

Journal

DIALLEL CROSS ANALYSIS FOR YIELD AND GENETIC MARKERS FOR HETEROSIS AND COMBINING ABILITY IN MAIZE (Zea mays, L.)

K. A. El-Shouny¹, K. I.M. Ibrahim¹, M.F. Ahmed¹, Rania. A. A. Younis² and W. S. Mohamed¹.

J. Biol. Chem. Environ. Sci., 2011, Vol. 6(1): 211-234 www.acepsag.org ¹⁻ Agronomy Dept. Faculty of Agric. Ain Shams Univ. Cairo, Egypt.
 ²⁻ Genetics Dept. Faculty of Agric. Ain Shams Univ. Cairo,

ABSTRACT

Egypt.

A half diallel set of crosses involving ten maize inbred lines were evaluated in the field. Five maize inbred lines and their 10 F₁ hybrids were used for protein electrophoresis and PCR-RAPD study in a trail to predict of heterosis and combining ability. The obtained data revealed that the large variations have been detected among F_1 hybrids in all studied traits. Both general (GCA) and specific (SCA) combining ability variances were found to be highly significant for all studied traits. This would indicate the importance of additive and nonadditive genetic variances in determining the performance of all studied characters. The ratios of GCA / SCA variances were found to be less than unity for all studied traits except ear height indicating that non-additive gene action was of greater importance in the inheritance of these traits. Heterosis over better parent and the check variety showed that, the best hybrids were $P_3 \times P_5$ and $P_6 \times P_9$ for grain yield per plant and most of the studied traits. The parental line P₆ appeared to be the best combiner for grain yield /plant and most yield attributes while, P_2 and P_7 lines seemed to be high combiners for days to 50% tasseling and silking. Meanwhile, each of P₁, P₃, P₄, P₅, P₈, P₉ and P₁₀ showed high GCA for one or more of yield attributes. Seven crosses $(P_1 x P_2, P_1 x P_8, P_3 x P_5, P_4 x P_5, P_4 x P_8, P_4 x P_9 and P_6 x P_9)$ exhibited significant SCA effects for grain yield per plant and most of the studied traits. The electrophoresis patterns and PCR-RAPD technique could be a useful tools for the identification and characterization of these inbred lines. Using soluble protein

electrophoresis and PCR-RAPD technique could be effective in the identification of the highly heterotic hybrids and those having high specific combining ability effects as genetic markers associated with hybrid vigor and specific combining ability in maize.

Key words: Diallel cross, Maize, Heterosis, Combining ability, Electrophoretic patterns, PCR-RAPD technique..

INTRODUCTION

Maize, the most important cereal crop in the world, represents one of the major principal cereal crops in Egypt. High yield is one of the major goals of maize breeding. Combining ability is a concept developed to help the breeder in identifying and selecting useful parental inbred lines. The parents of the best potentiality to transmit desirable traits to their progenies are those exhibiting the highest value for general combining ability effects, whereas combinations of highest specific combining ability effects demonstrate exploitation of heterosis concept. General and specific combining ability effects and heterosis have been studied in maize by several investigators (El-Shouny *et al*, 2003; Abdel-Sattar and Ahmed, 2004; Ibrahim, 2005; Ojo *et al*, 2007; Aliu *et al*, 2008 and Bello and Olaoye, 2009).

The electrophoretic patterns (SDS-PAGE) for water soluble proteins in grains has been used as biochemical genetic makers associated with heterosis and combining ability. Several investigators (Abdel-Tawab et al, 1989; Abdel-Sattar and Ahmed, 2004 and Hosni *et al*, 2006) tried to identify and characterize the parental lines of maize using proteins electrophoresis. The randomly amplified polymorphic DNA (RAPD) assay, which detects nucleotide sequence polymorphisms by means of the polymerase chain reaction (PCR) has become extremely a useful tool for identifying maize genotypes and to asses genetic diversity. Therefore, development of a reliable method for developing of heterotic groups and predicting hybrid performance without testing thousands of single cross combinations was the goal of numerous studies, using molecular and phenotypic markers (El-Khishin *et al*, 2003; Mohammadi *et al*, 2008; Pabendon *et al*, 2009 and Xin Qi *et al*, 2010).

The present investigation aimed to; (1) evaluate ten maize inbred lines and their 45 F_1 hybrids in half diallel cross for heterosis and

combining ability in agronomic traits to identify the high GCA lines that could be used as parental lines in breeding programe for specific traits and to identify promising hybrids with high SCA that could be used commercially and (2) studying the possibility of predicting heterosis and combining ability in maize via protein electrophoresis and PCR- RAPD technique.

MATERIALS AND METHODS

The genetic material used in this investigation included new ten white maize (*Zea mays*, L.) inbred lines (P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 and P_{10}), representing a wide range of diversity for several agronomic characters. These inbred lines were developed by Prof. Dr. K.A. El-Shouny through a breeding program at Agronomy Department, Fac. of Agric., Ain Shams Univ. The first five inbred lines were derived from the open pollinated variety Giza 2 and the other five lines were derived from the three way cross (T.W.C 352). In 2007 season, all possible cross combinations excluding reciprocals were made among the ten inbred lines giving a total of 45 F₁ crosses.

In 2008 growing season, the ten inbred lines, their forty five crosses and the check variety (Ch.v.) single cross 10 were planted in 21st of May at the Agric. Res. Stat. Fac. Of Agric., Ain Shams Univ., Shalakan, Kalubia Governorate, Egypt. The experiment was conducted in a randomized complete block design with three replications. The parental lines were randomly grown separately in each block. The experimental plot included one row of four meters long and 70 cm wide. Planting was in hills spaced at 25cm apart and hills were thinned at one plant per hill. The common agricultural practices of growing maize were applied properly as recommended in the district. Data were recorded on 10 guarded plants for; Days to 50% tasseling, Days to 50% sillking, Plant height (cm), Ear height (cm), Ear length (cm), Ear diameter (cm), Number of rows /ear, Number of kernels /row, 100-kernel weight (g) and Grain yield per plant (g).

General and specific combining ability variances and effects were obtained by employing Griffing's (1956) diallel cross analysis method 4 model I. Percentage of heterosis was estimated according to Wynne *et al* (1970). In 2009, based on field data; the five divergent inbred lines P_1,P_3,P_5,P_9 and P_{10} (as manifested from field study) and their 10 F_1 "s were used for SDS-protein a nalysis. Sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed on water soluble protein fractions (albumin and globulin) according to the method of Laemmli (1970) as modified by Studier (1973). The SDS-protein gel was scanned and analyzed using Gel Doc 2000 Bio-Rad System.

PCR for RAPD analyses was performed in 25 μ l volume containing 2.5 mM MgCl2, 0.2 mM dNTPs, 20 μ M primer, 50 ng genomic DNA and 1 unit Taq DNA polymerase (Bioron, Germany). All reactions were performed in a Perkin Elmer 2400 thermal cycler. RAPD Program was performed as 1 cycle of 94^oC for 4 min and 40 cycles of 94^oC for 1 min, 35^oC for 1 min, and 72^oC for 2 min. To visualize the PCR products, 15 μ l of each reaction was loaded on 1.2% agarose gel. The gel was run at 90V for 1 h and visualized with UV Transilluminator and photographed using UVP gel documentation system (GelWorks 1D advanced software, UVP).

In the molecular genetic study, six random primers were used for RAPD analysis, provided by Operon Technology (USA), with the folloeing sequences:

Primer codes	Sequences
A0 2	GTGAGGCGTC
A08	GATGACCGCC
A 13	TCAACGGACC
C0 2	CAGTGCTGTG
C0 3	CCGCATCTAC
B 15	TCGGCGGTTC

Data of polymorphic and monomorphic bands for both analyses was scored using the UVP gel documentation system. Amplicon sizes were estimated using 100-bp and 1-kb DNA standards (Bioron, Germany).

RESULTS AND DISCUSSION

Analysis of variance

Mean squares estimates for all studied traits are presented in Table (1). Values show that the large variations have been detected among F_1 hybrids in all studied traits. The partitioning of genetic variations into general combining ability (GCA) and specific combining ability (SCA) show that both general and specific combining ability variances were found to be highly significant for all studied traits.

Table (1): Mean squares estimates for all studied traits in 10 x 10 maize diallel crosses.

Source of	D.f	Days to	Days to	Plant	Ear	Ear
variance		50 %	50%	height	height	length
		tasselin	silking			
		g				
Rep	2	1.266	6.89	361.09	422.46	4.01
Crosses	44	16.35**	21.26**	1062.34**	674.22**	6.65**
GCA	9	44.96**	62.79**	2072.95**	2104.47**	7.92**
SCA	35	8.98**	10.58**	802.47**	306.44**	6.33**
Error	88	0.80	1.30	131.53	144.90	1.06
GCA/SCA		0.06	0.83	0.36	1.74	0.16

*, ** indicate significance at 0.05 and 0.01 probability levels, respectively

Source of variance	D.f	Ear diamet er	Numbe r of rows/ ear	Number of kernels / row	100 - kernel weight	Grain yield per plant
Rep	2	0.03	0.93	11.11	19.54	1390.42
Crosses	44	0.24**	4.78**	62.69**	10.37**	1995.956**
GCA	9	0.34**	14.53**	55.14**	21.06**	1748.56 **
SCA	35	0.22**	2.28**	64.63**	7.62**	2059.57**
Error	88	0.02	0.24	8.67	0.94	185.97
GCA/SCA		0.20	0.88	0.10	0.38	0.10

Table (1): Cont.

*, ** indicate significance at 0.05 and 0.01 probability levels, respectively

This would indicate the importance of additive and non - additive genetic variances in determining the performance of all studied characters.

The ratio of GCA/SCA variances was found to be greater than unity for ear height indicating that, additive and additive x additive types of gene action were of greater importance in the inheritance of this trait. These results are in harmony with those obtained by Amer, 2003; El- Shouny *et al*, 2003 and Soliman *et al*, 2005. Meantime, the ratio of GCA / SCA variances was found to be less than unity for other studied characters, indicating that non-additive gene action was of greater importance in the inheritance of these traits. These results are in agreement with those reported by Shafey *et al*, 2003; Abdel – Sattar and Ahmed, 2004; El-Shenawy, 2005 and Ibrahim, 2005.

Mean performance and heterosis over better parent and check variety

Mean values of all studied traits are presented in Table (2). Mean values for these traits exhibited the parental diversity and the hybrid differential response. The parental lines P_7 and P_2 were the best values for days to 50% tasseling and silking while, the parental lines P_1 , P_2 and P_7 appeared to be the best for grain yield per plant and most yield attributes.

The hybrids $P_3 \ge P_5 \ge P_5 \ge P_6$ and $P_6 \ge P_9$ exceeded their better parents and the ch.v. for grain yield per plant and most yield attributes (Table 3).

Table (2): Mean	performance f	for all stu	idied traits	s in10 x	10	maize
diallel crosses						

taxeting Silting Parents (m) row (g) (g) (g) P_1 66.67 68.00 171.13 88.70 14.70 3.77 11.13 24.80 27.32 8 P_2 61.00 62.67 18.33 96.67 14.70 3.77 11.33 24.50 27.32 8 P_2 66.00 68.67 15.63 3.60 10.27 25.20 25.30 6 P_2 66.00 68.33 166.17 79.17 14.47 3.17 11.03 26.27 25.60 26.67 7 P_1 61.33 63.33 14.75 64.90 13.73 3.87 13.20 22.33 24.69 5 P_1 61.40 65.30 18.27 14.30 3.63 13.77 20.00 10.37 22.33 14.30 22.33 14.40 23.30 11.55 26.57 5 13.67 14.33 14.33 14.33 14.33 13.33 </th <th>Genotypes</th> <th>Days to 50 %</th> <th>Days to 50%</th> <th>Plant height (cm)</th> <th>Ear height (cm)</th> <th>Ear length (cm)</th> <th>Ear Diamete r</th> <th>Number of rows / ear</th> <th>Number of kernels /</th> <th>100 kernel Weight</th> <th>Grain yield per</th>	Genotypes	Days to 50 %	Days to 50%	Plant height (cm)	Ear height (cm)	Ear length (cm)	Ear Diamete r	Number of rows / ear	Number of kernels /	100 kernel Weight	Grain yield per
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		tasseling (day)	Silking (day)				(cm)	.0.3575-1	row	(g)	plant (g)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P.	66 67	68 00	171 13	Parents	14 70	3 77	11 13	26.00	28 53	86 70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P	61.00	62.67	183.33	96.67	14.70	3.70	11.15	24.80	20.33	81.30
	Pa	64.00	66.00	163.23	76.13	13.03	3.72	9.73	24.33	24.97	58.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P4	64.00	65.00	186.67	96.00	13.67	3.60	10.27	25.20	25.30	65.0
b ₁ 66.00 68.33 166.17 79.17 14.67 3.17 11.07 25.00 26.07 27.73 b ₂ 61.33 63.33 14.75 64.90 12.73 2.87 10.80 22.33 27.23 7.7 b ₂ 64.00 65.00 182.27 85.67 13.87 3.87 3.17 10.00 23.40 27.33 7.7 b ₁ 65.00 66.67 15.17 66.67 10.67 3.17 10.00 23.44 52.23 27.23 7.7 b ₁ b ₁ 53.33 13.27 13.7 0.26 0.74 1.82 13.37 7.00 10 j ₁ b ₁ c 5.33 61.07 24.67 14.43 3.70 11.20 28.20 25.90 8 j ₁ s 5.33 61.00 26.03 12.63 14.77 3.90 12.64 13.31 14.13 14.03 27.13 14.33 3.90 26.41 14.14	Ps	66.00	68.67	172.80	95.00	13.53	3.73	11.33	26.27	25.60	75.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ps	66.00	68.33	166.17	79.17	14.67	3.17	11.07	25.00	26.07	74.3
θ ₁ 61,33 61,33 14,757 64,40 12,73 2,87 10,80 22,33 27,23 7 θ ₁ 65,00 66,67 15,17 66,67 10,67 3,17 10,00 23,40 27,23 7 θ ₁ 65,00 66,67 15,17 66,67 10,67 3,17 10,00 23,46 24,487 5 (SD 0,05%) 3,39 3,12 35,27 21,72 0,54 0,26 0,74 1,82 1,33 3,37 27,00 10 γ Fp 61,00 63,33 23,33 12,47 18,33 3,01 12,07 33,37 27,00 10 γ Fp 65,33 67,07 27,33 15,40 17,43 3,70 12,07 3,33 8,43 12,33 8,43 12,33 8,44 24,40 28,77 13,47 3,40 24,41 12,37 12,37 13,31 14,33 3,90 26,45 14,13 13,33 14,33 14,30 </td <td>P7</td> <td>58.00</td> <td>60.67</td> <td>184.17</td> <td>90.00</td> <td>13.70</td> <td>3.63</td> <td>12.67</td> <td>25.00</td> <td>26.60</td> <td>84.7</td>	P7	58.00	60.67	184.17	90.00	13.70	3.63	12.67	25.00	26.60	84.7
	P ₈	61.33	63.33	147.57	64.90	12.73	2.87	10.80	22.33	24.90	59.3
	P9	64.00	65.00	182.27	85.67	13.87	3.87	12.00	22.93	27.23	74.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₁₀	65.00	66.67	151.77	66.67	10.67	3.17	10.00	23.40	24.87	57.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mean	63.60	65.43	171.11	83.84	13.53	3.58	11.15	24.55	26.27	71.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LSD 0.05%	3.39	3.12	35.27	21.72	0.54	0.26	0.74	1.82	1.38	7.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D - D	50.22	11 17	246.67	Hybrids	10.73	4.07	12.20	41.40	20.20	1010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_1 X P_2$	59.33	62.22	240.07	141.00	18.03	4.07	13.20	41.40	29.30	104.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. TP.	65 33	67.00	233.33	127 32	17 30	2.00	11.27	33.37	27.00	86 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. TP.	61 67	63.00	250.55	151.60	17.43	3.70	13.00	34.20	32 13	145 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P. XP.	58.33	59.67	277.33	153.33	17.77	3.90	12.67	39.13	30.73	153.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXPT	59.33	60.33	261.00	146.33	17.77	3.90	12.93	42.40	28.27	154 3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXPS	59.67	61.00	260.00	122.00	18.03	4.27	13.93	38.63	27.13	149.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P1 X Po	60.33	62.33	279.33	143.33	19.80	3.67	13.73	39.30	26.43	142.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P1 X P10	60.67	62.67	247.33	141.13	16.90	3.77	13.47	34.60	24.90	118.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₃	56.33	58.00	244.00	130.67	17.20	3.93	13.47	40.97	26.30	143.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₄	59.33	60.67	255.33	139.33	16.57	4.00	13.33	37.20	28.37	135.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₅	59.33	61.33	248.67	142.67	16.00	4.00	13.40	34.73	28.67	133.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 X P6	61.67	64.00	234.33	139.67	15.00	4.07	14.40	32.17	24.87	124.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 X P7	60.00	61.33	216.00	108.00	16.83	3.97	12.93	31.93	28.13	112.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₈	54.33	55.67	237.00	117.27	16.97	3.97	13.87	37.63	27.60	143.5
	P ₂ x P ₉	57.67	59.33	244.67	128.00	17.40	4.03	14.20	36.77	27.53	142.1
	P2 X P10	58.33	60.00	252.67	132.33	16.77	3.67	13.27	32.50	26.30	159.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₁ x P ₁	60.00	62.00	260.67	122.67	19,50	3.73	12.90	40.53	26.13	102.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. v P.	58 67	60.00	272.00	130.00	10 00	4.07	13.67	44 27	31.67	177 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D = D	55.00	55 77	366 33	120.00	16 77	3.87	14.17	79.67	27.67	150 7
	ry xra	55.00	0000	200.00	120.00	10.75	3.07	14.15	38.05	27.00	100.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_3 \times P_7$	56.33	55.67	258.67	131.67	16.87	3.90	14.13	34.97	27.67	131.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₃ x p ₈	58.67	58.67	252.00	103.67	18.87	3.87	13.60	36.83	25.77	131.3
$ P_3 \ x \ P_{10} \qquad 60.67 \qquad 62.00 \qquad 246.00 \qquad 133.67 \qquad 16.77 \qquad 3.83 \qquad 14.67 \qquad 32.87 \qquad 27.27 \qquad 13 \\ P_4 \ x \ P_5 \qquad 62.00 \qquad 64.67 \qquad 267.33 \qquad 144.67 \qquad 19.43 \qquad 4.00 \qquad 12.87 \qquad 39.83 \qquad 29.27 \qquad 15 \\ P_4 \ x \ P_5 \qquad 62.00 \qquad 64.67 \qquad 267.33 \qquad 144.67 \qquad 19.43 \qquad 4.00 \qquad 12.87 \qquad 39.83 \qquad 29.27 \qquad 15 \\ P_4 \ x \ P_5 \qquad 59.33 \qquad 61.67 \qquad 270.00 \qquad 149.00 \qquad 17.90 \qquad 4.00 \qquad 13.33 \qquad 41.93 \qquad 26.43 \qquad 15 \\ P_4 \ x \ P_7 \qquad 59.33 \qquad 61.67 \qquad 270.00 \qquad 149.00 \qquad 17.90 \qquad 4.00 \qquad 13.33 \qquad 41.93 \qquad 26.43 \qquad 15 \\ P_4 \ x \ P_5 \qquad 62.00 \qquad 64.33 \qquad 277.67 \qquad 135.33 \qquad 19.03 \qquad 3.67 \qquad 14.07 \qquad 41.07 \qquad 26.37 \qquad 14 \\ P_4 \ x \ P_5 \qquad 62.00 \qquad 64.33 \qquad 277.67 \qquad 135.33 \qquad 19.03 \qquad 3.67 \qquad 14.07 \qquad 41.07 \qquad 26.37 \qquad 14 \\ P_4 \ x \ P_5 \qquad 62.00 \qquad 65.67 \qquad 28.67 \qquad 158.33 \qquad 19.03 \qquad 3.67 \qquad 14.33 \qquad 34.73 \qquad 26.07 \qquad 13 \\ P_5 \ x \ P_5 \qquad 59.67 \qquad 62.00 \qquad 65.67 \qquad 28.67 \qquad 158.33 \qquad 19.50 \qquad 4.13 \qquad 14.67 \qquad 39.40 \qquad 30.30 \qquad 177 \\ P_5 \ x \ P_7 \qquad 59.67 \qquad 62.00 \qquad 261.33 \qquad 138.67 \qquad 16.13 \qquad 3.80 \qquad 12.60 \qquad 32.23 \qquad 29.50 \qquad 11 \\ P_5 \ x \ P_5 \qquad 63.67 \qquad 65.67 \qquad 224.00 \qquad 115.33 \qquad 14.03 \qquad 3.03 \qquad 11.03 \qquad 25.57 \qquad 26.10 \qquad 55 \\ P_5 \ x \ P_7 \qquad 59.33 \qquad 61.00 \qquad 235.33 \qquad 146.00 \qquad 18.50 \qquad 4.27 \qquad 14.07 \qquad 39.53 \qquad 28.93 \qquad 15 \\ P_6 \ x \ P_7 \qquad 59.33 \qquad 61.00 \qquad 235.33 \qquad 126.67 \qquad 15.90 \qquad 4.17 \qquad 15.47 \qquad 39.13 \qquad 27.13 \qquad 16 \\ P_4 \ x \ P_5 \ 57.67 \qquad 60.00 \qquad 235.33 \qquad 120.67 \qquad 19.83 \qquad 3.90 \qquad 16.17 \qquad 43.10 \qquad 30.57 \qquad 17 \\ P_5 \ x \ P_6 \qquad 56.67 \qquad 58.67 \qquad 236.03 \qquad 145.67 \qquad 19.83 \qquad 3.90 \qquad 16.17 \qquad 43.10 \qquad 30.57 \qquad 17 \\ P_6 \ x \ P_6 \ 55.67 \qquad 58.33 \qquad 255.00 \qquad 145.67 \qquad 17.17 \qquad 3.83 \qquad 17.13 \qquad 33.50 \qquad 26.13 \qquad 14 \\ P_7 \ x \ P_8 \ 55.67 \qquad 58.33 \qquad 255.00 \qquad 145.67 \qquad 17.17 \qquad 3.83 \qquad 17.13 \qquad 33.50 \qquad 26.13 \qquad 14 \\ P_7 \ x \ P_8 \ 55.67 \qquad 58.33 \qquad 255.00 \qquad 145.67 \qquad 17.17 \qquad 3.83 \qquad 17.13 \qquad 33.50 \qquad 26.13 \qquad 14 \\ P_7 \ x \ P_8 \ 55.67 \qquad 58.33 \qquad 253.00 \qquad 127.67 \qquad 16.03 \qquad 3.83 \qquad 16.13 \qquad 38.13 \qquad 27.00 \qquad 15 \\ P_7 \ x \ P_8 \ 56.67 \ 58.67 \qquad 234.00 \qquad 124.00 \qquad 17.57 \qquad 3.97 \qquad 13.87 \qquad 40.20 \qquad 25.87 \qquad 14 \\ P_7 \ x \ P_8 \ 56.67 \ 58.67 \qquad 234.00 \qquad 124.00$	P ₃ x P ₉	60.00	61.67	248.00	117.00	17.80	3.57	13.80	35.03	24.17	117.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P3 X P10	60.67	62.00	246.00	133.67	16.77	3.83	14.67	32.87	27.27	131.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXPS	62.00	64.67	267.33	144.67	19.43	4.00	12.87	39.83	29.27	152.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. TP.	64.00	66 33	287.33	166.00	18.00	3.03	13.87	39.10	26.27	130 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. v P.	50 33	61 67	270.00	149.00	17.00	4.00	13 33	41 03	76.43	150 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14117	37.33	01.07	270.00	149.00	17.50	4.00	15.55	41.55	20.45	1.00.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ X P ₈	50.0/	62.33	250.07	131.33	17.80	3.93	12.67	42.27	27.60	150.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₉	62.00	64.33	277.67	135.33	19.03	3.67	14.07	41.07	26.37	146.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₁₀	61.67	63.67	279.00	146.33	17.43	3.67	14.33	34.73	26.07	132.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₅ x P ₆	62.00	65.67	288.67	158.33	19.50	4.13	14.67	39.40	30.30	170.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ps x P7	59.67	62.00	261.33	138.67	16.13	3.80	12.60	32.23	29.50	113.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ps x Ps	61.67	63.67	213.33	101.67	14.30	3.37	12.30	26.70	25.27	79,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P. TP.	63 67	65.67	224.00	115 33	14.03	3.03	11.03	25 57	26.10	57 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dep	61.00	62.07	264.00	140.00	10.00	1.27	11.00	20.52	20.10	01.0
$r_{g} x r_{7}$ 59.35 01.00 284.35 120.67 15.90 4.17 15.47 39.13 27.13 16 $P_{g} x P_{3}$ 57.67 60.00 235.33 121.33 17.57 3.97 14.27 38.50 27.47 14 $P_{g} x P_{3}$ 60.00 62.00 272.00 136.67 19.83 3.90 16.17 43.10 30.57 17 $P_{g} x P_{3}$ 55.67 58.33 252.00 145.67 17.17 3.83 17.13 33.50 26.13 14 $P_{7} x P_{3}$ 55.67 58.33 258.33 120.47 18.03 4.03 14.67 39.70 29.13 15 $P_{7} x P_{3}$ 56.67 58.67 234.00 124.00 17.57 3.97 113.87 40.20 25.87 14 $P_{7} x P_{3}$ 58.33 60.33 253.00 127.67 16.03 3.83 16.13 38.13 27.00 15 $P_{3} x P_{3}$ 58.83 60.33 253.00 127.67 16.03 3.83 16.13 38.13 27.00 15 $P_{3} x P_{3}$ 58.00 59.00 240.67 126.33 16.00 3.70 14.33 32.53 25.43 11 $P_{3} x P_{10}$ 60.00 59.67 240.67 124.67 16.13 3.77 16.77 32.23 25.77 12 Weam 59.60 61.39 253.27 133.77 17.35 3.83 1.76 3.8654 27.12 13 $SD 0.05^{6} b 2.52 3.21 32.23 36.31$	P 5 X P 10	61.00	03.33	204.33	140.00	18.50	4.27	14.07	39.53	28.93	153.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P6 X P7	59.33	61.00	284.33	120.07	15.90	4.17	15.4/	39.13	27.13	161.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₆ x P ₈	57.67	60.00	235.33	121.33	17.57	3.97	14.27	38.50	27.47	146.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P6 X P9	60.00	62.00	272.00	136.67	19.83	3.90	16.17	43.10	30.57	172.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P6 X P10	62.33	63.33	252.00	145.67	17.17	3.83	17.13	33.50	26.13	148.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₇ x P ₈	55.67	58.33	258.33	120.47	18.03	4.03	14.67	39.70	29.13	150.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P- x Pa	56.67	58.67	234 00	124.00	17.57	3.97	13.97	40.20	25.97	149 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Day D.	50.07	60.33	253.00	127.00	16.03	3.97	16.13	39.13	27.00	1.53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P7 X P16	58.33	00.33	253.00	127.07	10.03	3.83	10.13	38.13	27.00	152.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₈ X P ₉	58.33	00.33	215.33	98.00	13.43	3.70	13.50	20.77	24.97	/8.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₈ x P ₁₀	58.00	59.00	240.67	126.33	16.00	3.70	14.33	32.53	25.43	118.0
Mean 59.60 61.39 253.27 133.77 17.35 3.83 13.76 36.54 27.12 13 .SD 0.05% 2.52 3.21 32.23 36.31 2.89 0.42 1.38 8.28 2.73 33	P ₉ x P ₁₀	60.00	59.67	240.67	124.67	16.13	3.77	16.77	32.23	25.77	129.5
SD 0.05% 2.52 3.21 32.23 36.31 2.89 0.42 1.38 8.28 2.73 33	Mean	59.60	61.39	253.27	133.77	17.35	3.83	13.76	36.54	27.12	135.7
	LSD 0.05%	2.52	3.21	32.23	36.31	2.89	0.42	1.38	8.28	2.73	38.3

Table (3): Percentage of heterosis over better- parent (B.P.) and check variety (Ch.v.) for all studied traits in 10x10 maize diallel cross.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Crosses	Days 1	to 50%	Days	to 50%	Р	lant	E	ar	ŀ	lar
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		tass	eling	sill	king	he	eight	hei	ght	le	ngth
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		B.P	C.hv.	B.P	C.hv.	B.P	C.hv.	B.P	C.hv.	B.P	C.hv.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P. v P.	.2.74	8 77 **	-1.60	6 56**	34 55**	-9.64	59 86**	4 97	26 76**	-3.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXP	-4.69**	-6.15**	-4.05	-4.05	36.35**	-14.53*	48.00*	-16.12	22.68*	-6.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXP	2.08	0.51	3.08	1.52	26.61**	-13.43*	44.37*	-5.21	17.69	-10.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PITP	-6.56**	-5.12**	-7.35**	4.55	53.55**	-2.81	71.88**	12.86	18.59	-9.36
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PIXP	-11.62**	-10.26**	-12.25**	.9.59**	56.21**	1.59	93.67**	14.14	20.86*	-7.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P1 x P7	2.29	-8.72**	-0.56	-8.59**	41.72**	-4.40	65.91**	8.93	20.86*	-7.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₁ x P ₈	-2.71	-8.20**	-3.68	-7.58**	51.93**	-4.76	87.98**	-9.18	22.68*	-6.24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₁ x P ₀	-5.73**	-7.18**	-4.11	-5.56*	53.26**	2.32	67.30**	6.70	34.69**	2.96
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pix Pie	-6.66**	-6.66**	-6.00*	-5.05*	44.53**	-9.40	111.68**	5.06	14.97	-12.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₃	-7.66**	-13.34**	-7.45**	-12.12**	33.09**	-10.62	71.64**	-2.72	17.01	-10.56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₄	-2.74	-8.72**	-3.19	-8.08**	36.79**	-6.47	45.14*	3.72	12.70	-13.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 x Ps	-2.74	-8.72**	-2.14	-7.08**	35.64**	-8.91	50.18**	6.21	8.84	-16.80*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 x P6	1.10	-5.12**	2.12	-3.03	27.82**	-14.16*	76.42*	3.98	2.04	-22.00**
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	P2 x P7	3.45	-7.69**	-2.14	-7.08**	17.29*	-20.88**	20.00	-19.60	14.51	-12.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ x P ₈	-10.93**	-16.42**	-11.17**	-15.65**	29.27**	-13.19*	80.69**	-12.70	15.42	-11.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 x P9	-5.46**	-11.28**	-5.33*	-10.11**	33.45**	-10.38	49.41*	-4.71	18.37	-9.52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P2 x P10	-4.38*	-10.26**	-4.26	-9.09**	37.82**	-7.45	98.49**	-1.49	14.06	-12.79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₃ x P ₄	-6.25**	-7.69**	-4.62	-6.06*	39.64**	-4.52	61.13**	-8.68	42.68**	1.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₃ x P ₅	-8.33**	-9.74**	-9.09**	-9.09**	57.41**	-0.37	70.76**	-3.22	47.04**	3.48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P3 x P6	-16.67**	-15.38**	-16.17**	-16.17**	53.66**	-6.47	57.63*	-10.67	14.09	-13.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P3 x P7	2.88	13.34**	8.24**	15.65**	40.45**	5.25	72.95**	1.98	23.11*	12.27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₃ x p ₈	-4.34*	-9.74**	-7.36**	-11.11**	52.51**	-7.69	59.74*	-22.82*	44.76**	-1.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₃ x P ₉	-6.25**	-7.69**	-5.12*	-6.56**	36.06**	-9.16	53.68*	-12.90	28.37**	-7.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_3 x P_{10}$	-5.20**	-6.66**	-6.06*	-6.06*	48.88**	-9.89	100.49**	-0.49	28.64*	-12.79
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₅	-3.13	-4.62*	-0.51	-2.02	43.21**	-2.08	52.28**	7.70	42.20**	1.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₆	0.01	-1.54	2.05	0.50	58.26**	5.25	109.68**	23.58*	22.73*	-6.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P4 X P7	2.29	-8.72**	1.65	-6.56**	50.15**	-1.10	65.56**	10.92	30.66**	-6.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₈	-7.60**	-12.82**	-1.58	-5.56*	38.01**	-5.98	102.36**	-2.23	30.24**	-7.44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₄ x P ₉	-3.13	-4.62*	-1.03	-2.53	61.6/**	1.71	57.97**	0.74	37.20**	-1.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_4 X P_{10}$	-3.04	-5.12**	-2.05	-3.53	50.00**	2.20	119.48**	8.93	27.56*	-9.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P5XP6	-0.00**	4.62*	-3.89	-0.50	67.05**	5.74	54.08**	17.87	32.95**	1.40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₅ XP ₇	2.88	5.20	2.19	-0.00 -	41.90	4.27	54.08	3.23	17.70	-10.12"
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSXPS	0.55	2.05	1.03	-3.55	23.40*	17.05**	34.62	-24.51	1.20	-25.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₅ XP ₉	-0.54	-2.05	1.05	-0.50	52.90**	-17.95	110 0000	-14.14	26 70**	2 90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P S P 10	-0.15	-0.15	-5.01	7 59 **	54.30**	-5.10	60.00**	5.70	8 41	-3.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pox Po	5.07**	11 28**	5 26*	0.00**	41 62**	4.15	86.05**	-5.70	10 77*	-17.52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P. T.P.	6 25**	7 60**	4.62	6.06*	40 22**	0.37	72 62**	1.74	25 22**	3 12
$P_7 x P_8$ -4.02 -14.35** -3.86 -11.62** 40.27** -5.4 85.62** -10.32 31.63** -6.24	PerPie	-4 11*	411*	-5 01*	4.05	51 65**	-7 69	118 49**	8 44	17.05	-10.71
1/1/2 1/00 -1/00 -1/00 -1/00 -0/10 0000 -10/02 01/00 -0.24	Pax Po	4.02	-14 35**	-3.86	-11.62**	40.27**	-5.4	85 62**	-10.32	31.63**	6 24
$P_{\pi} = P_{\pi} = -2.20$ $-12.82^{**} = -3.30$ $-11.11^{**} = 27.06^{**} = -14.3^{**} = -44.74^{**} = -7.60$ $-26.68^{**} = -8.63$	ParPa	.2.20	-12 82**	3 30	-11 11**	27.06**	-14.3*	44 74*	-7 69	26 68*	8 63
$P_{x} P_{y} = 0.57$ 10.26** .0.56 .0.56 .8.50** 37.38** .7.3 91.50** .4.96 17.03 .16.64*	ParPa	0.57	-10.26**	-0.56	.8 59**	37 38**	-73	91 50**	4.96	17.03	-16 64*
$7_{12} \times 1_{10}$ $7_{10} \times 1$	ParPa	4 80*	-10 26**	4.74	.8 59**	18 14*	-21.1**	51.00*	-27.05*	-3 31	-30 16**
$P_{0} = P_{0} = \frac{1}{2} \frac{1}{4} \frac{1}{4} = \frac{1}{2} \frac{1}{10} \frac{1}{10} \frac{1}{10} = \frac{1}{2} \frac{1}{10} \frac{1}$	ParPa	-5 43**	-10 77**	6 84**	-10 61**	58 58**	-11.8*	94 65**	-5 96	75 65*	-16 80*
$P_{a} X P_{a} = 6.25^{**} - 7.69^{**} = 8.20^{**} - 9.59^{**} = 32.04^{**} - 11.8^{**} = 59.86^{**} - 7.19 = 16.35 = 16.12^{*}$	Pox Pio	-6.25**	-7.69**	-8.20**	-9.59**	32.04**	-11.8*	59.86**	-7.19	16.35	-16.12*

*, ** indicate significance at 0.05 and 0.01 probability levels, respectively

Therefore, these previous three crosses were the highest in grain yield and most yield attributed and could be used as a source of improving grain yield and yield attributes in maize breeding program. It is also clear from Table (3) that the best hybrids were $P_1 \times P_6$, $P_2 \times P_8$ and $P_3 \times P_6$ for days to 50% tasseling and silking, $P_4 \times P_6$ for ear height, $P_1 \times P_8$ and $P_5 \times P_{10}$ for ear diameter, $P_2 \times P_6$, $P_3 \times P_{10}$, $P_5 \times P_6$, $P_6 \times P_7$, $P_6 \times P_9$, $P_6 \times P_{10}$, $P_7 \times P_8$, $P_7 \times P_{10}$ and $P_9 \times P_{10}$ for no. of rows per ear and $P_1 \times P_5$ for 100-kernel weight.

Table (3): cont.

Cross es	Ear Diamete	er	Numbe rows/ ea	r of ar	Number kernels	r of / row	100 kern Weight	el	Grain yi Per plan	eld t
	B.P	C.hv.	B.P	C.hv.	B.P	C.hv.	B.P	C.hv.	B.P	C.hv.
P ₁ x P ₂ P ₁ x P ₃	7.96 -17.70**	4.36 -20.51**	11.20** 1.26	0.99 -13.77**	59.23** 28.33	18.39 -4.58	2.70 -5.36	-0.34 -8.16	89.73** 17.89	17.08 -27.25*
$\begin{array}{c} \mathbf{P}_1 \mathbf{x} \mathbf{P}_4 \\ \mathbf{P}_1 \mathbf{x} \mathbf{P}_5 \\ \mathbf{P}_1 \mathbf{x} \mathbf{P}_6 \end{array}$	-23.01** -1.77 3.54	-25.64** -5.13 2.6	0.63 14.74* 13.84*	-14.31** -0.54 -3.06	8.46 30.51 50.51**	-19.36 -2.20 11.90	-9.22* 12.62** 7.71	-11.90* 9.29* 4.52	-0.67 67.75** 77.20**	-38.70** 3.52 9.35
P1 x P7 P1 x P8 P. x P8	3.54 13.27*	2.56 9.49*	2.05 25.16**	-1.07 6.58 5.05	63.08** 48.59** 51.15**	21.25 10.47	-0.91 -4.91	-3.84 -8.16 -10.10*	82.28** 72.44** 64.91**	9.89 6.41
$P_1 x P_{10} P_2 x P_3$	7.60 5.41	-3.33 0.77	21.02** 13.48*	3.06	33.08* 65.19**	-1.06 17.16	-12.72** -4.71	-15.31** -10.54*	37.07 76.74**	-15.41 2.38
P ₂ x P ₄ P ₂ x P ₅ P ₂ x P ₆	8.11 7.14 7.96	2.56 2.56 4.36	12.30* 12.89* 21.31**	1.99 2.52 10.18*	47.62** 32.23* 28.67	6.38 -0.69 -8.01	2.79 3.88 -9.89*	-3.50 -2.48 -15.41**	66.66** 63.59** 52.76*	-3.45 -5.23 -11.50
P2 x P7 P2 x P8 P = P	7.21	1.79 1.79	2.05 16.85**	-1.07	26.72 51.75**	-8.69 7.61	1.92 036	-4.32 -6.12	32.80 76.89**	-19.94 2.48
$P_2 \ge P_9$ $P_2 \ge P_{10}$ $P_3 \ge P_4$	-0.90 0.34	-5.90 -4.36	11.79* 25.61**	1.53 -1.30	48.25 31.05 60.85**	-7.06 15.90	-0.25 -4.71 3.28	-10.54* -11.12*	96.56** 57.80**	13.87 -44.56**
P ₃ x P ₅ P ₃ x P ₆ P ₁ x P ₇	8.93 2.65 4.50	4.36 -0.77 2.56	20.65** 27.64** 11.52*	4.59 8.11 8.11	68.53** 54.13** 38.76*	26.59* 10.18 0.09	23.71** 5.98 4.02	-2.48 -6.02 -5.88	134.39** 102.13** 55.12*	26.39* 6.97 -6.49
$\begin{array}{c} \mathbf{P}_3 \mathbf{x} \mathbf{p}_8 \\ \mathbf{P}_3 \mathbf{x} \mathbf{P}_9 \end{array}$	3.60 -7.76	-0.77 -8.46	25.93** 15.00*	4.06 5.59	51.37** 43.97*	5.32 0.17	3.20	-12.35** -17.79**	121.20** 56.81*	-6.51 -16.63
$\begin{array}{c} P_3 \ge P_{10} \\ P_4 \ge P_5 \\ P_4 \ge P_6 \end{array}$	2.70 7.14 4.42	-1.79 2.56 0.77	46.70** 13.59* 25.29**	-1.53 6.12	35.07* 51.65** 55.16**	-6.01 13.90 11.81	9.21 14.34** 0.77	-7.24 -0.44 -10.65*	124.19** 101.74** 88.14**	-6.29 8.78 -0.43
P ₄ x P ₇ P ₄ x P ₈	9.91* 9.01	2.56	5.21 17.31**	1.99	66.40** 67.72**	19.90 20.88	-0.64 9.09	-10.10* -6.12	77.68**	7.11
$P_4 x P_9$ $P_4 x P_{10}$ $P_5 x P_6$	-5.17 1.80 9.73*	-5.90 -5.90 5.90	39.53** 29.48**	9.64 12.24*	37.83* 50.00**	-0.69 12.67	-3.16 3.04 16.23**	-10.31* -11.33* 3.06	103.07** 125.55**	-5.97 21.62
$P_5 \times P_7$ $P_5 \times P_8$ $P_5 \times P_8$	1.79 -9.82* -21.55**	-2.56 -13.59** -22.31**	-0.55 8.56 -8.08	-3.60 -5.89 -15.61**	22.72 1.65	-7.84 -23.65* -26.88*	10.90* -1.29 -4.15	0.34 -14.05** -11.22*	34.12 4.65	-19.15 -43.57** -58.82**
P ₅ x P ₁₀ P ₆ x P ₇	14.29** 10.62*	9.49* 6.92	24.18** 22.10**	7.65 18.36**	50.51** 55.73**	13.04 11.90	13.01* 1.99	-1.60 -8.16	102.30** 90.82**	9.08 15.03
P ₆ x P ₈ P ₆ x P ₉ P ₆ x P ₁₀	5.31 0.86 1.77	1.79 2.56 -1.79	28.91** 34.75** 54.74**	9.18 23.72** 31.06**	53.57** 72.40** 34.00*	10.09 23.25* -4.20	5.37 12.27* 0.23	-6.56 -13.03** -11.12*	96.76** 131.75** 99.10**	4.13 22.65* 5.37
P7 x P8 P7 x P9	11.01* 2.59	3.33 1.79	15.79** 9.47	12.24* 6.12	57.54** 59.52**	13.53 14.96	9.51 -4.99	-11.12* -12.01*	78.20** 75.20**	7.42 5.61
P ₇ x P ₁₀ P ₈ x P ₉ P ₈ x P ₁₀	-4.31 16.84**	-1.79 -5.13 -5.13	12.50* 32.69**	3.29 9.64	16.72 39.03**	-23.45* -6.98	-8.30 2.13	-15.07** -13.50**	5.32 98.81**	-44.00** -15.97
P ₉ x P ₁₀	-2.59	-3.33	39.75**	28.31**	37.75*	-7.84	-5.36	-12.35**	73.42**	-7.80

*, ** indicate significance at 0.05 and 0.01 probability levels, respectively

General combining ability effects:

Estimates of general combining ability (GCA) effects for each parental line in each trait are illustrated in Table (4). High positive GCA values would be of interest in all studied traits except days to 50 % silking and days to 50 % tasseling where high negative values would be useful from the breeder's point of view. The parental line P_1 seemed to be the best combiner for ear length and 100 - kernel weight while, the inbred line P_2 is proposed to be the best combiner for days

to 50% tasseling and silking and ear diameter. While the parental line P_3 proved to be good combiner for days to 50% tassling and silking and ear length. The parental line P_4 proved to be good combiner for plant and ear heights, ear length and number of kernels / row. The inbred line P_5 seemed to be the best combiner for 100 - kernel weight while, the parental line P_6 seemed to be the best combiner for plant and ear heights, ear diameter, number of rows per ear, number of kernels per row, 100 - kernel weight and grain yield per plant. The parental line P_7 is considered as the best combiner for days to 50% silking and tasseling and ear diameter. The parental line P_8 proved to be good combiner for days to 50% silking and tasseling while, the inbred lines P_9 and P_{10} are considered as the best combiners for number of rows per ear.

 Table (4): Estimates of general combining ability effects of Maize

 parental lines evaluated for the studied traits.

Parental lines	Days to 50% tasseling	Days to 50% silking	Plant height	Ear height	Ear length	Ear diameter	Number of rows/ ear	Number of kernels / row	100 kernel weight	Grain yield Per plant
P1	1.16**	1.06**	3.15	6.85	0.69*	-0.15**	-1.06**	0.30	0.69*	-0.48
P ₂	-1.26**	-1.32**	-12.77**	-0.62	-0.59*	0.15**	-0.22	-0.45	0.10	4.78
P ₃	-1.22**	-1.98**	-1.43	-10.23**	0.70*	-0.08	-0.28	1.06	-0.34	-4.06
P4	1.74**	2.52**	13.61**	9.76*	0.86*	-0.08	-0.66**	2.00*	-0.49	-3.18
P ₅	1.66**	2.10**	2.94	5.63	-0.11	-0.01	-0.78**	-1.55	1.94**	-4.81
P ₆	0.49	0.60	13.15**	10.47**	0.17	0.16**	1.12**	1.71*	0.60*	18.15**
P ₇	-1.47**	-1.65**	1.90	-1.43	-0.39	0.14**	0.28	1.47	0.36	6.73
P ₈	-1.97**	-1.69**	-14.10**	-17.73**	-0.64*	0.04	-0.09	-1.16	-0.74*	-9.19*
P ₉	0.28	0.18	-5.72	-7.70*	-0.14	-0.15**	0.41**	-1.10	-1.06**	-10.77*
P ₁₀	0.58	0.18	-0.72	4.99	-0.55	-0.02	1.29**	-2.28**	-1.06**	2.82
LSD 0.05%	1.21	1.45	14.80	15.52	1.20	0.18	0.58	3.44	1.17	18.41
LSD 0.01%	0.92	1.11	11.24	11.79	0.91	0.13	0.44	2.61	0.89	13.64

*, ** indicate significance at 0.05 and 0.01 probability levels, respectively.

Specific combining ability effects:

Specific combining ability effects for all studied traits are presented in Table (5). For days to 50 % tasseling, five hybrids ($P_1 x P_6$, $P_2 x P_8$, $P_3 x P_6$, $P_4 x P_8$, and $P_7 x P_9$) exhibited significant and negative specific combining ability (SCA) effects toward earliness. Thus, these five hybrids are considered good F_1 - cross combinations for this trait as they showed high SCA effects and involved at least one parent as good general combiner. Regarding silking date, negative

Crosses	Days to 50% tasseling	Days to 50% silking	Plant height	Ear height	Ear length
$P_1 \times P_2$	-0.17	0.54	2.79	3.22	1.18
$\mathbf{P}_1 \mathbf{x} \mathbf{P}_3$	1.46	2.86**	-21.88*	-15.49	-0.70
$P_1 \times P_4$	2.83**	2.03*	-33.92**	-20.83*	-1.60
P ₁ x P ₅	-0.75	-1.55	5.74	7.57	-0.50
P ₁ x P ₆	-2.92**	-3.38**	7.54	4.46	-0.44
$P_1 \times P_7$	0.04	-0.47	2.46	9.36	0.12
P ₁ x P ₈	0.88	0.24	17.46	1.33	0.63
P ₁ x P ₀	-0.71	-0.30	28.41**	12.63	1.90*
P1 x P10	-0.66	0.04	-8.59	-2.26	-0.59
P ₂ x P ₃	-0.79	-0.09	4.70	9.98	-0.25
P ₂ x P ₄	-0.75	-1.92*	0.99	-1.36	-1.04
P ₂ x P ₅	-0.67	-0.85	5.00	6.12	-0.64
P ₂ x P ₆	2.84**	3.32**	-19.55*	-1.73	-1.92*
P ₂ x P ₂	3.13**	2.90**	-26.63**	-21.50*	0.46
P ₂ x P ₂	-2.05*	-2.71**	10.37	4.07	0.86
P ₂ x P ₀	-0.95	-0.93	9.66	4.77	0.78
Pax Pia	-0.59	-0.26	12.66	-3.58	0.57
Pax Pa	-0.13	0.07	-5.00	-8.40	0.60
PaxPe	-1.37	-1.51	17.00	3.06	1.97*
PaxPe	-3.88**	-4.68**	-9.88	-11.78	-1.48
Pax Pa	-0.59	-2.09*	4.71	11.79	-0.79
Paxne	2 25**	0.95	14.04	0.09	1.47
P. x P.	1.33	2.08*	1.66	3.39	-0.10
$P_3 \times P_{10}$	1.71*	2.41*	-5.34	7.37	-0.72
P ₄ x P ₅	-1.00	-1.34	-2.72	-2.27	1.34
PARPA	2.17**	1.82	7.08	14.22	-0.37
PAX Pa	-0.54	-0.59	1.00	9.12	0.08
P. x P.	-2.71**	0.11	3.67	7.75	0.24
P ₄ x P ₀	0.38	0.24	16.29	1.72	0.96
P ₄ x P ₁₀	-0.25	-0.42	12.62	0.04	-0.22
PexPe	0.25	1.58	19.08	10.68	2.10*
Pex Pa	-0.12	0.16	2.99	2.92	-0.72
Pex Po	2.38**	1.87	-29.01**	-17.78	-2.30*
P ₅ x P ₀	2.13**	1.99*	-26.71**	-14.15	-3.07**
Pex Pia	-0.84	-0.35	8.62	3.84	1.82*
P ₆ x P ₇	0.71	0.66	15.79	-13.92	-1.23
P _c x P _o	-0.46	-0.30	-17.21	-2.96	0.69
P _e x P _o	-0.38	-0.18	11.08	2.35	2.45**
Pex Pie	1.66*	1.15	-13.92	-1.33	0.21
P ₇ x P ₈	-0.50	0.28	17.03	8.08	1.71
P- x Po	-1.75*	-1.26	-15.67	1.58	0.75
P ₇ x P ₁₀	-0.38	0.40	-1.67	-7.44	-0.38
P _s x P _s	0.41	0.45	-18.34	-8.12	-3.14**
Ps x Pio	-0.21	-0.88	2.00	7.53	-0.16
Pox Pio	-0.46	-2.09*	-6.38	-4.17	-0.53
LSD (sij-sik)0.05%	2.44	2.93	29.74	31.21	2.42
LSD (sij-sik)0.01%	3.21	3.86	39.16	41.08	3.18
LSD (sij-skl)0.05%	2.26	2.71	27.54	28.89	2.24
LSD (sij-skl)0.01%	2.97	3.57	36.25	38.03	2.95

Table (5). Estimates of specific combining ability effects for forty five maize crosses.

*, ** indicate significant at 0.05 and 0.01 probability levels, respectively.

Crosses	Ear	Number of	Number of	100 kernel	Grain vield
0100000	diameter	rows/ ear	kernels / row	weight	per plant
P ₁ x P ₂	0.24*	0.72	5.01*	1.15	24.61**
$\mathbf{P}_1 \mathbf{X} \mathbf{P}_3$	-0.50**	-1.16**	-4.53	-0.72	-28.89**
$P_1 \times P_4$	-0.70**	-0.84*	-10.64**	-1.67*	-45.77**
$P_1 \times P_5$	0.03	1.08*	-1.09	2.13*	14.86
$\mathbf{P}_1 \mathbf{X} \mathbf{P}_6$	0.06	-1.15**	0.58	2.08*	0.24
$\mathbf{P}_1 \mathbf{x} \mathbf{P}_7$	0.08	-0.05	4.09	-0.14	12.66
$\mathbf{P}_1 \mathbf{X} \mathbf{P}_8$	0.55**	1.32**	2.96	-0.18	23.23*
$\mathbf{P}_1 \mathbf{X} \mathbf{P}_9$	0.14	0.62	3.57	-0.56	18.49
$P_1 \ge P_{10}$	0.11	-0.52	0.04	-2.09*	-19.43
$\mathbf{P}_2 \ge \mathbf{P}_3$	0.02	0.21	3.81	-0.83	7.20
$P_2 \ge P_4$	0.10	0.45	-0.89	1.39	-1.68
$P_2 \ge P_5$	0.03	0.64	0.19	-0.74	-2.72
$\mathbf{P}_2 \ge \mathbf{P}_6$	-0.08	-0.25	-5.64*	-3.19**	-34.35**
$\mathbf{P}_2 \mathbf{x} \mathbf{P}_7$	-0.15	-0.88*	-5.63*	0.31	-34.59**
$\mathbf{P}_2 \mathbf{x} \mathbf{P}_8$	-0.06	0.42	2.70	0.88	12.65
$\mathbf{P}_2 \mathbf{x} \mathbf{P}_9$	0.19	0.25	1.78	1.13	12.23
$\mathbf{P}_2 \ge \mathbf{P}_{10}$	-0.30*	-1.56**	-1.31	-0.10	16.65
$P_3 \times P_4$	0.06	0.08	0.93	-0.42	-25.85**
$\mathbf{P}_3 \mathbf{x} \mathbf{P}_5$	0.33**	0.97*	8.22**	2.70**	50.78**
$P_3 \times P_6$	-0.05	-0.47	-0.79	0.00	0.82
$\mathbf{P}_3 \ge \mathbf{P}_7$	0.01	0.37	-4.10	0.28	-6.76
P ₃ x p ₈	0.07	0.21	0.39	-0.52	8.82
$\mathbf{P}_3 \mathbf{x} \mathbf{P}_9$	-0.04	-0.10	-1.47	-1.80*	-3.60
$\mathbf{P}_3 \ge \mathbf{P}_{10}$	0.09	-0.10	-2.45	1.30	-2.51
$P_4 \ge P_5$	0.26*	0.55	2.84	0.45	24.91*
$P_4 \ge P_6$	0.02	-0.35	-1.15	-1.21	-11.05
$\mathbf{P}_4 \mathbf{X} \mathbf{P}_7$	0.11	-0.05	1.92	-0.81	11.02
$P_4 \times P_8$	0.14	-0.34	4.89	1.46	26.61**
$P_4 \ge P_9$	0.07	0.56	3.63	0.55	25.19*
$P_4 \times P_{10}$	-0.06	-0.06	-1.53	0.25	-3.39
$P_5 X P_6$	0.15	0.57	2.70	0.39	21.90
$\mathbf{P}_5 \mathbf{X} \mathbf{P}_7$	-0.15	-0.66	-4.23	-0.16	-24.35**
P ₅ X P ₈ D = D	-0.49^^	-0.59	-/.13^^	-3.30^^	-42.43**
r ₅ xr ₉ D x D	-0.04**	-2.56***	-0.52**	-2.15"	-02.51 ***
$\mathbf{r}_5 \mathbf{X} \mathbf{r}_{10}$	0.4/**	-0.20	0.82**	0.08	19.57
	0.04	0.52	-0.39	-1.19	0.09
$\mathbf{P}_{0} \mathbf{x} \mathbf{P}_{0}$	-0.00	-0.32	5.05*	3.67**	28 86**
	0.03	0.00	3.33 -2.47	0.78	20.00
	-0.14	0.30	-2.47	-0.78	-0.72
$\mathbf{P}_{-\mathbf{x}} \mathbf{P}_{-}$	0.02	0.72	2.03	2.13	16.61
$\mathbf{P}_{-\mathbf{x}} \mathbf{P}_{-}$	-0.12	-0.38	5.29 2.40	-0.79	7.03
$\mathbf{P}_{0} \mathbf{X} \mathbf{P}_{0}$	-0.12	-0.58	-7 50**	-0.59	-37 13**
	-0.05	-0.50	-0.57	-0.52	-11.06
$\mathbf{P}_{0} \mathbf{x} \mathbf{P}_{10}$	0.10	1.31**	-0.93	0.53	1.68
LSD (sii-sik)0 05%	0.36	1 17	6.92	2.36	36 08
LSD (sij-sik)0.01%	0.48	1.55	9,11	3.11	48.71
LSD (sij-sk00.05%	0.33	1.09	6.40	2.18	33.40
LSD (sij-skl)0.01%	0.44	1.43	8.43	2.87	45.10

Table (5):Cont.

*, ** indicate significant at 0.05 and 0.01 probability levels, respectively.

and significant SCA values were observed in the six crosses, $P_1 \times P_6$, $P_2 \times P_4$, $P_2 \times P_8$, $P_3 \times P_6$, $P_3 \times P_7$ and $P_9 \times P_{10}$. Therefore, these hybrids are considered as the good F_1 cross combinations for this trait. These results are supported by those of El-Zeir *et al*, 2000 and Abdel - Sattar and Ahmed, 2004.

Concerning plant height, one cross ($P_1 \times P_9$) out of the forty five crosses showed positive and significant SCA effects. These hybrids are considered as the good F_1 cross combinations for this trait. On the other hand, the six hybrids, $P_1 \times P_3$, $P_1 \times P_4$, $P_2 \times P_6$, $P_2 \times P7$, $P_5 \times P_8$ and $P_5 \times P_9$, exhibited significant and negative SCA effects. The data for ear height show that, two hybrids ($P_1 \times P_4$ and $P_2 \times P_7$) exhibited significant and negative SCA values. These results are agreement with those reported by El- Shouny *et al*, 2003 and Abdel - Sattar and Ahmed, 2004.

Regarding ear length, five out of the forty five hybrids, $P_1 \times P_9$, $P_3 \times P_5$, $P_5 \times P_6$, $P_5 \times P_{10}$ and $P_6 \times P_9$, exhibited positive and significant SCA effect.

Data regarding ear diameter indicate that, the five hybrids ($P_1 x$ P_2 , $P_1 \times P_8$, $P_3 \times P_5$, $P_4 \times P_5$ and $P_5 \times P_{10}$) had significant positive SCA effects. Thus, these hybrids are considered good F₁- cross combinations for this trait. Similar results were obtained by many investigators among whom El-Shenawy, 2005 and Ibrahim. 2005.Concerning number of rows per ear, seven out of the forty five hybrids, P₁ x P₅, P₁ x P₈, P₃ x P₅, P₆ x P₉, P₆ x P₁₀, P₇ x P₁₀ and P₉ x P₁₀, showed positive and significant SCA effects. One hybrid $(P_7 \times P_{10})$ out of the previous seven crosses included low x high general combiner parents and three hybrids (P₆ x P₉, P₆ x P₁₀ and P₉ x P₁₀) out of these previous seven hybrids included high x high general combiner parent for this trait. Thus, these hybrids are considered good F_1 cross combination for this trait.

For number of kernels per row, four crosses ($P_1x P_2$, $P_3 x P_5$, $P_5 x P_{10}$ and $P_6 x P_9$) out of the forty five crosses manifested positive and significant SCA effects. The results for 100 – kernels weight indicate that, five crosses ($P_1 x P_5$, $P_1 x P_6$, $P_3 x P_5$, $P_6 x P_9$ and $P_7 x P_8$) out of the forty five cross showed positive and significant SCA effect. Two out of the five previous crosses ($P_1 x P_5$ and $P_1 x P_6$) included high×high general combiner parents and two ($P_3 x P_5$ and $P_6 x P_9$) out of the five previous hybrids included low x high general combiner

parents. Therefore, these crosses are considered as the good F_1 - cross combinations for this trait.

With respect to grain yield per plant, seven out of the forty five crosses ($P_1 x P_2$, $P_1 x P_8$, $P_3 x P_5$, $P_4 x P_5$, $P_4 x P_8$, $P_4 x P_9$ and $P_6 x P_9$) manifested positive and significant SCA effect. Out of the seven crosses, one crosses ($P_6 x P_9$) included only one high general combiner parent, and the rest crosses included two low general combiner parents for this trait. Therefore, this cross is considered as the good F_1 - cross combinations for this trait. These results are in coincidence with those mentioned by El-Shenawy, 2005;Mosa and Motawei, 2005 and Barakat and Abd El-Aal, 2006.

Biochemical genetic studies:

1- Protein electrophoresis.

The electrophoretic patterns for water soluble proteins (albumin and globulin) of the five maize inbred lines (P_1 , P_3 , P_5 , P_9 and P_{10}) and their ten F_1 hybrids are illustrated in Figure (1) and Table (6). From the SDS-PAGE (sodium dodycyl sulphate polyacrylamide gel electrophoresis) analysis, 25 bands were observed with different molecular weights (MW) and relative mobilities (Rm).

One band is commonly present in all five parental lines of MW 92.90 KDa, and two bands are commonly present in their ten hybrids of MW 43.20 and 30.56 KDa. These bands were considered as marker bands for these genotypes. Substantial differences among the studied parental lines in their molecular weights and relative mobilities were recorded. These parental lines were discriminated from each other by some unique bands, where the parental line (P_1) exhibited two unique bands of MW 79.39 and 22.78 KDa. The parental line (P_2) characterized by one unique band of MW 52.72 KDa. One band of MW 16.28 KDa characterized the parental line (P3). The parental line (P₄) distinguished with one unique band of MW 72.99 KDa. Two unique bands of MW 102.1 and 14.06 KDa characterized the parental line (P₅). From these results it is concluded that the analysis of water soluble protein electrophoretic bands could be a useful tool for the identification and characterization of the five parental lines of maize. Consistent results were obtained by Esmail et al, 1999and Abdel -Sattar and Ahmed, 2004.

				Pare	ental	lines]	Hybri	ids					
B. no.	R.m	M.W. K.Da	P ₁	P ₃	P ₅	P9	P ₁₀	P ₁ x P ₃	P ₁ x P ₅	P ₁ x P ₉	P ₁ x P ₁	P3 X P5	P ₃ x P ₉	P3 X P1	P5 X P9	P5 X P10	P9 X P10
1	0.291	107.6	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
2	0.308	102.1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0
3	0.329	95.9	0	0	0	0	0	0	0	1	0	1	1	0	0	1	1
4	0.339	92.9	1	1	1	1	1	0	1	0	0	0	1	0	0	0	0
5	0.377	82.78	0	0	0	0	0	1	0	1	1	1	0	1	1	1	0
6	0.391	79.39	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1
7	0.405	76.14	0	1	1	0	1	1	1	0	0	1	1	1	0	0	1
8	0.412	72.99	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0
9	0.460	64.36	1	0	1	0	0	1	1	0	1	1	1	1	0	1	0
10	0.478	61.07	0	0	0	1	1	0	1	1	0	1	1	1	1	0	1
11	0526	52.72	0	1	0	0	0	0	1	1	1	0	0	0	0	1	1
12	0547	49.52	0	1	0	0	1	0	0	1	1	1	1	1	0	0	0
13	0592	43.20	1	0	1	1	0	1	1	1	1	1	1	1	1	1	1
14	0.647	36.52	1	1	1	1	0	0	0	0	0	1	1	0	1	1	1
15	0.678	33.23	1	1	1	0	0	0	1	1	1	1	0	0	0	0	0
16	0.706	30.56	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
17	0.751	26.66	0	1	1	0	0	0	0	1	0	0	0	0	0	1	0
18	0.803	22.78	1	0	0	0	0	1	1	0	0	1	1	0	0	0	1
19	0.834	20.73	0	1	1	0	0	1	0	1	0	1	0	1	1	1	1
20	0.837	20.51	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0
21	0.862	19.06	0	0	0	0	0	1	1	1	1	0	1	1	0	0	0
22	0.896	17.16	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
23	0.914	16.28	0	0	1	0	0	1	1	1	1	0	1	0	0	1	1
24	0938	15.13	1	0	0	1	0	0	0	0	0	1	0	1	1	1	0
25	0.962	14.06	0	0	0	0	1	0	1	1	1	1	1	1	0	0	1

Table (6). Densitometer analysis of water soluble proteins (SDS-PAGE) showing number of bands (B.no.), Relative mobility (Rm) and molecular weight (Mw) for 5 x 5 Maize diallel crosses.

1=Present of band and 0= Absent of band

Regarding the hybrids, eight out of the ten crosses ($P_1 \times P_5$, $P_1 \times P_9$, $P_1 \times P_{10}$, $P_3 \times P_5$, $P_3 \times P_9$, $P_3 \times P_{10}$, $P_5 \times P_{10}$ and $P_9 \times P_{10}$) showed number of bands which exceeded their respective parents (Table 6) and were characterized by having more hybrid bands. In the same time, all of these hybrids showed substantial hybrid vigor with regard to grain yield per plant for better parent (Table 3) and some of them showed positive significant or insignificant specific combining ability effects with regard to grain yield per plant (Table 5). Two hybrids ($P_1 \times P_3$ and $P_5 \times P_9$) exhibited a number of bands which did not exceed the number of bands of their parental lines. These crosses showed insignificant heterosis and negative and insignificant specific combining ability with regard to grain yield per plant (Tables 3 and 5).

These results indicate to some extent the effectiveness of using soluble grain protein electrophoresis in the identification of the highly heterotic hybrids and high specific combining ability as biochemical genetic markers associated with hybrid vigor and specific combining ability in hybrid maize.

2- RAPD-PCR techniques.

The DNA of the five maize inbred lines (P_1 , P_3 , P_5 , P_9 and P_{10}) and their ten F_1 crosses, were tested against six 10-mer random primers to study the possibility of predicting heterosis and combining ability. Banding pattern for the six primers (A02, A08, A13, C02, C03 and B15) were illustrated in figure (2) and scored as present (1) or absent (0) as shown in Table (7). Three out of the six primers (A02, A08 and A13) were relative distinguished the five maize inbred lines by one or more unique bands from each primer as follows:

For PCR reaction with the primer A02, three universal bands at molecular weights 946bp, 676bp and 370bp were shown to be present for the five inbred lines, while it were absent for most of the ten hybrids. The inbred lines P_5 and P_9 were distinguished with Mw 1737bp band. One unique band at Mw 1057bp characterized the inbred lines P_1 . The inbred line P_3 was characterized with Mw 490bp band. The inbred line P_{10} was distinguished with 582bp band.

With respect to PCR reaction with the primer A08, two universal bands at molecular weights 678bp and 397bp were shown to be present for the five maize inbred lines. The inbred line P_1 was characterized with absent band at molecular weight 210 bp, while the

inbred line P_5 was distinguished with one unique band at molecular weight 287 bp. One band at molecular weight 527 bp was characterized the two inbred lines P_9 and P_{10} .

Regarding PCR reaction with the primer A13, two universal bands at molecular weight 651 bp and 359 bp were showed to be present for the five maize inbred lines. The inbred lines P_1 and P_9 were characterize with one unique band at molecular weight 959 bp. The inbred lines P_3 and P_{10} were distinguished with one absence band at molecular weight 610 bp. One unique band at molecular weight 880bp was characterized the inbred lines P_5 . The inbred line P_{10} was distinguished with one absence band at molecular weight 1460 bp. From this result, we conclude that, PCR – RAPD technique could be a useful tool for the identification and characterization of the five maize inbred lines. These results are in agreement with those obtained by Abdel-Sattar and Ahmed, 2005 and El-Hosary et al, 2006. They indicated that PCR - RAPD technique can be used as a tool for determining the extent of genetic diversity among maize inbred lines. In a trial to predict heterosis and specific combining ability via PCR-RAPD technique, two primers could be considered as reliable molecular markers positively linked with heterosis and SCA as follows:

Fig (2): RAPD–PCR profiles of the 15 maize genotypes with different primers.

Pattern obtained primer A02

Pattern obtained primer A13

Pattern obtained primer C02

Pattern obtained primer A08

Pattern obtained primer B15

Pattern obtained primer C03

With respect to PCR reaction with the primer A13 (Fig.2), all the hybrids showed higher number of bands which exceeded the number of bands present in their respective parents (Table7) except three hybrids ($P_1 \times P_3$, $P_1 \times P_9$ and $P_3 \times P_9$) which showed the same number of bands found in their parents. In the same time, all of these hybrids except two hybrids ($P_1 \times P_3$ and $P_5 \times P_9$) showed significant positive heterosis and most of them showed significant positive SCA effects (Tables 3 and 5). Similar results were detected for the primer B15, the two hybrids ($P_1 \times P_3$ and $P_5 \times P_9$) contained four bands, all of these bands were found in their respective parent except one band at molecular weight 885bp is a unique band for the hybrid $P_1 \times P_3$. These two hybrids had number of bands which were less than those of their respective parent, and in the same time showed insignificant heterosis and negative significant SCA effects (Tables 3 and 5).

Table (7): DNA polymorphism using randomly amplified polymorphic DNA, A02, A08, A13, C02, C03 and B15 primers (P.) for the five inbred lines and their ten F_1 's showing number of the band (B.No.), molecular weight (MW) and the total number of bands / each colum.

P.	B. No	M. W. bp.	Th	e Fiv	e in	bred	lines				The	e ten	hyb	rids			
		15		0.000				P ₁	P ₁	P ₁	P ₁	P ₃	P ₃	P ₃	P ₅	P ₅	P ₉
			\mathbf{P}_1	P_3	P ₅	P ₉	P10	x	x	x	x	х	x	x	x	х	х
								P ₃	P ₅	P ₉	P10	P ₅	P ₉	P10	P ₉	P ₁₀	P10
A02	1	2048	0	0	1	1	1	1	0	0	1	0	0	0	0	0	0
	2	1737	0	0	1	1	0	0	0	1	1	1	1	0	0	0	0
	3	1057	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	946	1	1	1	1	1	1	1	1	0	1	1	0	0	0	0
	5	818	0	0	0	0	0	0	0	1	1	1	1	0	1	1	0
	6	676	1	1	1	1	1	0	0	0	0	0	0	1	0	0	1
	7	582	0	0	0	0	1	1	0	1	1	1	1	0	1	1	0
	8	490	0	1	0	0	0	0	0	0	0	0	1	0	1	1	0
	9	370	1	1	1	1	1	0	0	1	1	1	1	0	1	1	0
T.			4	4	5	5	5	3	1	5	5	5	6	1	4	4	1
A08	1	678	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	2	527	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
	3	397	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	4	326	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	5	287	0	0	1	0	0	1	0	0	0	1	0	1	0	0	1
	6	210	0	1	1	1	1	1	0	1	0	1	1	1	1	1	1
T.			2	3	4	4	4	4	2	3	2	4	4	4	3	3	4
A13	1	1460	1	1	1	1	0	0	0	0	0	0	0	1	0	0	0
	2	1267	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	3	1069	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
	4	959	1	0	0	1	0	1	1	1	1	1	1	0	1	1	0
	5	880	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
	6	774	1	1	0	1	1	0	0	0	1	1	0	1	0	0	0
	7	610	1	0	1	1	0	1	1	1	1	1	1	0	1	1	1
	8	561	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	9	444	0	0	0	0	0	0	1	0	0	1	0	1	1	0	1
	10	407	0	0	0	0	0	0	0	0	1	1	0	0	0	1	0
	11	380	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	12	359	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Т.			7	5	6	6	4	7	8	6	8	9	6	8	7	7	6

P.	B. No	M. W. bp.	The Five inbred lines					The ten hybrids									
								P ₁	P ₁	P ₁	P ₁	P ₃	P ₃	P ₃	P ₅	P ₅	P ₉
			\mathbf{P}_1	P ₃	P ₅	P ₉	P ₁₀	x	x	x	x	x	x	x	x	X	x
								P ₃	P5	P9	P10	P5	P ₉	P10	P9	P10	P10
C02	1	686	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1
	2	564	1	1	1	0	0	1	1	1	1	1	1	0	1	1	1
	3	467	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
	4	255	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
T.			3	3	3	2	2	3	3	2	3	2	3	2	2	3	3
C03	1	1261	1	1	1	1	1	0	0	1	0	0	0	1	0	0	0
	2	664	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
	3	513	1	1	1	1	1	1	0	0	0	1	0	0	0	0	0
	4	440	0	0	0	0	0	1	0	1	0	1	1	0	1	1	1
	5	374	0	0	1	0	0	1	1	1	1	0	0	1	0	0	0
	6	287	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	7	252	1	1	1	1	1	1	0	1	0	0	0	0	0	1	0
	8	165	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0
	9	145	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
T.	G.,	50e-107.1	6	6	7	6	6	7	3	6	4	5	4	4	3	4	3
B15	1	1829	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0
	2	1521	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1
	3	1425	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
	4	1214	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1
	5	1110	1	1	0	1	1	1	1	0	1	1	1	1	1	1	1
	6	1001	0	0	1	1	0	0	0	0	0	0	0	0	0	1	1
	7	885	0	0	0	0	0	1	1	0	1	1	0	0	0	0	0
	8	741	1	1	1	1	1	0	1	1	0	1	0	0	0	0	0
	9	688	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	10	517	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	11	412	0	0	1	1	1	0	0	0	0	0	1	0	0	0	1
	12	359	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
T.			5	5	6	9	6	4	7	6	6	6	5	5	4	5	7

Table (7):Cont.

The other eight hybrids except hybrids $P_3 x P_9$, $P_5 x P_{10}$ and $P_9 x P_{10}$ showed higher number of bands which exceeded the number of bands present in their respective parents (Table7) and in the same time, these hybrids showed significant positive heterosis and most of them exhibited significant positive SCA effects (Tables 3 and 5). It is evident therefore that, these two PCR-RAPD products could generally agree with the actual field performance of the crosses. This indicates that, it is quite possible to elucidate reliable molecular genetic markers associated with heterosis and specific combining ability in maize. Some studies detected positive association between parental genetic distance based on DNA marker and hybrid field performance.

Consistent results were obtained by Nagy *et al*, 2003; Abdel-Sattar and Ahmed, 2005 and El-Hosary *et al*, 2006.

REFERENCES

- Abdel-Sattar, A.A. and M.F. Ahmed (2004). Diallel cross analysis for some quantitative traits in yellow maize under stress and normal irrigation treatments. I, Biochemical genetic markers for heterosis and combining ability. Egypt. J. Plant Breed. 8: 173-188.
- Abdel-Sattar, A.A. and M.F. Ahmed (2005). Prediction of heterosis and combining ability in some yellow maize crosses via serological analysis and molecular genetic markers. Egypt. J. Plant Breed. 9 (2): 193-205.
- Abdel-Tawab, F.M., Eman M. Fahmy, M.A. Rashed and M.H. Abou Deif (1989). Protein and isozyme polymorphism as related to heterosis and combining ability in Maize. Egypt. J. Genet. Cytol.18: 203-217.
- Aliu, S., Sh. Fetahu and A. Salillari (2008). Estimation of heterosis and combining ability in maize (*Zea mays* L.) for ear weight using the diallel cross method.Latvian Journal of Agronomy, No.11, 7-12.
- Amer, E.A.; A.A. El-Shenawy and A.A. Motawei (2003). Combining ability of new maize inbred lines via lines x tester analysis. Egypt. J. plant Breed. 7 (1): 229-239.
- Barakat, A.A. and A.M.M. Abd El-Aal (2006). Estimation of combining ability for grain yield and other attributes in new yellow inbred lines of maize (*Zea mays*, L.). J. Agric. Sci. Mansoura. Univ., 31 (7): 4097-4105
- Bello, O. B. and G. Olaoye (2009). Combining ability for maize grain yield and other agronomic characters in a typical southern guinea savanna ecology of Nigeria. African Journal of Biotechnology Vol.8 (11), 2518-2522.
- El-Hosary, A.A.; M.EL.M. El-Badawy and Y.M. Abdel-Tawab (2006). Genetic distance of inbred lines and prediction of maize single-cross performance using RAPD and SSR markers. Egypt. J. Genet. Cytol.35:209-224.

- El-Shenawy, A.A. (2005). Combining ability of prolific and nonprolific maize inbred lines in three diallel crosses for yield and other traits J. Agric. Res. Tanta Univ. 31(1): 16-30.
- El-Khishin, Dina, Amina Abdel-Hamid, Hanaiya El-Itriby, F.A. Ahmed and E.A. Abdel-Rahiem (2003). Estimates of genetic similarities and relationships among Egyptian maize inbreds using RAPD and AFLP markers. Egypt. J. Geneti. Cytol. 32:1-23
- El-Shouny, K.A. Olfat. H. El-Bagoury; H.Y.; El-Sherbiny and S.A. Al-Ahmed (2003). Combining ability estimates for yield and its components in yellow maize (*Zea mays,L.*) under two plant densities . Egypt. J. plant Breed. 7(1): 399-417.
- El-Zeir, F.A.; E.A, Amer; A.A.A. Abdel-Aziz and A.A. Mahmoud (2000). Combining ability of new maize inbred lines and type gen action using top crosses of maize. Egypt. J. Appl. Sci., 15(2): 116-128.
- Esmail, A.M., A.M. El-Marakby, M.A. Rashed and M.F. Ahmed (1999). Prediction of heterosis and combining ability in some cotton crosses via serological and electrophoretic analysis. Ann. Agric. Sci. Ain Shams Univ. Cairo 44(2): 523-536.
- Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9: 463-493.
- Hosni, S.I. Lailah ; Mohamed A. Rashed; Mohamed A. Yasien and Rmadan K. Hassan(2006). Electrophoretic patterns for the detection of heterosis, combining ability and maternal effect in diallel crosses of maize. J Biol Chem Environ Sci, 1(2),159-186.
- Ibrahim, K.I.M.(2005). Heterosis and combining ability in yellow maize (*Zea mays, L.*) over two location (Shkha and Nubaria). Egypt. J. Plant Breed. 9(1):65-75.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227: 680-685.
- Mohammadi, S. A., B. M. Prasanna, C. Sudan and N. N. Singh (2008). SSR Heterogenic patterns of maize parental lines and prediction of hybrid performance. Biotechnol. and Biotechnol. EQ.22, 541-547.

- Mosa, H.E. and A.A. Motawei (2005). Combining ability of resistance to late wilt diseases and grain yield and the relationships under artificial and natural infections in maize. J. Agric. Sci. Mansoura. Univ., 30 (2): 731-742.
- Nagy, E.; G. Gyulai.; Z. Szabo.; Z. Hegyi and L.C. Marton (2003). Application of morphological descriptions and genetic markers to analyse polymorphism and genetic relationships in maize (*Zea mays*, L.). Acta. Agronomica. Hungarica. 51 (3): 257-265.
- Ojo, G.O. S., D. K. Adedzwa and L. L. Bello (2007). Combining ability estimates and heterosis for grain yield and yield components in maize (*Zea mays L.*). J. of Sustainable Development in Agriculture and Environment Vol. 3: 49-57.
- Pabendon B. Marcia, M.J. Mejaya, J. Koswara and H. Aswidinnoor(2009). SSR-Based genetic diversities among maize inbred lines and their relationships with F₁ phenotypic data of MR4 and MR14 test crosses. Indonesian J. of Agric. 2(1), 41-48.
- Shafey, S.A.; H.E.Yassien; I.E.M.A. El-Beially and O.A.M. Gad-Alla (2003). Estimates of combining ability and heterosis effects for growth, earliness and yield in maize (*Zea mays*, L.). J. Agric. Sci. Mansoura Univ., 28 (1): 55-67.
- Soliman M.S.M.; Fatma A.E. Nofal and M.E.M. abd El-Azeem (2005). Combining ability for yield and other attributes in diallel cross of some yellow maize inbred lines. Minufia J. Agric Res. Vol. 30(6): 1767-1781.
- Studier, F.W. (1973). Analysis of bacteriophage T7 early RNAs and proteins of slab gels. J. Mol. Biol. 79: 237-248.
- Wynne, J. C., D. A. Enevy and P. W. Rice (1970). Combining ability estimation in Arachis hypogea. II- Field performance of F1 hybrids. Crop Sci. 1: 713-715.
- Xin Qi, Josphert N. Kimatu, Zhihua Li, Lili Jiang, Yue Cui and Bao Liu (2010). Heterosis analysis using AFLP markers reveals moderate correlations between specific combining ability and genetic distance in maize inbred lines. African Journal of Biotechnology Vol.9 (11), 1568-1572.

تحليل الهجن التبادلية للمحصول في الذرة الشامية والمعلمات الوراثية لقوة الهجين والقدرة على التآلف أكمال عبد العزيز الشوني - أكمال إمام محمد ابراهيم - أمصطفى فزاع أحمدً - ²رانيا احمد احمد يونس - ¹وليد سعيد محمد. ¹⁻ قسم المحاصيل - كلية الزراعة - جامعة عين شمس – القاهرة - مصر. ²⁻قسم الوراثة - كلية الزراعة - جامعة عين شمس – القاهرة - مصر.

يهدف البحث إلى در اسة قوة الهجين والقدرة على الأئتلاف لبعض التراكيب الوراثية من الذرة الشامية بمحطة البحوث والتجارب الزراعية بكلية الزراغة جامعة عين شمس _ شلقان _ قليوبية. وكذلك محاولة التنبؤ بقوة الهجين والقدرة على الأئتلاف من خلال نماذج التغريد الكهربى لبروتينات الذرة الذائبة و تقنية PCR-RAPD. في موسم 2007 تم عمل كافة الهجن التبادلية دون العكسية بإستخدام عشرة تراكيب وراثية من الذرة . وفي موسم 2008 تم تقييم الاباء والجيل الأول الهجين في تصميم تجريبي قطاعات كاملة العشوائية من ثلاثة مكررات. ويمكن تلخيص أهم النتائج فيما يلي:-

- 1 كان تباين التراكيب الوراثية في كل الصفات عالي المعنوية مما يدل علي التباعد الوراثي والاختلافات الوراثية بين السلالات المستخدمة في إنتاج هذه الهجن .
- 2 كمان تباين القدرة العامة والقدرة الخاصة على الأئتلاف عالي المعنوية لكل الصفات المدروسة مما يدل على أهمية كلا من التباين الوراثي المضيف والغير مضيف في وراثة معظم الصفات المدروسة.
- 3- كان تباين النسبة بين القدرة العامة إلي القدرة الخاصة على الأنتلاف اقل من الوحدة لكل الصفات تحت الدراسة ما عدا صفة ارتفاع الكوز مما يدل على اهمية التباين الوراثي الغير مضيف في وراثة هذة الصفات.
- P₆ x P₉ و P₃ x P₅ أظهرت قوة الهجين لافضل الاباء والصنف القياسي ان الهحينين P₃ x P₅ و P₆ x P₉ . انهم افضل الهجن لصفة محصول الحبوب للنبات الفردي ومعظم الصفات المدروسة.
- 5- أظهرت السلالة الابوية P₆ انها احسن السلالات من حيث القدرة العامة علي التالف لصفة محصول الحبوب للنبات الفردي ومعظم الصفات المحصولية. في حين كانت السلالتين P₆ P₂ وP افضل السلالات من حيث القدرة العامة علي التالف بالنسبة لصفات عدد الايام حتي تفتح 50% من النورات المذكرة والمؤنثة . في حين اظهرت كلا من السلالات و P₅ P₈ P₉ من النورات المذكرة والمؤنثة . في حين اظهرت كلا من السلالات و P₅ P₈ P₉ الفردي ومعظم علي الائتلاف مرتفعة لصفات عدد الايام المحصولية . في حين كانت السلالات من حيث القدرة العامة علي التالف بالنسبة لصفات عدد الايام حتي تفتح 50% من النورات المذكرة والمؤنثة . في حين اظهرت كلا من السلالات المدين و المؤنثة . في حين الفيرات كلا من السلالات المدين و المؤنثة . في حين المدين و المؤنثة المحصولية المدين و المؤنثة . في حين المدين و المدين و المدين و المدين و المرين و المدين و المون و المؤنثة . في حين المدين و المدين و المدين و المدين و المؤنثة . في حين المدين و المدين و المدين و و P₈ P₁₀ من المدين و المدين و المدين و المونثة . و المؤنثة . في حين المدين و المدي و المدين
- x P₈ · P₃ x P₅ · P₄ x P₅ · P₄ x P₈ · P₄ x P₉ · P₆ x P₉) و الهجين P₁ x P₂ في الائتلاف عالية ومعنوية لصفة محصول النبات P₁ و الهجين P₁ x P₂ قدرة خاصة علي الائتلاف عالية ومعنوية لصفة محصول النبات الفردي من الحبوب ومعظم الصفات المدروسة.
- 7- أظهر نماذج التفريد الكهربى للبروتينات وتقنية PCR-RAPD انهم يمكن الاعتماد عليهم كاداة فعالة في التعرف علي وتوصيف السلالات النقية من الذرة كما يمكن الاعتماد عليهم في التعرف علي الهجن المتفوقة ذات القدرة الخاصة علي الائتلاف وهذا كادلة وراثية جزيئية مرتبطة بقوة الهجين والقدرة الخاصة علي الائتلاف في الذرة .