EFFECT OF DRYING PROCESS ON PHENOLIC COMPOUNDS AND TOTAL ANTIOXIDANT ACTIVITY OF SOME MEDICINAL AND AROMATIC PLANTS Moussa, M.E.; Youssef, S.M. and K.H. M. El-Waseif Horticultural Crops Processing Research Dept., Food Technology Research Institute, Agricultural Research Center, Giza, Egypt ## **ABSTRACT** The effect of antioxidant properties as free radical scavenging activity and phytochemical compounds of fresh and dried samples of dill, parsley, coriander, peppermint and celery leaves were studied. Moreover, the chemical constituents and the content of minerals in these medicinal and aromatic plants were also investigated. Results explained that the contents of total phenolics ranged from 1446.88 for coriander to 3128.57mg/100gm for peppermint and after the drying process decreased to 1280,10 and 2356.45mg/100gm, respectively. Also, peppermint had the highest content of flavonoids, while the lowest content was observed in coriander leaves. Otherwise, fresh coriander leaves had the highest content of carotenoids, while the lowest content was in the fresh peppermint leaves. Results explained also that the main component of phenolic compounds was protocatchuic in all fresh and dried samples under investigation. Celery leaves had the highest protocatchuic content. Concerning minerals content reveal that the parsley leaves had the highest content of calcium, potassium and magnesium, while peppermint had the highest phosphorus and iron contents. Results also show that celery leaves had the highest sodium content. Fresh dill and peppermint recorded the highest percentages of total antioxidant activity. Also, fresh celery had gradual effect on DPPH compounds being used as synthetic free radical. Coriander and parsley showed the lowest antioxidant activity. After the drying process total antioxidant activity decreased. Slight decrease was observed with dill and peopermint leaves, while celery and parsley leaves were more effective by using the air oven drier process. Keywords: celery, dill, peppermint, parsley, coriander, leaves, drying, phytochemical compounds, total antioxidant activity #### INTRODUCTION Dried herbs that are often used as cooking ingredients (seasonings) possess potential health benefits due to their natural phenolics, which are not fully investigated (Yanishlieva et al.., 2006; Clifford, 1999), though they are universally recognized for their flavor contributions. According to our recent report (Lee and Scagel, 2010) it was ascertained that dried basil being deficient in phenolics compared to fresh basil. We proceeded to determine if this was the case for other dried Lamiaceae products that are easily obtained from the market place. Moreover, herbs, vegetables and fruits are daily dietary sources for a wide variety of phytochemicals. Flavonoids and other phenolic compounds adhering in these dietary sources possess bioactive properties, protecting cellular systems against oxidative damage (Jones et al. 1992). Phytochemical compounds were reported to be protective against chronic diseases such as cancer and heart diseases. These protective effects are generally attributed to the presence of various functional components, such as phenolic compounds, ascorbic acid, vitamin E, provitamins, minerals, and fibers (Molay, et al. 2007). Many of these chemicals have been claimed to contribute to the antioxidant activities of the plants and the antioxidant activity is mainly due to their redox properties derived from various possible mechanisms: free-radical-scavenging activity, transition-metal-chelating activity, and/or singlet oxygen- quenching capacity (Chen and Ahn, 1998; Luiz, et al. 2002). Phenolic compounds are also known to play an important role in stabilizing lipid peroxidation and to inhibit various types of oxidizing enzymes (Cos et al.., 1998). Since a large part of vegetables have undergone thermal processing to make them suitable for consumption, it is important to investigate in details how thermal processing affects the contents of phytochemicals and antioxidant activities (Rosa and Heaney, 1993). Also, medicinal plants have an important value in the socio-cultural, spiritual and medicinal use in rural and tribal lives of the developing countries (Shinwari, 2005). The demand of medicinal plants is increasing both in developed and developing countries. Aromatic and medicinal plants can be defined as plants used in official and traditional medicine, aroma and flavor (Baricevic et al.., 2004). The screening studies for antioxidant properties of medicinal and food plants have been performed increasingly for the last few decades in hope of finding an efficient remedy for several present-day diseases and means to delay aging symptoms (Halliwell, 2008). The disorders related to excessive oxidation of cellular substrates (oxidative stress) include type II diabetes, neuro-degenerative diseases, or even some types of cancer. There is also a huge demand for natural antioxidants in food industry, for replacing the synthetic preservatives used to prevent fat rancidity or color loss. Oxidizing agents may damage a number of biological molecules such as nucleic acids, membrane lipids, enzymes, or synovial fluid polysaccharides. The objective of this study was to investigate and compare the antioxidant properties as free radical scavenging activity and phytochemical compounds between extracts of fresh and dried dill, parsley, coriander, peppermint and celery leaves. # **MATERIALS AND METHODS** ### Materials Fresh leaves of dill (Anethum graveolens), parsley (Petroselinum crispum), coriander (Coriandrum sativum), celery (Apium graveolens) and peppermint (Mentha piperita) were obtained from the Horticultural Research Institute, Agricultural Research Center. Samples for preparing dried green leaves after cleaning, dried at 40 °C for approximately 6 h in an oven and ground by blender. Fresh and dried leaves (2.5 and 0.5gm) were extracted with ethanol (100 ml) for 10 h. The extracts were filtered through Whatman No. 2 filter paper and the filtrates were used to determine total phenolic compounds and antioxidant activity. #### Methods Moisture content, crude protein (N × 6.25), crude fiber, ash, total acidity, chlorophyll (a), chlorophyll (b), carotenoids and ascorbic acid were determined according to AOAC (1990). ## J. Food and Dairy Sci., Mansoura Univ., Vol. 2 (7), July, 2011 - Minerals content (Na,Ca and K) were estimated using emission flame photometer (Model Corning 410). The other minerals (Fe, P and Mg) were determined using Atomic absorption spectrophotometer (Perkin-Elmer Instrument Model 2380). - The total polyphenolic content was estimated using the Folin-Ciocalteu assay, developed by Velioglu et al.., (1998), with some modifications. Briefly, 125 µl of Folin-Ciocalteu reagent, 125 µl diluted sample, and 250 µl of distilled water were put into a test tube. The mixture was vortexes and allowed to stand for 5 min at room temperature. Then, 1.25 ml of sodium carbonate solution (7%) was added, followed by 1 ml of distilled water. The mixture was vortexes and allowed to stand at room temperature for 90 min. Total phenolic content was determined using a spectrophotometer (Jenway 6405 UV/VIS) at 760 nm. Gallic acid was used as standard, and total phenolic content was expressed as equivalents of gallic acid (GAE)/100 g sample. - Total flavonoids content was determined by modifying a colorimetric method described previously Dewanto et al.., (2002) and Eberhardt et al.., (2005). Briefly, 0.2 ml of the water-soluble extract, 0.8 ml of distilled water and 50 µl of a 5% NaNO2 solution were mixed in a test tube. After 6 min, 100 µl of a 10% AlCl3 6H2O solution was added and allowed to stand for another 5 min before 0.5 ml of 1 M NaOH was added. Then, 850 µl of distilled water was added to bring the mixture to 2.5 ml and mixed well. - The absorbance was measured immediately against the blank at 510 nm using a spectrophotometer (Jenway 6405 UV/VIS) in comparison with the standards prepared similarly with known quercetin concentrations (10–800 µg/ml). The results are expressed as mean (micromoles of quercetin equivalents, QE/100 g sample). - Extraction, separation and quantification of phenolic compounds were determined according to the method described by Goupy et al..(1999). - Antioxidant activity was determined by the 2,2,-diphenyl- 2-picryl-hydrazyl (DPPH) method of Zhang and Hamauzu (2004). with some modifications. Broccoli content of the methanol extracts of fresh or processed broccoli were adjusted to 6 mg/ml (on dry basis), which was chosen as an appropriate concentration for assessing antioxidant activity after preliminary studies of the different concentrations. An aliquot of 1.5 ml of 0.1 mM DPPH radical in methanol was added to a test tube with 0.5 ml of broccoli extract, at 6 mg/ml. Instead of methanolic extract of broccoli, pure methanol was used as control. The reaction mixture was let to stand at room temperature in the dark for 60 min before the decrease in absorbance at 517 nm was measured. Pure methanol was used to calibrate the spectrophotometer. Antioxidant activity was expressed as percentage inhibition of the DPPH radical and was determined by the following equation: AA (%) = Abs control - Abs sample / Abs control × 100: Statistical analysis: All data were recorded as means and analyzed by SPSS for Windows (ver.10.1.). One-way analysis of variance (ANOVA) and Duncan comparisons were tested for any significant differences between raw and dried medicinal and aromatic samples. ## RESULTS AND DISCUSSION Results in Table (1) Show the chemical constituents of some medicinal and aromatic plants namely (celery, dill, peppermint, parsley-and coriander). Moisture content ranged from 84.34 to 89.72% in both peppermint and dill leaves on fresh weight basis, respectively. Also protein content ranged from 10.27% in celery leaves to 23.12% in peppermint while the percentages of protein in parsley, dill and coriander were 22.89, 21.57 and 20.96%, respectively. Results also explain the highest percentages in crude fiber shown in both peppermint and celery leaves which were 12.66 and 12.32% (on DWB), respectively, while the lowest percentage was observed in coriander leaves 7.12%. Ash percentages ranged from 12.78 in dill to 14.92% in peppermint leaves, meanwhile, coriander had the highest content in total acidity 29.87, while peppermint had the lowest content 14.59. Table (1): Chemical constituents of some fresh medicinal and aromatic plants (on dry weight basis) | Constituents(%) | Celery | Dill | Peppermint | Parsiev | Coriander | | |------------------|------------|------------|------------|------------|------------|--| | Moisture content | 88.46±1.68 | 89.72±0.83 | 84.34±0.64 | 85.64±1.01 | 88.25±0.22 | | | Crude protein | 10.27±0.33 | 21.57±1.11 | 23.12±0.71 | 22.89±0.07 | 20.96±0.96 | | | Crude fiber | 12.32±0.40 | 8.75±0.18 | 12.66±0.24 | 11.18±0.12 | 7.12±0.08 | | | Ash | 12.84±0.88 | 12.78±0.14 | 14.92±0.32 | 13.54±0.12 | 13.79±0.03 | | | Total acidity* | 23.25±0.45 | 20.28±0.21 | 14.59±0.60 | 28.27±0.51 | 29.87±0.18 | | * mL 0.1N NaOH/100gm sample. Data are means of three replicate experiments ± SD. The phytochemical compounds in some fresh medicinal and aromatic plants compared to that in dried are shown in Table (2). Results reveal that the contents of total phenolics ranged from 1446.88 for coriander to 3128.57 mg/100gm for peppermint (on dry weight basis). After being dried these contents decreased to 1280.10 and 2356.45mg/100gm, respectively. Also, peppermint had the highest content of flavonoids while the lowest content was observed in coriander leaves. Otherwise, fresh coriander leaves had the highest content of carotenoids which was 184.23 mg/100gm, while the lowest content 112.47 mg/100 gm was shown in fresh peppermint leaves. However the highest content of ascorbic acid was observed in fresh parsley leaves which decreased from 762.94 to 122.18 mg/100gm (on DWB) after being dried by enforced hot air oven drier. Results indicate also that peppermint leaves had the lowest content of ascorbic acid which was 162.57mg/100gm. Moreover, total chlorophyll ranged from 507.91 to 2432.03 mg/100gm decreased to 252.32 and 1285.82 mg/100 gm for dill and peppermint leaves, respectively. The high content of medicinal and aromatic plants in these phytochemical compounds play an important role as beneficial effect being due to the action of antioxidant compounds, which are capable of neutralizing free radicals and reduce oxidative damage in the body (Clifford, 1995). Table (2): The content of phytochemical compounds in some fresh and dried medicinal and aromatic plants (mg/100gm DM) | Phytochemical compounds | Celery | | Dill | | Peppermint | | Parsley | | Coriander | | |-------------------------|----------|----------|----------|----------|------------|----------|----------|----------|-----------|----------| | | Fresh | Dried | | Total phenolics | 1884.60± | 1401.90± | 2018,40± | 1700.89± | 3128.57± | 2356.45± | 1978.16± | 1641.10± | 1446.88± | 1280.10± | | | 5.16 | 4.06 | 8.12 | 3.33 | 4.11 | 7.15 | 6.03 | 2.34 | 5.04 | 6.54 | | Flavonoids | 987.11± | 704.04± | 746.00± | 583.20± | 1255.50± | 723.14± | 912,00± | 884.31± | 724.25± | 608.18± | | | 3.92 | 6.11 | 4.62 | 2.57 | 5,18 | 2.83 | 3.80 | 4.56 | 2.60 | 3.75 | | Carotenoids | 165.21± | 113.75± | 122.13± | 94.18± | 112.47± | 100.86± | 113.95± | 89.34± | 184.23± | 146.87± | | | 1.78 | 1.89 | 2.07 | 0.54 | 1.25 | 1.35 | 2.08 | 0.15 | 3.25 | 1.96 | | Ascorbic acid | 184.33± | 46.83± | 232.67± | 57.95± | 162.57± | 45.36± | 762.94± | 122.18± | 302.44± | 76.11± | | | 2.17 | 0.43 | 1.65 | 1.01 | 1.08 | 0.12 | 3.91 | 1.17 | 1.15 | 0.55 | | Chlorophyll(A) | 425.23± | 233.75± | 382.24± | 194.82± | 1324.78± | 820.88± | 563.44± | 344.41± | 654.88± | 395.44± | | | 2.11 | 2.31 | 3.10 | 2,11 | 5.88 | 4.00 | 4.02 | 1.00 | 1.99 | 2.03 | | Chlorophyll(B) | 169.12± | 64.53± | 125.67± | 57.50± | 1107.25± | 464.94± | 216.82± | 92.68± | 256.64± | 122.18± | | | 2.27 | 1.11 | 1.49 | 0.83 | 3.39 | 2.07 | 2.00 | 1.10 | 0.73 | 1.17 | | Total chlorophyll | 594.35± | 298.28± | 507.91± | 252.32± | 2432.03± | 1285.82± | 780.26± | 437.09± | 911.52± | 517.62± | | | 3.09 | 1.66 | 3.35 | 1.44 | 5.00 | 3.21 | 4.41 | 1.15 | 3.17 | 2.58 | Data are means of three replicate experiments ± SD. ## Moussa, M.E. et al. Phenolic compounds in some fresh and dried medicinal and aromatic plants are shown in Table (3). Thirteen compounds of some fresh and dried medicinal and aromatic plants polyphenols were identified by HPLC analysis. The detected polyphenolic compounds were protocatchuic, P. hydroxy catechein, chlorogenic, catechol, syringic. caffene. vanillic. P.coumaric, salveillic, cinnamic, chrisin and caffeic as shown in Table (3). The main component of phenolic compounds was protocatchuic in all fresh and dried samples under investigation. Celery leaves had the highest protocatchuic content which was 617.96 mg/kg. This content decreased to 104.17 mg/kg after drying process. Fresh dill and peppermint had 433.14 and 411.69. These contents decreased to 305.38 and 80.61mg/kg, respectively. Also, dill had the highest content of chlorogenic compound 347.54mg/kg followed by celery which was 256.74mg/kg while the lowest chlorogenic content shown in conjander (15.40 mg/kg). Results also explained that coriander had 400.88 and 308.34 mg/kg in both P.coumaric and salycillic, respectively. Table (3): Phenolic compounds in some fresh and dried medicinal and aromatic plants (mg/kg on dry weight basis) | aromado pianto (mgrky on dry weight basis) | | | | | | | | | | | |--------------------------------------------|--------|--------|--------|------------|--------|---------|--------|-----------|--------|--------| | Phenolic Celery | | Dill | | Peppermint | | Parsley | | Coriander | | | | compounds | | | | | | | | | Fresh | | | Protocatchuic | 617.96 | 104.17 | 433.14 | 305.38 | 411.69 | 80.61 | 349.02 | 86.24 | 338.60 | 126.81 | | P.hydroxy | 11.27 | 1.19 | 15.09 | 1.25 | 11.77 | 1.67 | 8.41 | 1.22 | 30.74 | 24.05 | | penzoic | | | | | | | | _ | | | | Catechein | 35.23 | 2.24 | 53.39 | 99.74 | 57.54 | 3.92 | 51.68 | 3.36 | 46.56 | 40.52 | | Chlorogenic | 256.74 | 81.16 | 347.54 | 83.31 | 97.28 | 2.14 | 81.38 | 2.51 | 15.40 | 8.08 | | Catechol | 53.62 | 18.41 | 31.70 | 2.21 | 18.70 | 2.10 | 23.07 | 7.51 | 51.83 | 17.28 | | Syringic | 46.49 | 6.18 | 50.68 | 3.19 | 11.76 | 1.71 | 44.57 | 2.89 | 19,52 | 3.71 | | Caffene | 99.19 | 37.55 | 271.91 | 22.04 | | | 97.36 | 8.69 | 39.87 | 26.57 | | Vanillic | 28.75 | 7.73 | 14.05 | 1.83 | | | 4.31 | 1.72 | 33.98 | 5.22 | | P.Coumaric | 185.63 | 86.44 | 132.48 | 48.01 | 117.30 | 18.42 | 5.65 | 438.70 | 400.88 | 140.35 | | Salycillic | 141.54 | 55.33 | 17.62 | 1.75 | _ | | 2.44 | 1.73 | 308.34 | 24.35 | | Cinnamic | 5.26 | 1.94 | 3.78 | 1.10 | 5.74 | 1.89 | 6.69 | 2.60 | 32.18 | 1.72 | | Chrisin | | | 32.86 | 1.98 | | _ | 10.71 | 3.17 | 6.96 | 1.06 | | Caffeic | | | 67.40 | 28.10 | 27.16 | 5.69 | 13.11 | 2.11 | 10.14 | 6.90 | Mineral contents in some fresh medicinal and aromatic plants were determined and the obtained results are presented in Table (4). These results reveal that parsley leaves had the highest content of calcium, potassium and magnesium which were 2041.37, 3868.97 and 475.86 mg/100gm, respectively. Peppermint had the highest phosphorus and iron content 770.82 and 59.34 mg/100gm (on DWB), respectively. Results also show that celery leaves had the highest sodium content. On the other side, results explain that celery had the lowest content of calcium and iron, 518.86 and 18.24 mg/100gm (on DWB), respectively, while dill had the lowest content of phosphorus. Also, peppermint recorded the lowest content in both potassium and magnesium while parsley showed the lowest sodium content. # J. Food and Dairy Sci., Mansoura Univ., Vol. 2 (7), July, 2011 Table (4): Mineral contents of some fresh medicinal and aromatic plants (mg/100 gm on dry weight basis) Mineral Celery Dill Peppermint Parsley Coriander contents Calcium 518.86±3.04 | 1520.82±2.33 | 1617.40±4.47 | 2041.37±7.02 | 794.33±2.96 Phosphorus 349.56±2.66 197.94±1.05 | 770.82±3.90 | 344.80±1.18 531.90±1.82 Iron 18.24±0.57 46.87±1.17 59.34±1.01 30.72±0.08 36.59±0.16 Sodium 829.67±4.03 | 354.17±3.11 195.63±0.96 172.83±2.00 515.64±4.01 Potassium 3546.75±6.68 3354.17±7.78 2261.74±3.47 3868.97±5.59 3056.73±3.55 377.36±2.39 | 228.27±1.81 | 121.81±0.15 | 475.86±1.49 Magnesium 172.21±0.94 Data are means of three replicate experiments ± SD. Results in Figures (1 and 2) show the total antioxidant activity (TAA) in different fresh and dried medicinal and aromatic plants using 5% extract prepared by 5g fresh samples in 100ml 80% methanol. Fig. (1): Total antioxidant activities of some fresh medicinal and aromatic plants Fig.(2): Total antioxidant activities of some dried medicinal and aromatic plants. These results reveal that antioxidant activity of fresh dill and peppermint had the highest percentages of total antioxidant activity. Also, fresh celery had gradual effect on DPPH compound which used as synthetic free radical, Coriander and parsley explained the lowest antioxidant activity obtained which recorded of TAA. After drying process total antioxidant activity decreased. Slight decrease was observed with dill and peppermint leaves while celery and parsley leaves were more effective by using air oven drier process. These results indicate the presence of antioxidant compounds such as ascorbic acid, polyphenols, flavonoids and the higher percentages which act together as an important role of antioxidant activity. Also, it contains highest antioxidant medicinal plants activity as correlated well with the contents for both chlorogenic and protocatchuic acid and the correlated results obtained by Scherer and Godov (2009) which used a new antioxidant activity index by DPPH method and they found that gallic acid showed higher AAI value 27 followed by protocatchuic acid 20 these two compounds may play an important role as strongly antioxidant compounds in medicinal plants. # REFERENCES AOAC (1990). Official Methods of Analysis. Association of Official Analytical Chemists, Washington, DC, USA. Baricevic, D., J. Bernath, L. Maggioni and E. Lipman (2004). Report of a working group on medicinal and aromatic plants. First meeting, 12-14 September 2002, Gozd Martuljek, Slovenia. International Plant Genetic Resources Institute, Rome, Italy. # J. Food and Dairy Sci., Mansoura Univ., Vol. 2 (7), July, 2011 - Chen, X. Y., and Ahn, D. U. (1998). Antioxidant activities of six natural phenolics against lipid oxidation induced by ultraviolet light. Journal of the American Oil Chemists' Society, 75(12), 1717e1721. - Clifford, M.N. (1995). Understanding the biological effects of dietary complex phenols and tannins and their implications for the consumer0s health and well being. (Report of the European Project FAIR- CT95-0653. European Community Programmers for Research, Technological Development and Demonstration in the field of Agriculture and Fisheries). - Clifford, M. N. (1999). Chlorogenic acids and other cinnamatesnature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 79, 362–372. - Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K. and Poel, B. (1998). Structure activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61(1), 71e76. - Dewanto, V.; Wu, X.; Adom, K. K. and R. H. Liu (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10): 3010–3014. - Eberhardt, M. V.; Kobira, K.; Keck, A. S.; Juvik, J. A. and E. H. Jeffery (2005). Correlation analyses of phytochemical composition, chemical, and cellular measures of antioxidant activity of broccoli (Brassica oleracea L. var. italica). Journal of Agricultural and Food Chemistry, 53(19): 7421–7431. - Goupy, P.; M.Hugues; P. Boivin and M.J. Amoit (1999). Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J. Sci. Food Agric., 79: 1625-1634 - Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 476: 107-112. - Jones, D. P., Coates, R. J., Flagg, E. W., Eley, J. W., Block, G., Greenberg, R. S., Gunter, E. W., and Jackson, B. (1992). Glutathione in foods listed in the National Cancer Institute's Health Habits and History Food Frequency Questionnaire / Nutrition and Cancer. Vol. 17, No. 1. P. 57–75. - Lee, J. and Scagel, C. F. (2010). Chicoric acid levels in commercial basil (Ocimum basilicum) and Echinacea pupurea products. Journal of Functional Foods, 2, 77–84. - Luiz, M., Biasutti, A., and Garcia, N. A. (2002). Micellar effect on the scavenging of singlet molecular oxygen by hydroxybenzenes. Redox Report, 7(1), 23 -28. - Molay, K. R., Makiko, T., Seiichiro, I., and Tojiro, T. (2007). Antioxidant potential, antiproliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: effects of thermal treatment. Food Chemistry, 103(1), 106e114. - Rosa, E. A. S., and Heaney, R. K. (1993). The effect of cooking and processing on the glucosinolate content e studies on 4 varieties of Portuguese cabbage and hybrid white cabbage. Journal of the Science of Food and Agriculture, 62(3), 259-265. - Scherer, R. and H.T. Godoy (2009) Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112: 654–658. - Shinwari, Z. (2005). Medicinal plants research in the 21st century. In: Proceedings of the International symposium medicinal plants: Linkages beyond national boundaries. (Eds.) Shinwari, Z., T. Watanabe and M. Ali, pp. 12-16. - Velioglu, Y. S.; Mazza, G.; Gao, L. and B. D. Oomah (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. of Agricultural and Food Chemistry, 46(10):4113-4117. - Yanishlieva, N. V., Marinova, E., and Pokorny, J. (2006). Natural antioxidants from herbs and spices. European Journal of Lipid Science and Technology, 108, 776–793. - Zhang, D. and Y. Hamauzu (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88: 503–509. - تأثير عملية التجفيف على المركبات الفينولية ونشاط مضادات الأكسسدة لسبعض النباتات الطبية والعطرية محمد الأمين محمد موسى، سـعد ميخاتيل يوسف و قدري حامد محمد الوصيف قسم بحوث تصنيع الحاصلات البستانية - معهد بحوث تكنولوجيا الأغنيــة - مركــز البحــوث الزراعية – الجيزة - مصر تم دراسة تأثير خواص مضادات الأكسدة كمثيطات للسقوق المسرة والمتمثلة فسي المركبسات الغيتوكيميائية والمستخلصة من أوراق الشبت والبقنونس والكسبرة والنعناع والكرفس الطازجـــة والعجنفــة. علاوة على ذلك تم دراسة التركيب الكيميائي والمحتوي من العناصر المعننيــــة لهــذه النباتــات الطبيــة والعطرية. أوضحت النتائج أن المحتوي من الغينولات الكلية تراوحت مابين ١٤٤٦.٨٨ الـــــــ ٣١٢٨.٥٧ ٣ مليجرام لكل ١٠٠ جرام لأوراق الكسبرة والنعناع على التوالي. وبعد المعاملة بالتجفيف انخفض المحتسوي الي ١٢٨٠.١٠ و ٢٣٥٦.٤٥ مايجرام لكل ١٠٠ جرام علي التوالي. أيضاً وجد أن اعلمي محتسوي مسن الفلافونات كان في اوراق اللعناع بينما سجلت أوراق الكسيرة أقل محتبوي بالمقارنسة بسأوراق النباتات الاخري. وعلى العكس سجلت عينات أوراق الكسبرة الطازجة أعلى محتوي من الكاروتيندات بينما كانــت لوراق للنعناع أقل محتوي. كما أظهرت نتائج تحليل الفينولات أن المركب الرئيسي هــو البروتوكاتــشويك لكل أوراق النباتات الطازجة والمجففة تحت الدراسة وكانت اوراق الكرفس أكثر النباتات في المحتوي مسن البروتوكاتشويك. أما عند تقدير العناصر المعدنية فقد اوحظ ان اوراق البقدونس تحتوي على أعلى كمية من الكالسيوم والبوتاسيوم والماغلسيوم بينما أحتوي النعناع على أعلى معدل من الفوسفور والحديـــد. لظهـــرت ليضا النتائج أن أوراق الكرفس تحتوي على أعلى معدل من العموديوم. وبالنسبة لنشاط مضادات الأكسدة للكلية مسجلتٌ كل من الشبت والنعناع أعلى معدل من النشاط وكانت لوراق الكرفس ذات تأثير مندرج علسى مركب ٢-٢ داى فينيل ١ بيكريل هيدرازيل والمستخدم كمركب صناعي يمثل الشقوق الحرة . بينما كان كلُّ من أوراق الكمبرة والبقدونس أقل نشاط كمضادات للأكسدة بالمقارنة بالنباتات الاخسرى ايسضنا لسوحظ ان لجراء عملية التجفيف بواسطة الأفران الحرارية تقلل بنسبة ضئيلة نشاط مضادات الأكسدة الكليبة لكل من لوراق للشبت والنعناع ولمكنها تؤثر يشكل أكبر على أوراق الكرفس والبقدونس. قام بتحكيم البحث كلية الزراعة – جامعة المنصورة مركز البحوث الزراعية أ.د./ محمد طه شلبي أ.د./ فؤاد أمين الأشوح