Sayed, M. E.; Ahmed, M. A. and El-Nagar, S. M. (1999): Prevalence of Bacillus cereus in minced meat and sausage and its susceptibility to some antibiotics in Dakahlia governorate, Egypt. Zag. Vet. J. 27: 71-75.

El-Sherif, A. M., Khalaf, F. A. and Darwish, A. M. (1991): Microflora in beef burger sandwiches. J. Egypt. Vet. Med. Assoc. 51: 169-177.

El-Shopary, N. F. (2010): Pseudomonas species in some retailed meat products. M. V. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

FDA (Food and Drug Administration) (1998): Bacteriological Analytical Manual. 8th ed. AOAC International, Gaithersburg, USA.

Frazier W. C. and Westhoff D. C. (1988): Food Microbiology, 4th ed. pp. 401-439. McGraw-Hill International editions. Food Science Series.

Gab-Allah M. G. (1990): Sanitary status of some meat and poultry products marketed in Sharkia Governorate. M. V. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

Gergis M. T. (2005): Some bacterial toxins in meat products. Ph. D. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

Gilbert, R. J.; de Louvois, J.; Donovan, T.; Little, C.; Nye, K.; Ribeiro, C. D.; Richards, J.; Roberts, D. and Bolton, F. J. (2000): Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. Commun. Dis. Public Health 3: 163-167.

Goullet, P. H. and Picard, B. (1986):

Characterization of Enterobacter cloacae and E. sakazakii by electrophoretic polymorphism of acid phosphatase, esterases, and glutamate, lactate and malate dehydrogenases. J. Gen. Microbiol. 132: 3105-3112.

Hafez, A. F.; El-Atabany, A. L.; El-Kelish, H. L. and Morshdy, A. (1990): Bacillus cereus in some meat products. Zagazig Vet. J. 18: 141-150.

Hail, L., Doerr, K. A., Wohlfiel, S. L. and Roberts, G. D. (2003): Evaluation of the MicroSeq system for identification of mycobacteria by the 16S ribosomal DNA sequencing and its integration into a routine clinical mycobacteriology laboratory. J. Clin. Microbiol. 42: 578-584.

Hamouda, N. M. M. (2005): Microbiological risk assessment of some meat products. Ph. D. V. Sc. Thesis, Fac. Vet. Med., Suez Canal Univ., Egypt.

Hassan, H. F. M. (2001): Study on Grampositive bacteria in meat products. Ph. D. V. Sc. Thesis, Fac. Vet. Med., Beni Suef, Cairo Univ., Egypt.

Hassan, K. M. A. (1991): Some studies on frozen meat. Ph. D. V. Sc. Thesis, Fac. Vet. Med., Banha branch, Moshtohor, Zagazig Univ., Egypt.

Hemeida, H. H.; Hallabo, S. A. and El-Wakeil, F. A. (1986): Chemical and microbiological evaluation of some cured meat products. Bull. Fac. Agri., Cairo Univ. 37: 259.

ICMSF (International Commission on Microbiological Specifications for Foods) (1978): Microorganisms in Foods. 1 Their Significance and Methods of Enumeration, 2nd ed., University of Toronto Press, London.

ICMSF (International Commission on Microbiological Specifications for Foods) (1986): Microorganisms in Foods. 2 Sampling for Microbiological Analysis: Principles and Specific Applications, 2nd ed. Blackwell Scientific Publications.

ISO (International Organization for Standardization) (1993a): Microbiology-General guidance for the enumeration of Enterobacteriaceae without resuscitation-MPN technique and colony-count technique; Standard 7402.

ISO (International Standardization Organization) (1993b): Microbiology, General guidance for the enumeration of Bacillus cereus, colony count technique at 30°C. Standard 7932, 2nd ed., International Organization for Standardization, Geneve, Switzerland.

Iversen, C.; Mullane, N.; McCardell, B.; Tall, B. D.; Lehner, A.; Fanning, S.; Stephan, R. and Joosten, H. (2008): Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58 (pt 6): 1442-1447.

Jablonski, 1. M. and Bohach, G. (2001): Staphylococcus aureus. In: Doyle P. M., Beuchat L. R. and Montville T. J. (Eds.), Food Microbiology: Fundamentals and Frontiers, pp. 411-434. ASM Press. Washington, DC.

Kaldes, Y. T. H.; Bahy, G. G. and Henin, A. H. (1994): Bacteriological picture of mar-

ket minced meat in El-Minia governorate. 6th Sci. Cong. Fac. Vet. Med., Assiut, Egypt.

Kimura, B.; Kawasaki, S.; Fujil, T.; Kusunoki, J.; Itoh, T. and Flood, S. J. (1999): Evaluation of TaqMan PCR assay for detecting Salmonella in raw meat and shrimp. J. Food Prot. 62: 329-335.

Kiss, I. (1984) : Testing Methods in Food Microbiology. Akademiai Kiado, Budapest.

Leclercq, A.; Wanegue, C. and Baylac, P. (2002): Comparison of fecal coliform agar and violet red bile lactose agar for fecal coliform enumeration in foods. Appl. Environ. Microbiol. 68: 1631-1638.

Lotfi, A.; Nasr, S.; Youssef, H.; Abd El-Rahman, H.; Hefnawy, Y.; El-Timmawy, A. and Gobran R. (1986): Enterobacteriaceae in meat products in upper Egypt. Assiut Vet. Med. J. 17: 77-84.

Lotfi, A.; Youssef, H.; El-Khateib, T.; Seddik, I.; Elimawry, A. and Ali, G. (1988): Incidence of Bacillus cereus in meat products. Assiut Vet. Med. J. 39: 111-114.

Malicki, A. and Bruzewicz, S. (2005): Microbiological status of minced meat directly post production is influenced by its internal temperature and ph value. Electronic J. Polish Agri, Univ. 8 (2): #18.

Minematsu, N.; Akira, S.; Jun'ichi, K. and Shizunobu, I. (2006): Prevalence and characterization of Staphylococcus aureus in retail raw minced meat. Japanese J. Food Microbiol. 23: 217-222.

Mousa, M. M.; Awad, H. A.; Yassien, N. M. and Gouda, H. I. (1993): Microbial quality of some meat products. Vet. Med. J. 41: 59.

Nassif, M. R.; Enshrah, R. T. and Naglaa, S. H. (2002): Sanitary evaluation of some ready-to-eat fast meals. J. Egypt. Vet. Med.

Ass. 62: 245-253.

Nortje, G. L.; Vorster, S. M.; Greebe, R. P. and Steyn, P. L. (1999): Occurrence of Bacillus cereus and Yersinia enterocolitica in South African retail meats. Food Microbiol. 16: 213-217.

Oluwafemi, F. and Simisaye, M. T. (2006): Extent of microbial contamination of sausages sold in two Nigerian cities. Afr. J. Biomed. Res. 9: 133-136.

Oteiza, J. M.; Chinen, I.; Miliwebsky, E. and Rivas, M. (2006): Isolation and characterization of shiga toxin-producing Escherichia coli from precooked sausage (morcillas). J. Food Microbiol. 23: 283-288.

Ouf, J. M. (2001): Microorganisms of sanitary importance in some meat products and their additives. Ph. D. V. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Pearson, A. M. and Gillett, T. A. (1997): Processed Meats, 3rd ed. CBS Publishers and Distributors, India.

Petti, C. A.; Polage, C. R. and Schreckenberger, P. (2005): The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J. Clin. Microbiol. 43: 6123-6125.

Rheinbaben, K. E. V. and Hadlok, R. M. (1984): Produkgebundene mikroflora verschiedener fleischerzeugnisse. Fleischwirtschaft 64: 1483.

Roushdy, S. A.; Sadik, M. F. and Zeidan, M. (1983): Staphylococcus aureus in market minced meat. J. Egypt. Vet. Med. Assoc. 58: 1998.

Sallam, K. I. (1993): Psychrotrophic bacteria in meat and some meat products. M. V. Sc. Thesis, Fac. Vet. Med., Zagazig Univ., Egypt.

Shinagawa, K.; Konuma, H.; Kurata, H.;

Tanabayachi, K. and Masusaka, N. (1985): Surveillance of raw meat, meat products and meat product additives for contamination with Bacilius cereus and enterotoxigenicity of the isolated strains. J. Faculty of Agriculture, Iwate Univ. 17: 175-182.

Snedecor, G. W. (1971): Statistical Methods, 14th ed. The Iowa State Univ. Press.

Soliman, M. R. (1988): Sanitary status of ready-to-eat meat products and fishes. M. V. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Soliman, M. R.; Abd El-Monem, K. M. and Saad, S. M. (2002): Microbiological quality of ready-to-eat meat products and fishes in urban and rural areas. J. Egyptian Vet. Med. Assoc. 62: 39-51.

Stackebrandt, E. and Goebel, B. M. (1994): A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.

Sumner, J., Berg, J. and Perry, I. (1979): A survey of hygienic quality of food in Christchurch, N. Z. II- Fresh sausage and sausage meat. Food Technol. In Newzealand 14: 10.

Tavakoli, H. R. and Riazipour, M. (2008): Microbial quality of cooked meat foods in Tehran university's restaurants. Pak. J. Med. Sci. 24: 595-599.

Tolba, K. S. (1994): Microflora in locally processed frozen meat. Vet. Med. J. 42: 99.

Torky, A. A. S. (1995): Bactero-toxological studies of B. cereus in meat products. M. V. Sc. Thesis, Fac. Vet. Med., Cairo Univ., Egypt.

Varnam, A. H. and Evans, M. G. (1991): Food borne pathogens. An illustrated text, chapter 13, pp. 267. England, Wolfe publishing Ltd. ISBN 07234, 1512, 8.

Walls, I. and Scott, V. (1997): Use of predictive microbiology in microbial food safety risk assessment. Int. J. Food Microbiol. 36: 97-102.

Watanabe, I. and Esaki, M. (1994): Studies on an unusual case of fermentation of

meat-products during the curing process. J. Antibact. Antifung. Agents 22: 9-14.

Youssef, H., Hefnawy, Y. and Abd El-Rahman, H. (1985): Coagulase positive staphylococci in some meat products. J. Assiut Vet. Med. Assoc. 15: 137.

الملخص العربي

التوصيف المظهري والوراثي للملوثات الجرثومية المعزولة من مصنعات اللحوم المصرية

محمد محمد محمد إبراهيم الجزار محمد أحمد محمود محمد محمد محمد أبراهيم الجزار على الأغذية - كلية الطب البيطري - جامعة المنصورة

تناولت الدراسة الفحص الجرثومى لعدد ستين من عينات اللحوم المصنعة الأكثر إستهلاكاً فى مصر وهى ثلاثين عينة من المصنعات النيئة (عشر عينات من كل من مفروم اللحم البقرى المجمد المعبأ، مفروم اللحم البقرى المجهز فى محلات الجزارة من لحوم مجمدة مستوردة والسجق البقرى المجمد المعبأ) بالإضافة إلى ثلاثين عينة من اللحوم المصنعة المطهية الجاهزة للأكل (عشر عينات من كل من السجق البقرى المقلى، الملائشون البقرى والهامبورجر البقرى المقلى) تم شراؤها من محلات السوير ماركت والجزارة والمطاعم المنتشرة فى مدينة المنصورة، وقد أجريت مراحل الدراسة الأولى التي شملت التجهيز والفحص الجرثومي على مستنبتات الأجار المختلفة ثم العد والتصنيف المبدئي لأنواع الجراثيم المختلفة بمعمل الرقابة الصحية على الأغذية - كلية الطب البيطرى - جامعة المنصورة - مصر، بينما أجريت التجارب الخاصة بالتصنيف النهائي للمعزولات الجرثومية باستخدام التقنيات الحديثة بقسم العدوى الجرثومية - معهد أبحاث الأمراض الميكروبية - جامعة أوساكا - النهائي

وقد أظهرت أطباق العد الجرثومي تواجد الجراثيم الهوائية المحبة للحرارة المعتدلة aerobic mesophiles في جميع عينات اللحوم المصنعة المختبرة (١٠٠٪) النيئة منها والجاهزة للأكسل على حد سسواء، بينما وجدت الجراثين المعوية Enterobacteriaceae في المختبرة (١٠٠٪) النيئة منها والجاهزة للأكسل على حد سسواء، بينما وجدت الجراثين المعورجر البقسري المقلى بينما لم تطهسر هذه الجراثيم على الأطباق الخاصة بالسجق البقري المقلى، كما تواجدت جراثيم المكور العنقودي الذهبي "القادر على تخثر بلازما الدم "Staphylococcus aureus "coagulase-positives" و ٣٠٪ و ٣٠٪ و ٣٠٪ من كل من عينات صفروم اللحم البقري المجهز في محلات الجزارة من لحيوم مجمدة مستوردة، مفروم اللحم البقسري المجمد المعبأ والسجق البقري المجمد المعبأ، على الترتيب، فيما كانت نسب تواجدها بين ٢٠٪ - ٤٠٪ في عينات اللحوم المصنعة المطهية الجاهزة للأكل، بينما تواجدت جراثيم باسيلاس سيريس Bacillus cereus في عينات اللحوم المصنعة النيئة وتلك الجاهزة للأكل بنسب تراوحت بين ٢٠٪ - ٢٠٪ و ٥٠٪ - ٢٠٪ على التوالي.

وفيما يتعلق بالمترسطات الأسية للأعداد الجرثومية لكل جرام من أنسجة عينات اللحوم المصنعة النيئة والمطهية، فقد تراوحت أعداد الجراثيم الهوائية المحبة للحرارة المعتدلة بين 0.0° - $0.0^$

بین ٤ر۲ × ۲۰۱ – ۸ر۲ × ۳۱۰ ولجراثیم باسیلاس سیرس ۲ × ۲۱۰ – ۱ره × ۹۰۰ بمتوسطات تراوحت بین ۲ر۱ × ۴۱۰ – ۲ز۱ × ۹۰۰ و * - ۱ر۱ × ۱۰۰ بمتوسطات تراوحت بین ۲ر۱ × ۴۱۰ – ۱۰۰ علی الترتیب.

وفيما يتعلق بتقييم الخطر الميكروبيولوچى المحتمل لعينات اللحوم المصنعة المختبرة من خلال مقارنة التجمعات الجرائيمة الموجودة بأنسجتها مع تلك الحدود المسموح بها لكل نوع من هذه الجرائيم، فقد أسفر عن تجاوز ٩٠٪ – ١٠٪ من عينات اللحوم المصنعة النيئة للحد المسموح به (٢٠٠ لكل جرام) عن الحد المسموح به (٢٠٠ لكل جرام) و عينات اللحوم المصنعة النيئة للحد المسموح به (٢٠٠ لكل جرام) لتواجد الجرائيم الهوائية المحبة للحرارة المعتدلة، في حين لم تزد أي من عينات اللحوم المصنعة المطهية عن الحد المسموح به (٢٠٠ لكل جرام) لتواجد الجرائيم المعوية، أما بالنسبة للحد المسموح به (٣٠٠ لكل جرام) لجرائيم المكور العنقودي الذهبي "القادر على تخثر بلازما الدم" في اللحوم المصنعة المطهية فقد زادت ٤٠٪ من عينات اللاتسون البقري عن هذا الحد، بينما كانت ١٠٪ فقط من عينات الهامبورجر البقري المقلى زائدة عن هذا الحد، في حين لم تتجاوز أي من عينات السجق البقري المجهز في محلات الجزارة من لحوم مجمدة مستوردة الحد المسموح به (٢٠٠ لكل جرام) لتواجد هذه الجرائيم، في حين لم تتخطى عينات مفروم اللحم البقري المجمد المعبأ هذا الحد، وقد تجاوز ١٠٪ فقط من كل جرام) لتواجد هذه الجرائيم، وي حين لم تتخطى عينات مفروم اللحم البقري المجمد المعبأ هذا الحد، وقد تجاوز ١٠٪ فقط من كل من عينات اللاتشون البقري والهامبورجر البقري المدموح به (أقل من ٢٠٠ لكل جرام) لتواجد جرائيم باسيلاس سيريس.

وقد تم أخذ عدد سبع وستون من الجراثيم المعزولة من عينات اللحوم المصنعة النيئة (١٣ عترة من مفروم اللحم البقرى المجمد المعبأ) وأيضاً من عترة من مفروم اللحم البقرى المجهز في محلات الجزارة من لحوم مجمدة مستوردة و ٢٥ عترة من السجق البقرى المجهز ألكم العبأ) وأيضاً من اللحوم المصنعة المطهية الجاهزة للأكل (عترتين من السجق البقرى المقلى، ٨ عترات من اللاتشون البقرى، بالإضافة إلى ٣ عترات من اللهامبورجر البقرى المقلى)، لتصنيفها باستخدام التصنيف الخاص بتتابع وحدات الحمض النووى للجين ١٣٣٨٨ gene sequencing الذي أسفر عن تصنيف: ١٣ عترة أيشيريشيا كولاى، ٧ عترات انتيروباكتر هورماتشى، ٨ عترات من كل من انتيروباكتر كلواكى وسيدوموناس أيروجينوزا، ٥ عترات أنتيروباكتر ساكازاكى، ٣ عترات لكل من انتيروباكتر ايروجينز وانتيروكوكاس فيكاليس وسيدوموناس ستوتزارى، عترتين لكل من باسيلاس سيريس وباسيلاس ليشنيفورميس وباسيلاس ساتلاس وستروباكتر فروندى وانتيروكوكاس فيشيام، بالإضافة إلى عترة واحدة من كل من انتيروباكتر أسبارى وسراتيا مارسيسنز وبانتوا أجلوميرانس وبروتيس ميرابيلس والمكور العنقودى وستافيلوكوكاس كوهني وستافيلوكوكاس زيلوساس.