

Journal

J. Biol. Chem. Environ. Sci., 2012, Vol. 7(1): 17-32 www.acepsag.org

COULD PHOSPHORENE HELP FICUS BENJAMINA L. PLANT TO TOLERATE THE DELETERIOUS EFFECTS OF SALINE WATER?

Gehan¹ H. Abdel-Fattah , S.M. Shahin¹ and Soad A.M.Khenizy²

¹ Bot. Grs Res. Dept., Hort. Res. Inst., ARC, Giza, Egypt. ² Flori. Res. Dept., Hort. Res. Inst., ARC, Giza, Egypt.

ABSTRACT

A study was carried outunder plastic house at the nursery of Hort. Res. Inst., Giza, Egypt during 2010 and 2011 seasons to find out the role of fertilization with phosphorene (a biofertilizer contains a specific clone of bacteria that transfers the unavailable triphosphate to available monophosphate) at the rates of 0, 50 and 100 ml/pot in reducing the deleterious effects of saline water at the levels of 0, 2000, 4000, 6000, 8000 and 10000 ppm (prepared from an equal mixture of NaCl and CaCl₂ salts, 1:1 by weight) on growth and quality of Waringin fig (*Ficus benjamina* L.) transplants (one-year-old) grown in 30-cm-diameter plastic pots filled with 7 kg of a sand + clay mixture (1:1, v/v).

The obtained results indicated that survival (%) was significantly reduced at the high salinity levels (8000 and 10000 ppm), and the percent of mortality was 100% for plants irrigated with 10000 ppm saline water and dressed with either zero or 50 ml phosphorene/pot. All vegetative and root growth parameters were progressively decreased with increasing salinity level, except for fresh and dry weights of roots which improved on account of 2000 and 4000 ppm levels. On the other hand, all of these parameters were significantly improved in response to phosphorene treatments, with the superiority of 100 ml/pot treatment that gave the highest means in this regard. The percentage of salt resistance index (SRI%) was more than 100% for control plants and those ones irrigated with 2000, 4000 and 6000 ppm saline water in the presence of either 50 or 100 ml phosphorene/pot. Leaf content of chlorophylls a and b, as well as N, P

and K was gradually decreased with increasing salinity level, but was significantly augmented in response to phosphorene application, especially at the rate of 100 ml/pot, which gave the highest content at all. The opposite was the right concerning carotenoids, Na, Cl and proline content.

In conclusion, the previous results reveal that one-year-old transplants of Waringin fig (*Ficus benjamina* L.) grown in 30-cm-diameter plastic pots can tolerate salinity of irrigation water up to 6000 ppm, with good performance and healthy growth if fertilized monthly with 100 ml phosphorene/pot, three times throughout the growing season.

INTRODUCTION

The need to more of tolerant plants to salinity is still one of the most important demands necessary for beautification of coastal areas and surround lakes, as the tourist villages and new communities increase day by day. Among pot plants may serve in this concern *Ficus benjamina* L. Waringin fig (Fam: Moraceae). It is one of the most commonly grown indoor plants, native to tropical and sub-tropical regions, tree or shrub, epiphytic when young (**Bailey, 1976**). Its shape, canopy, deep green and brilliant leaves with wide-spreading, conical crown of drooping, slender branches make it graceful for landscaping (**Chin, 2000**). Most of ficus species considered sensitive to salt stress (**Hattatt, 2001**), but a good nutrition may play a role in reducing such sensitivity (**Handreck and Black, 2002**).

Salinity, on the other hand, affects almost all aspects of plant growth and development. In this regard, **Devecchi and Remotti** (2004) reported that the first damage effects of a high salt yellowings, necroses, presence of dry leaves, malformations and anomalies on the leaves of *Berberis candidula, Pyracantha coccinea* and *Viburnum davidii.* The typical symptoms were also observed on the leaves of *Cotoneaster salicifolius* due to the root absorption of salts containing Cl ions, which causes partial or total destruction of chlorophylls, and therefore the death of these parts. In addition, **Devecchi et al., (2005)** claimed that NaCl caused a progressive browning in the leaves of *Lonicera pileata* from the end of the leaf to its base, while in *Euonymus fortunei* and *Hedera helix* caused a progressive and diffused yellowing on all the leaf followed by withering. Besides, some physiological disturbances may occur in stomatal conductance, transpiration, enzymatic activities, photosynthesis and leaf and root activity. Consequently reduction of vegetative and root growth, flower quality and yield, as well as biomass decrement might be observed. These disorders were already registered by **Al-Qubaie** *et al.*, (2003) on *Bougainvillea glabra, Jasminum azoricum* and *Conocarpus erectus,* **Zhang** *et al.*, (2004) on *Nitraria sibirica,* **Cabrera** *et al.*, (2005) on *Rosa spp.*, **Jou** *et al.*, (2006) on *Mesembryanthemum crystallinum,* **Giri** *et al.*, (2007) on *Acacia nilatica* and **Mahmoud** *et al.*, (2008) who demonstrated that increasing salinity of diluted sea water up to 50% greatly reduced survival (%), vegetative and root growth, salt resistance index (%) and pigments content in the leaves of both *Dovyalis caffra* and *Lantana camara* transplants, while Na, Cl and proline content in the leaves of both plants was markedly increased.

A biofertilizer phosphorene was suggested since years ago for improvement soil properties and enhancing plant growth. In this connection, **Hussien (2004)** found that phosphorene, ascobene and rhizobacterene biofertilizers increased vegetative growth and bulb productivity of *Iris tingitana* cv. Wedgwood, as well as pigments content in the leaves, and total carbohydrates, N, P and K in the leaves and bulbs. **Shahin (2005)** stated that a combination of enciabene + phosphorene + k-sulphate improved growth, density and colour of *Paspalum vaginatum* turf grown in either sandy or loamy soil. On *Iris tingitana* cv. Wedgwood, **Ahmed and EI-Tayeb (2008)** postulated that fertilization with 5g/pot nitrobene + 5g/pot phosphorene + 2g/pot NPK (1:2:1) gave the best growth, flowering, bulb productivity and chemical composition. Similarly, were those results revealed by **Abdel-Fattah (1998)** on globe artichoke, **Salem et al., (2006)** on flax and **EI-Sirafy et al., (2006)** on Egyptian winter wheat.

Such trial, however aims to explore the role of phosphorene in alleviating the harmful effects of irrigation with saline water on growth, quality and chemical composition of the salt-sensitive Waringin fig (*Ficus benjamina* L.) plant.

MATERIALS AND METHODS

A series of pot experiments was consummated under plastic house at the nursery of Hort. Res. Inst., Giza, Egypt throughout the two consecutive seasons of 2010 and 2011 to find out the effects of saline water, phosphorene and their interaction on growth behaviour and chemical composition of Waringin fig (*Ficus benjamina* L) transplants, and determining the most favorite level of phosphorene suitable for improving growth under salt stress.

So, one-year-old homogenous transplants of *F. benjamina* L. (25-27 cm height, 4-5 mm stem diameter and 5-6 branches) were planted on March, 1^{st} in the two seasons in 30-cm-diameter plastic pots (one transplant/pot) filled with about 7 kg/pot of a mixture consisted of sand and clay at the ratio of 1:1, by volume. The physical and chemical properties of the used sand and clay in both seasons are shown in Table (a).

Table (a): Some physical and chemical properties of the used sand and clay during 2010 and 2011 seasons.

ype	Suo	Partic	le size: (%	distri %)	bution	C.D.		E.C.	(Cations	(meq/L)		Anio	ons (m	eq/L)
Soil	seas	Coarse sand	Fine sand	Silt	Clay	S.P	рн	(ds/m)	Ca ⁺⁺	Mg ⁺⁺	Na [*]	\mathbf{K}^{+}	HCO3	CI.	SO4-
61	2010	89.03	2.05	0.40	8.52	23.00	7.92	3.72	7.50	1.63	33.60	0.50	3.20	22.00	18.03
Sand	2011	90.10	1.95	0.50	7.45	22.86	7.89	3.75	19.42	8.33	7.20	0.75	1.60	7.00	27.10
Char	2010	7.54	22.28	30.55	39.63	55.00	8.17	2.26	7.82	2.12	15.40	0.75	6.60	8.20	11.29
Ciay	2011	7.64	22.50	30.15	39,71	51.00	8.09	2.38	7.50	2.20	15.50	0.75	6.78	8.02	11.15

Immediately after planting, the transplants were irrigated once every three days with 500 ml of fresh water/pot until first of April, as the following treatments were applied:

A. Saline water treatments:

A pure salt of NaCl was mixed well with a pure one of $CaCl_2$ at the ratio of 1:1, by weight. Thereafter, saline water was prepared from the salts mixture at the levels of 0, 2000, 4000, 6000, 8000 and 10000 ppm, and each pot was irrigated with 750 ml of the different saline water treatments twice a week till the end of experiment on October, 30^{th} .

B. Phosphorene treatments:

As phosphorene (a biofertilizer contains a specific clone of bacteria which changes the unavailable triphosphate to available monophosphate) was added to the soil mixture in a liquid form at the rates of 0, 50 and 100 ml/pot, three times commencing from April, 15th (i.e. after irrigation with saline water by two weeks) with one month interval.

C. Saline water and phosphorene interaction treatments:

As each treatment of saline water was combined with each one of phosphorene to form eighteen interaction treatments.

The transplants, however were fertilized three times during the course of the study with 5 g/pot of a compound chemical fertilizer (NPK, 1:1:1), as the first dose was drenched in the soil mixture at planting time, while the second and third ones were added bimonthly afterwards.

The layout of the experiment in the two seasons was a complete randomized design of three replicates with six transplants per replicate (**Mead** *et al.*, **1993**). At the end of the experiment, data were registered as follows: survival (%), plant height (cm), stem diameter at the base (cm), number of branches and leaves/plant, leaf area (cm²), the longest root length (cm), number of lateral roots/plant, and aerial parts and roots fresh and dry weights (g).A salt resistance index percentage (SRI%), as a real indicator for salt tolerance, was calculated from the equation described before by **Wu and Huff (1983):**

SRI (%) = Mean root length of the longest root in salt treated plant/Mean root length of the longest root in control × 100

In fresh leaf samples taken from the middle parts of plants, the pigments content (chlorophyll a, b and carotenoids, mg/g F.W.) was determined according to the method of **Moran (1982)**, while in dry samples, the percentages of nitrogen(**Pregl, 1945**), phosphorus (**Luatanab and Olsen, 1965**), potassium and sodium (using Flame photometer set) and chloride (**Jackson, 1973**) were measured. Moreover, content of free proline as mg/g F.W. was assessed in fresh leaf samples using the method explained by **Bates** *et al.*, (1973).

Data were then tabulated and statistically analyzed according to **SAS program (1994)** using **Duncan's Multiple Rang Test (1955)** for verifying the means of various treatments.

RESULTS AND DISCUSSION

Effect of saline water, phosphorene and their interaction on: 1. Vegetative and root growth characters:

Data in Table (1) exhibit that survival (%) was only reduced at the highest salinity concentrations to reach more than 70 and 80% in the first and second seasons, respectively for 8000 ppm level, while for 10000 ppm one, it was slightly more than 16% in both seasons. Phosphorene treatments, however significantly improved such parameters, especially the rate of 100 ml/pot, which gave the highest survival% comparing with zero and 50 ml/pot levels. Mortality was only 100% when plants irrigated with 10000 ppm saline water and dressed with either zero or 50 ml/pot of phosphorene. This means that F. benjamina plant can tolerate salinity of irrigation water up to 6000 or 8000 ppm in the presence of a good nutrition. All other vegetative and root growth characters averaged in Tables (1,2 and 3) were progressively decreased in the two seasons with increasing salinity level to reach the least values in plants watered with the highest cncentrations (8000 and 10000 ppm), whereas all of these triats were significantly improved as the rate of phosphorene was elevated, with the superiority of 100 ml/pot treatment, which generally gave utmost high means in the two seasons compared to both zero and 50 ml/pot rates.

The only exception was gained from 2000 ppm saline water treatment, which significantly elevated the roots fresh and dry weights in both seasons, and also from 4000 ppm treatment that gave means of roots fresh and dry weights closely near to or slightly higher than those of control plants. In general, phosphorene application alleviated the deleterious effects of saline water, and consequently improved, to some extent growth and tolerance of *F. benjamina* plant to salt stress. This may be attributed to the role of phosphorene in releasing more available monophosphate that activates various metabolic processes in the cell and involved in energy transfer process. It is also share in building of phospholipids and nucleic acids (Marschner, 1995).

Table (1) Effects of saline water, phosphorene and their interaction on some vegetative growth parameters of Ficus benjamina L. transplants during 2010 and 2011 seasons

Nate reals P P1 P2 Mean P P3 P4 P4 P4 P3 P4	aline		Surviv	'al (%	(Pla	nt hei	ight (c	(m.	Sten	n dian	neter ((m)	No.	Dranc	hes/pl	ant	N	o. leav	es/plai	It	Le	af are	a (cm	[]	
Tirst season: 2010 omrol 000a 1000a 1000a 1000a 1534d 1351a 134d 1354a 135	valer	Ρ	Ы	P2	Mean	Ρ	P1	P2	Mean	Ρ	P1	P2	Mean	Ρ	Ы	P2	Mean	Ρ	H	P2	Mean	Ρ	PI	P2	Mean	
mmm lo00a l000a l100a l135.la l13.4a <th< th=""><th>(undo</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>First</th><th>st seas</th><th>on: 20</th><th>110</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	(undo											First	st seas	on: 20	110											
0000 100.0a 100.0a 50.46 57.46 0.576 0.6054 0.576 15.064 15.84 18.46 109.55g 114.1et 135.56 119.7b 13.56d 13.4g 120.7d 100.7d	ontrol	100.0a	100.0a	100.0a	100.0a	66.2b	70.3b	81.6a	72.7a	0.74c	0.75c	0.98a	0.83a	17.6bc	18.5b	20.9a	19.0a	123.3cd	130.5bc	151.4a	135.la	13.4cd	14.4ab	14.9a	14.2a	
0000 1000a 100a 100a 100a 100a 100a 100a 100a 100a 11.6d 72.4jk 73.5jk 64.9e 8.3j 9.4c 10.1 0000 000f 000f 000f 9.2c 19.2e 10.2e 10.2e 11.2d 11.2d 11.2d 11.2d 11.2d 10.2e 10.2e 10.2e 10.2e 10.2e 10.2e 10.2e 10.2e 10.2e	000	100.0a	100.0a	100.0a	100.0a	54.7d	59.4c	67.9b	60.7b	0.63e	p69.0	0.86b	0.73b	15.0de	15.8d	18.4b	16.4b	109.5fg	114.1ef	135.5b	119.7b	13.5cd	13.9bc	14.3ab	13.9a	
0000 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 24, fs 75, fs 33. fs 53. fs </th <th>000</th> <th>100.0a</th> <th>100.0a</th> <th>100.0a</th> <th>100.0a</th> <th>39.6f</th> <th>48.1e</th> <th>59.7c</th> <th>49.1c</th> <th>0.57fg</th> <th>0.60ef</th> <th>0.76c</th> <th>0.64c</th> <th>13.4fg</th> <th>14.2ef 1</th> <th>16.2cd</th> <th>14.6c</th> <th>94.2h</th> <th>104.lig</th> <th>120.1de</th> <th>106.1c</th> <th>11.3fg</th> <th>12.6de</th> <th>13.0cd</th> <th>12.3b</th>	000	100.0a	100.0a	100.0a	100.0a	39.6f	48.1e	59.7c	49.1c	0.57fg	0.60ef	0.76c	0.64c	13.4fg	14.2ef 1	16.2cd	14.6c	94.2h	104.lig	120.1de	106.1c	11.3fg	12.6de	13.0cd	12.3b	
0000 75.0d 78.0b 78.8b 28.3k 32.4d 0.48i 0.51k 0.05k 0.52 k 55.8k 55.7k 73.3jk 64.9e 8.3j 9.0 0000 0.00f 0.00f 49.5c 16.5c 0.001 0.12.12k 10.4e 0.00j 0.00j 0.01k 0.00m 69.0k 23.0f 0.0k 0.00 0.001 0.001 49.5c 10.5c 0.010 0.011 11.2k 1	0009	100.0a	100.0a	100.0a	100.0a	29.1jk	34.4gi	38.5fg	34.0d	0.48i	0.53ch	0.71cd	0.57d	10.9ij	11.6hi	12.4gh	11.6d	72.4jk	79.5ij	83.2i	78.4d	9.7hi	11.0fg	11.7ef	10.8c	
	8000	75.0d	79.0c	82.0b	78.8b	28.3k	32.8ij	36.0fh	32.4d	0.46i	0.48i	0.57fg	0.50e	8.61	9.0kl	10.1jk	9.2e	55.81	65.7k	73.3jk	64.9e	8.3j	9.6hi	10.3gh	9.4d	
Image: Mean 1000 79.26 79.36 86.6a 36.36 40.86 5.2.5a 0.486 0.516 0.73a 10.96 11.56 11.53c 85.6a 105.4a 94.6 10.61 omtrol 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 100.0a 85.34 59.3b 0.886 0.97b 0.88b 14.0d 14.5c 17.2a 88.8cd 104.2c 132.3a 111.7a 11.2bc<11.5c 0000 100.0a 100.0a 100.0a 100.0a 100.0a 95.3cd 95.46 55.7b 50.1c 0.72gh 0.78g 0.8bd 0.77c 11.5c 12.2a 88.6d 10.26 13.3d 11.7a 11.2bc	0000	00.0f	00.0f	49.5e	16.5c	0.001	00.01	31.2jk	10.4e	0.00	0.00j	0.50hi	0.17f	0.0m	0.0m	8.9kl	3.0f	00.0m	00.0m	69.0k	23.0f	0.0k	0.0k	8.7ij	2.9e	
Second season: 2011 Second season: 2011 Second season: 2011 Nonrol 100.0a 100.0a 63.9c< 71.0b	<th>Mean</th> <th>79.2c</th> <th>79.8b</th> <th>88.6a</th> <th></th> <th>36.3c</th> <th>40.8b</th> <th>52.5a</th> <th></th> <th>0.48c</th> <th>0.51b</th> <th>0.73a</th> <th></th> <th>10.9c</th> <th>11.5b</th> <th>14.5a</th> <th></th> <th>75.9c</th> <th>82.3b</th> <th>105.4a</th> <th></th> <th>9.4c</th> <th>10.3b</th> <th>12.2a</th> <th></th>	Mean	79.2c	79.8b	88.6a		36.3c	40.8b	52.5a		0.48c	0.51b	0.73a		10.9c	11.5b	14.5a		75.9c	82.3b	105.4a		9.4c	10.3b	12.2a	
omtol 100.0a 100.0a 63.9c 71.0b 77.a 0.87cd 0.93bc 15.5c 16.7b 19.5a 17.2a 98.8cd 104.4cc 17.2a 18.8cd 10.1cc 11.7a 11.1cc												Seco	nd sea	Son: 2	011											
2000 100.0a <th>ontrol</th> <th>100.0a</th> <th>100.0a</th> <th>100.0a</th> <th>100.0a</th> <th>63.9c</th> <th>71.0b</th> <th>78.6a</th> <th>71.2a</th> <th>0.87cd</th> <th>0.93bc</th> <th>1.10a</th> <th>0.97a</th> <th>15.3c</th> <th>16.7b</th> <th>19.5a</th> <th>17.2a</th> <th>98.8cd</th> <th>104.2c</th> <th>132.3a</th> <th>111.7a</th> <th>11.2bc</th> <th>11.9ab</th> <th>12.7a</th> <th>11.9a</th>	ontrol	100.0a	100.0a	100.0a	100.0a	63.9c	71.0b	78.6a	71.2a	0.87cd	0.93bc	1.10a	0.97a	15.3c	16.7b	19.5a	17.2a	98.8cd	104.2c	132.3a	111.7a	11.2bc	11.9ab	12.7a	11.9a	
4000 100.0a 100.0a 45.3ef 49.4e 55.7e 50.1e 0.72gh 0.78g 0.81de 0.77e 11.5e 12.7e 78.3e 81.1e 90.8d 83.4c 9.3fg 9.7i 6000 100.0a 100.0a 100.0a 35.7h 41.3fg 43.6f 40.2d 0.67h 0.77a 0.58h 0.5gl 10.7f 1.3e 12.7e 78.3e 81.1e 90.8d 8.3fg 9.7i 81.4e 7.4h 81.gh 7.4e 39.0j 45.0j 55.0gh 46.4e 7.7i 8.3 0000 83.0e 87.0b 90.0j 86.7f 30.1i 33.7hi 36.5gh 33.4e 0.58i 0.69h 6.7i 7.4hi 8.1gh 7.4e 39.0j 45.0j 55.0gh 46.4e 7.7i 8.3 0000 80.0e 0.0fo 0.0j 0.0j 0.0j 0.0j 0.0j 0.0j 12.1f 8.3 12.4e 7.4h 8.1gh 7.4e 39.0j 45	2000	100.0a	100.0a	100.0a	100.0a	56.3d	58.1d	63.4c	59.3b	0.80ef	0.86d	0.97b	0.88b	14.0d	14.6cd	17.2b	15.3b	91.0d	92.0d	119.6b	100.9b	10.8cd	10.3de	11.2bc	10.8b	
6000 100.0a 100.0a 35.7h 41.3fg 43.6f 40.2fh 0.67h 0.67h 0.73gh 0.56d 8.5gh 9.2fg 10.2fh 9.3d 54.7gh 59.8g 69.7f 61.4d 8.2hi 8.9 8000 83.0c 87.0b 90.0b 86.7f 30.1i 33.7hi 36.5gh 33.4e 0.55i 0.69h 0.60e 6.7i 7.4hi 8.1gh 7.4e 39.0j 45.0ij 57.0gh 46.4e 7.7i 8.3 0000 00.0e 60.0e 56.0d 18.7c 0.00j 00.0j 0.01j 0.1ff 0.0j <	4000	100.0a	100.0a	100.0a	100.0a	45.3ef	49.4e	55.7e	50.1c	0.72gh	0.78fg	0.81de	0.77c	11.5e	12.6e	13.9d	12.7c	78.3e	81.1e	90.8d	83.4c	9.3fg	9.7fg	10.5de	9.9c	
8000 83.0c 87.0b 90.1i 33.7hi 36.5gh 33.4e 0.52i 0.58i 0.60h 6.7i 7.4hi 8.1gh 7.4e 39.0j 45.0j 55.0gh 46.4e 7.7i 8.3 0000 00.06 00.06 56.0d 18.7c 0.00j 00.0j 0.0j 0.0j 0.0j 0.17f 0.0j	0009	100.0a	100.0a	100.0a	100.0a	35.7h	41.3fg	43.6f	40.2d	0.67h	0.67h	0.73gh	P69.0	8.5gh	9.2fg	10.2f	9.3d	54.7gh	59.8g	f7.69	61.4d	8.2hi	8.9gh	10.0ef	9.0d	
0000 00.0e 00.0e 00.0e 5.0d 18.7c 0.00j 0.00j 0.0j	8000	83.0c	87.0b	90.0b	86.7f	30.1i	33.7hi	36.5gh	33.4e	0.52i	0.58i	0.69h	0.60e	6.7i	7.4hi	8.1gh	7.4e	39.0j	45.0ij	55.0gh	46.4e	7.7i	8.3hi	9.3fg	8.4e	
Mean 80.5b 81.2b 91.0a 38.6c 42.3b 0.60c 0.64b 0.80a 9.3c 10.1 12.7a 60.3c 63.7b 85.8a 7.9b 8. P: Free from phosphorene, P1: phosphorene at 50 ml/pot and P2: phosphorene at 100 ml/pot. 9.3c 10.0 ml/pot. 60.3c 63.7b 85.8a 7.9b 8.	0000	00.0e	00.0e	56.0d	18.7c	0.00j	00.00	30.3i	10.1f	0.00	0.00	0.5li	0.17f	0.0	0.0	7.4hi	2.5f	00.0k	00.0k	47.5hi	15.9f	0.0	0.0j	8.9gh	3.0f	
P: Free from phosphorene, P1: phosphorene at 50 ml/pot and P2: phosphorene at 100 ml/pot. Means within column or row having the same letters are not significantly different according to Dancan's Multiple Range Test (DMRT) at	Mean	80.5b	81.2b	91.0a		38.6c	42.3b	51.4a		0.60c	0.64b	0.80a		9.3c	10.1	12.7a		60.3c	63.7b	85.8a		7.9b	8.2b	10.4a		
Means within column or row having the same letters are not significantly different according to Dancan's Multiple Range Test (DMRT) at	P.F	ree fro	m phc	sphor	ene, P	l: pho	sphore	ene at	50 ml/	pot an	d P2:	phospi	horene	at 10) m/p	ot.										
	Mea	ns wit	hin co.	humn c	NOT IOW	having	g the s	ame le	etters a	ire not	signif	icantly	/ differ	ent ac	cordin	g to D	ancan	's Mul	tiple R	ange T	est (D	MRT) at 5%	6 leve		

J. Biol. Chem. Environ. Sci., 2012, 7 (1), 17-32

23

water treats. P P1 (ppin) 26.22de 37.11b 2000 25.55e 32.93c 2000 23.65e 32.93c 4000 18.73g 30.45c 8000 13.55h 27.52d 8000 13.55h 27.52d 900i 13.56h 22.36f 10000 0.00i 0.00i Mean 15.69c 25.06b Mean 15.69c 25.06b 2000 26.7.01e 38.54b 2000 26.86c 33.01c	P2 b 44.98a c 39.57b c 36.79b d 31.34c d 31.34c	Mean 36.10a 32.05b 28.66c 24.14d	Р	atereral	roots/	plant		SRI	(%)	
treats. treats. (ppm) 26.22de 37.11b 2000 25.55e 32.93c 2000 18.73g 30.45c 6000 13.55h 27.52d 8000 13.55h 27.52d 10000 0.00i 0.00i Mean 15.69c 25.06b Mean 15.69c 25.06b 2000 27.01e 38.54b 2000 26.86e 33.01c	b 44.98a c 39.57b c 36.79b d 31.79b d 31.79b d 31.79b d 31.79b	36.10a 32.05b 28.66c 24.14d		P1	P2	Mean	P	P1	P2	Mean
Control 26.22de 37.11b 2000 23.65e 32.93c 4000 18.73g 30.45c 6000 13.55h 27.52d 8000 13.55h 27.52d 8000 13.56h 200i 10000 0.00i 0.00i Mean 15.69c 25.06b Mean 15.69c 25.06b 2000 27.01e 38.54b 2000 26.86e 33.01c	b 44.98a c 39.57b c 36.79b d 31.34c if 25.41de if 25.41de	36.10a 32.05b 28.66c 24.14d	E	rst seas	on: 201	0				
2000 23.65e 32.93c 4000 18.73g 30.45c 6000 13.55h 27.52d 8000 13.55h 27.52d 8000 0.00i 0.00i 0.00i 0.00i 0.00i Mean 15.69c 25.06b Control 27.01e 38.54b 2000 26.86e 33.01c	c 39.57b c 36.79b d 31.34c of 25.41de	32.05b 28.66c 24.14d	7.23de	7.99c	10.21a	8.48a	100.0de	141.5b	171.5a	137.7a
4000 18.73g 30.45c 6000 13.55h 27.52d 8000 13.55h 27.52d 10000 0.00i 0.00i Mean 15.69c 25.06b Mean 15.69c 25.06b Control 27.01e 38.54b 2000 26.86e 33.01c	c 36.79b d 31.34c if 25.41de	28.66c 24.14d	7.01ef	7.76cd	9.22b	8.00b	90.0ef	125.6c	150.9b	122.2b
6000 13.55h 27.52d 8000 12.00h 22.36f 10000 0.00i 0.00i Mean 15.69c 25.06b Control 27.01e 38.54b 2000 26.86e 33.01c	d 31.34c if 25.41de	24.14d	6.32gh	7.03e	7.80cd	7.05c	71.4g	116.1c	140.3b	109.3c
8000 12.00h 22.36f 10000 0.00i 0.00i Mean 15.69c 25.06b Control 27.01e 38.54b 2000 26.86e 33.01c	f 25.41de		5.11ij	6.34gh	6.97fg	6.14d	51.7h	104.9d	119.50	92.05d
10000 0.00i 0.00i Mean 15.69c 25.06b Control 27.01e 38.54b Control 27.01e 38.54b	14 371	19.92e	4.35k	4.91jk	5.77hi	5.01e	45.7h	85.3f	96.9de	76.0e
Mean 15.69c 25.06b Control 27.01e 38.54b 2000 26.86e 33.01c	T1/0-11	4.79f	0.00m	0.00m	2.761	0.92f	0.00i	0.00i	54.8h	18.3f
Control 27.01e 38.54b 2000 26.86e 33.01c	b 32.08a		5.00c	5.67b	7.12a		59.8c	95.6b	122.3a	
Control 27.01e 38.54b 2000 26.86e 33.01c			Sec	ond sea	son: 2(111				
2000 26.86e 33.01c	b 46.68a	37.41a	7.01cd	8.31b	9.98a	8.43a	100.0e	142.7b	172.8a	138.5a
	c 40.81b	33.56b	7.00cd	7.45c	8.22b	7.56b	99.4e	122.2c	151.1b	124.2b
4000 22.66f 30.52cd	pd 38.16b	30.45c	6.12fg	6.71ef	6.92de	6.58c	83.9f	113.0cd	141.3b	112.7c
6000 15.41g 28.45de	de 30.33cd	24.73d	5.34hi	5.97gh	6.32fg	5.88d	57.1g	105.3de	112.3cd	91.6d
8000 11.50h 23.09f	of 26.79e	20.46e	4.33j	4.34j	4.93ij	4.53e	42.9h	85.5f	99.2e	75.7e
10000 0.00i 00.00i	i 13.36gh	4.45f	00.001	0.001	2.36k	0.78 f	0.00i	0.00i	49.5gh	16.5f
Mean 17.24c 25.60b	b 32.69a		4.97c	5.46b	6.46a		63.8c	94.8b	121.0a	
* P: Free from phosph	horene, P1	: phosph	orene a	t 50 ml/	pot and	P2: pho	sphoren	e at 100	ml/pot.	

. 2 ſ 5 . . Ē

24

dry weights	
arts and roots fresh and	
their interaction on aerial p	10 and 2011 seasons
ie water, phosphorene and	a L. transplants during 201
Table (3) Effects of salin	of Ficus benjamin

aline	Ari	ial parts	F.W.	(g)	Aer	ial part	ts D.W.	(g)		Roots F	7.W. (g)		H	Roots D	.W. (g	0
vater	P	P1	P2	Mean	Ρ	P1	P2	Mean	P	PI	P2	Mean	Ρ	P1	P2	Mean
(ude							Fir	st seas	on: 201	0						
ntrol	34.14c	39.58b	45.95a	39.89a	9.65de	10.51bc	11.88a	10.68a	17.67g	25.81bc	27.76b	23.75a	7.13g	11.01c	12.34b	10.16b
000	33.09cd	34.66c	41.33b	36.36b	9.01ef	9.88cd	10.79b	9.90b	15.81gh	24.75cd	33.48a	24.68a	6.81g	10.90c	15.98a	11.23a
000	30.65de	31.11de	32.34cd	31.37c	8.31fg	8.63f	9.76de	8.90c	12.37i	22.68de	27.51b	20.85b	5.45h	10.11cd	12.27b	9.28c
000	25.02f	25.79f	29.88e	26.90d	6.65ij	6.92hi	7.72gh	7.10d	8.93j	19.93f	21.46ef	16.77c	3.63i	8.63ef	9.53de	7.26d
000	17.69g	18.54g	20.34g	18.86e	5.29k	5.96jk	6.43ij	5.89e	8.25jk	15.12h	17.18gh	13.52d	3.36i	6.81g	7.72fg	5.96e
0000	00.00h	00.00h	19.24g	6.41f	0.001	0.001	6.00jk	2.00f	0.001	00.001	6.43k	2.14e	0.00k	0.00k	2.36j	0.79f
lean	23.43c	24.95b	31.51a		6.49c	6.98b	8.77a		10.51c	18.05b	22.30a		4.40c	7.91b	10.03a	
							Seco	ond sea	son: 20	11						
ntrol	30.31e	35.78c	44.69a	36.93a	9.71cd	11.02b	12.26a	11.00a	15.01gh	26.63c	28.32bc	23.32b	7.25g	10.73de	12.42c	10.13b
000	30.11e	33.25cd	39.11b	34.16b	8.77e	9.65cd	11.03b	9.82b	16.53fg	27.99bc	35.01a	26.5la	7.22g	11.44cd	16.75a	11.80a
000	28.41e	30.89de	34.55c	31.28c	8.33e	9.16de	10.25bc	9.25c	14.33h	23.67d	29.50b	22.50b	5.89h	10.92df	13.42b	10.08b
000	21.15gh	23.33fg	24.77f	23.08d	7.00fg	7.34f	8.98de	PLL'L	9.31i	20.54e	23.21d	17.69c	4.09i	8.76f	9.98e	7.61c
000	16.97i	18.35hi	20.02h	18.45e	5.67h	6.21gh	6.86g	6.25e	9.10i	16.23gh	17.76f	14.36d	4.00i	7.08g	7.93fg	6.34d
0000	00.00j	00.00j	19.11hi	6.37f	0.00i	0.00i	6.34gh	2.11f	0.00k	00.00k	5.19j	1.73e	0.00k	0.00k	[1.91]	0.64e
lean	21.16c	23.60b	30.38a		6.58c	7.23b	9.29a		10.71c	19.18b	23.17a		4.74c	8.16b	10.40a	
P: Fr	ee from	hosph	orene,	P1: pho	sphore	ne at 50	ml/pot	and P2	: phosp	horene a	at 100 m	ul/pot.				
Mean	ns withi	n colum	n or ro	w havi	ng the	same let	ters are	not sis	anifican	tlv diffe	rent acc	ording to	o Danc	can's M	ultiple	Range
					0							D				0

Test (DMRT) at 5% level.

Moreover, **Darwish (2002)** demonstrated that microorganisms of biofertilizers enhancing mobilization of phosphate and micronutrients, and may secret some growth-promoting factors.

On the other hand, the gradual reduction in vegetative and root growth with increasing salinity rates may be referred to a decrease in cell volume at a constant cell number caused by salinity (Handreck and Black, 2002). Likewise, Devitt *et al.*, (2005) reported that mechanism of salt may result in cell division inhibitory and hence, reduce the rate of plant development. Jou *et al.*, (2006) affirmed that ATPase participates in the endoplasmic reticulum-Golgi mediated protein sorting machinery for both housekeeping function and compartmentalization of excess Na⁺ under high salinity.

The previous results are in accordance with those attained by **Devecchi and Remotti (2004)** on *Berberis candidula, Pyracantha coccinea, Viburnum davidii* and *Cotoneaster salicifolious,* **Cobrera** *et al.,* (2005) on *Rosa spp.,* **Giri et al., (2007)** on *Acacia nilotica* and **Mahmoud et al., (2008)** on *Dovyalis caffra* and *Lantana camara.*

In relation to the percent of salt resistance index (SRI%), as a real indicator for salinity tolerance, data in Table (2) indicate that such parameter was more than 100% in the two seasons for control plants and those ones irrigated with 2000, 4000 and 6000 ppm saline water and fertilized with either 50 or 100/ml phosphorene/ pot. The opposite was the right concerning high salinity level (8000 and 10000 ppm), which significantly declined this trait to less than 100%, even for plants dressed with phosphorene at both rates. This result emphasized that *F. benjamina* plant can tolerate salt stress up to 6000 ppm irrespective of fertilization or not.

From the aforementioned results, we have concluded that Waringin fig (*Ficus benjamina* L.) plant can tolerate salinity of irrigation water up to 6000 ppm, with good performance if the soil dressed with 100 ml phosphorene per 30-cm-diameter pot.

2. Chemical composition:

It is evident from data presented in Table (4) that, chlorophylls a, and b content was gradually declined in the leaves as a result of increasing salinity level in irrigation water, but they were significantly increased in response to phosphorene treatments, especially the rate of 100 ml/pot that gave the highest content. Carotenoids content, on the other hand, was augmentatively raised as salinity level was increased, but was decreased with elevating phosphorene rate. This may be related to the root absorption of NaCl from soil solution at high concentration, which causes yellowings and necroses on the leaves (**Devecchi and Remotti, 2004**). Phosphorene repairs, to somewhat this deficiency.

Similarly, were those results of N, P and K percentages, as they were cumulatively decreased with raising salinity concentration, but markedly improved due to fertilization with phosphorene, especially the rate of 100 ml/pot that resulted the highest records. This may indicate the role of phosphorene in activating mobilization of phosphate and micronutrients to be more available for plants (**Darwish, 2002**).

On the other side, the percent of Na and Cl, as well as proline content (mg/g F.W.) were progressively increased with increasing salinity level because the higher salt concentration in the nutrient medium leads usually to an increase in the uptake of some highly hydrophilic ions (e.g. Na or borate) as mentioned by **Mengel and Kirkby (1979)**. It was also suggested that accumulation of some amino acids and amides in the leaves and roots of salinity stressedplants may be du to *de novo* synthesis and not the result of protein degradation (**Gilbert** *et al.*, **1998**). However, contents of the three previous constituents were slightly reduced due to application of phosphorene indicating the reason whereby such biofertilizer alleviates the harmful effects of salinity.

The aforesaid findings, however are in line with those gained by Al-Qubaie *et al.*, (2003) on *Bougainvillea glabra*, *Jasminum azoricum* and *Conocarpus erectus*, **Zhang et al.**, (2004) on *Nitraria sibrica*, **Devecchi et al.**, (2005) on *Lonicera pileata*, *Euonymus fortunei* and *Hedera helix* and **Mahmoud et al.**, (2008) on *Dovyalis caffra* and *Lantana camara*.

Briefly, it is clear from the previous results that one-year-old transplants of Waringin fig (*Ficus benjamina* L.) grown in 30-cmdiameter plastic pots filled with 7 kg of a sand + clay mixture (1:1, v/v) can tolerate salinity of irrigation water up to 6000 ppm, with good performance and healthy growth if fertilized monthly with 100 ml of phosphorene/pot for three times throughout the growing season.

Saline	Chlor	ophyll :	a (mg/g	F.W.)	Chlor	ophyll I	b (mg/g	F.W.)	Caro	tenoids	(mg/g	F.W.)
treats. (ppm)	Р	P1	P2	Mean	Р	P1	P2	Mean	Р	P1	P2	Mean
Control	1.33cd	1.87a	1.93a	1.71a	0.677c	0.945a	0.969a	0.863a	0.743e	0.702e	0.537f	0.661e
2000	1.21de	1.58b	1.63b	1.47b	0.591d	0.752b	0.786b	0.709b	0.830d	0.763de	0.598f	0.730d
4000	1.16ef	1.26de	1.38c	1.27c	0.423gh	0.630cd	0.635cd	0.562c	0.943bc	0.913c	0.735e	0.864c
6000	0.87hi	0.94gh	1.04fg	0.95d	0.352i	0.472f	0.536e	0.453d	1.003b	0.911c	0.820d	0.912b
8000	0.76i	0.91h	0.93gh	0.87e	0.267j	0.418gh	0.447fg	0.377e	1.110a	1.000b	0.936bc	1.015a
10000	0.00j	0.00j	0.78i	0.26f	0.00k	0.00k	0.393hi	0.130f	0.000g	0.000g	0.956bc	0.319f
Mean	0.89c	1.09b	1.28a		0.385c	0.536b	0.627a		0.772a	0.715b	0.764a	
		N	(%)			P (%)			K	(%)	
	Р	P1	P2	Mean	Р	P1	P2	Mean	Р	P1	P2	Mean
Control	2.56b	2.78a	2.95a	2.76a	0.733b	0.837a	1.040a	0.870a	1.57b	1.63b	1.73a	1.64a
2000	2.13ef	2.44bc	2.51bc	2.36b	0.710ef	0.810bc	0.920bc	0.813b	1.24c	1.29c	1.33c	1.29b
4000	1.87gh	2.03fg	2.34cd	2.08c	0.670gh	0.770fg	0.860cd	0.767c	0.80e	0.92d	0.96d	0.89c
6000	1.62i	2.00fg	2.21de	1.94d	0.587i	0.723fg	0.770de	0.693d	0.49gh	0.55fg	0.63f	0.56d
8000	1.00j	1.57i	1.76hi	1.44e	0.420j	0.577i	0.650hi	0.549e	0.33i	0.39hi	0.59fg	0.44e
10000	0.00k	0.00k	1.70hi	0.57f	0.00k	0.000k	0.630hi	0.210f	0.00j	0.00j	0.51g	0.17f
Mean	1.53c	1.80b	2.25a		0.520c	0.619b	0.812a	i i	0.74c	0.80b	0.96a	
		Na	(%)			Cl(%)		Free	proline	(mg/g	F.W.)
	Р	P1	P2	Mean	Р	P1	P2	Mean	Р	P1	P2	Mean
Control	1.27f	1.23f	1.21f	1.24c	0.79g	0.75g	0.73g	0.76d	0.159j	0.140j	0.112j	0.137f
2000	1.28f	1.24f	1.20f	1.24c	0.93e	0.91e	0.87ef	0.90c	0.394g	0.275i	0.247i	0.305d
4000	1.31ef	1.27f	1.24f	1.27c	0.95e	0.92e	0.86ef	0.91c	0.487e	0.389g	0.333h	0.403c
6000	1.50cd	1.45cd	1.42de	1.46b	1.21cd	1.19cd	1.14d	1.18b	0.686b	0.534d	0.459f	0.560b
8000	1.63a	1.55ab	1.53ab	1.57a	1.33a	1.30ab	1.27ab	1.30a	0.925a	0.631c	0.553d	0.703a
10000	0.00g	0.00g	1.57b	0.52d	0.00h	0.00h	1.30ab	0.43e	0.000k	0.000k	0.634c	0.211e
Mean	1.17b	1.12b	1.36a		0.87b	0.85b	1.03a		0.442a	0.328c	0.390b	

Table (4) Effects of saline water, phosphorene and their interaction on chemical composition of *Ficus benjamina* L. transplants during 2010 and 2011 seasons

* P: Free from phosphorene, P1: phosphorene at 50 ml/pot and P2: phosphorene at 100 ml/pot.

* Means within column or row having the same letters are not significantly different according to Dancan's Multiple Range Test (DMRT) at 5% level.

REFERENCES

- Abdel-Fattah, A.E. (1998) Effect of bio and mineral phosphate fertilization on growth and productivity of globe artichoke (*Cynara scolymus* L.) under newly reclaimed calcareous soil conditions. Assiut J. Agric. Sci., 29(3):227-240
- Al-Qubaie, A.I.; S.M. Shahin and F.A. Abdel-Samad (2003) Effect of diluted sea water on growth and chemical composition of some ornamental trees and shrubs. Egypt. J. Apll. Sci., 18(8B):587-601.
- Bailey, L.H. (1976) Hortus Third. Macmillan Publishing Co., Inc., 866 Third Avenue, New York, N.Y. 10022, 1290 pp.

- **Bates, L.S., R.P. Waldern and I.D. Tear (1973)** Rapid determination of free proline under water stress studies. Plant and Soil, 39:205-207.
- Cabrera, R.I.; A.R. Solis; S. Hill; C. Mckenney and L. Rahman (2005) Greenhouse and landscape rose (*Rosa spp.*). Responses to salinity. International Salinity Forum Managing Saline Soils and Water: Science, technology and social issues Poster-Presentation-Abstracts, Riverside Convention Center, Riverside, California, USA, 25-28 April: 23-26.
- Chin, W.Y. (2000) Wayside Trees of Singapore. Published by Singapore Science Center, Science Center Road, Singapore 2260, 160 pp.
- **Darwish, F.M. (2002)** Effect of different fertilizers sources and levels on growth, yield and quality of tomato. Ph.D. Thesis, Fac. Agric., Cairo Univ.
- **Devecchi, M. and D. Remotti (2004)** Effect of salts on ornamental ground covers for green urban areas. Acta Hort., 643:153-156.
- **Devecchi, M. ; V. Scariot and A. Schubert (2005)** The use of traditional and alternative antifreeze salts on herbaceous and shrub species for urban decoration. Advances in Hort. Sci., 19(2):86-93.
- **Devitt, D.A.; R.L. Morris and L. K. Fenstermaker (2005)** Foliar damage, spectral reflectance and tissue ion concentrations of trees sprinkle irrigated with waters of similar salinity, but different chemical composition. HortScience, 40(3):819-826.
- **Duncan, D.B. (1955)** Multiple range and multiple F-tests. J. Biometrics, 11:1-42.
- El-Sirafy, Z.M.; H.J. Woodard and E.M. El-Norgar (2006) Contribution of biofertilizers and fertilizer nitrogen to nutrient uptake and yield of Egyptian winter wheat. J. Plant Nutrition, 29(4):587-599.
- Gilbert, G.A.; M.V. Gadushi; C. Wilson and M.A. Madore (1998) Amino acid accumulation in sink and source tissues of *Coleus blumei* Benth. during salinity stress. J. Experimental Botany, 49(3/8):107-114.
- Giri, B.; R. Kapoor and K.G. Mukerji (2007) Improved tolerance of *Acacia nilotica* to salt stress. Microbial Ecology, 54(4):753-760.

- Handreck, K. and N. Black (2002) Growing Media for Ornamental plants and Turf. Third Ed., Univ. New South Wales Press Ltd., Sydney, Australia, 542pp.
- Hattatt, L. (2001) Encyclopedia of Garden Plants and Flowers. Paragon Queen Street House, 4 Queen St., Bath BAI IHE, U.K., 256 pp.
- Hussien, S.M. Hagar (2004) Physiological studies on Iris plant. M.Sc. Thesis, Fac. Agric., Cairo Univ.
- Jackson, M.L. (1973) Soil Chemical Analysis. Prentice-Hall of India Private Ltd. M-97, New Delhi, India, 498pp.
- Jou, Y.; C. Chiang; G. Jouh and H. Yen (2006) Functional characterization of ice plant, an AAA-type ATPase associated with the endoplasmic reticulum-Golgi network; and its role in adaptation to salt stress. Plant Physiol., 141(1):135-146.
- Luatanab, F.S. and S.R. Olsen (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from soil. Soil Sci. Soc. Amer. Proc., 29:677-678.
- Mahmoud, A.M.A.; S.Ahmed, Samira and A.H. El-Feky (2008) Effect of diluted sea water on growth and chemical composition of two ornamental hedges grown in some soils of Egypt. J. Agric. Res., Kafr El-Sheikh Univ., 34(2):522-535.
- Marschner, H. (1995) Mineral Nutrition of Higher Plants. 2nd Ed., Academic Press, London, pp. 99-101.
- Mead, R.; R.N. Curnow and A.M. Harted (1993) Statistical Methods in Agriculture and Experimental Biology. 2nd Ed., Chapman & Hall Ltd., London, 335 pp.
- Menegel, K. and E.A. Kirkby (1979) Principles of Plant Nutrition. 2nd Ed., International Potash Inst., P.O. Box CH-3048 Worblaufen, Bern, Switzerland, 593 pp.
- **Moran, R. (1982)** Formula for determination of chlorophyllous pigment extracted with N-N-dimethyl formamide. Plant Physiol., 69:1376-1381.
- **Pregl, F. (1945)** Quantitative Organic Micro-Analysis. 4th Ed., J. and A. Churchill Ltd., London, pp. 203-209.
- Salem, M.S.; S.Z. Zidan and M.M. Esmail (2006) Effect of some biological and mineral ferilizers on some growth and yields

characters of two flax cultivars. Bull. Fac. Agric., Cairo Univ., 57(2):261-276.

- SAS Institute (1994) SAS/STAT User's Guide: Statistics. Vers. 6.04, 4th Ed., SAS Institute Inc., Cary, N.C., USA.
- Shahin, S.M. (2005) Effect of different fertilizer combinations on growth and quality of Paspalum turf grown in sandy and loamy soils. Egypt. J. Agric. Res., 2(2):581-597.
- Wu, L. and D.R. Huff (1983) Characteristics of creeping bentgrass clones (*Agrostis stolonifera* L.) from a salinity tolerant population after surviving drought stress. HortSceince, 18(6):883-885.
- Zhang, J.; S. Xing; Q. Sun; J. Xi and Y. Song (2004) Study on cultural technologies and salt-resistance of *Nitraria sibirica* in coastal areas with serious salt-affected soil. Chinese Forestry Sci. & Tech., 3(4):12-16.

هل يستطيع الفوسفورين مساعدة نبات الفيكس بنجامينا على تحمل الآثار. الضارة للمياه المالحة؟

جيهان حسن عبد الفتاح ⁽¹⁾ و سيد محمد شاهين ⁽¹⁾ وسغاد عبد الله محمد خنيزی⁽²⁾ ⁽¹⁾ قسم بحوث الحدائق النباتية، معهد بحوث البساتين، مركز البحوث الزراعية – الجيزة- مصر. ⁽²⁾ قسم بحوث الزينة، معهد بحوث البساتين، مركز البحوث الزراعية – الجيزة – مصر.

أجريت هذه الدراسة تحت ظروف احدى الصوبات البلاستيك بمشتل معهد بحوث البساتين، الجيزة، مصر خلال موسمي ٢٠١٠، ٢٠١١ و ذلك لمعرفة دور التسميد بالفوسفورين (سماد حيوي يحتوي على سلالة معينة من البكتيريا لها القدرة على تحويل الفوسفات الثلاثي الغير ميسر الى فوسفات أحادي ميسر) بمعدلات: صفر، ٥٠، ١٠٠ مل/أصيص في خفض التأثيرات الضارة لملوحة مياه الري عند اضافتها بمعدلات صفر، ٢٠٠، ٢٠٠، ٤٠٠٠، ٢٠٠٠، و ٢٠٠٠ جزء في المليون (و الذي تم تحضير ها من مخلوط متساوي من أملاح كلوريد الصوديوم و كلوريد الكالسيوم بنسبة ٢:١ ورنا) على نمو و جودة شتلات الفيكس بنجامينا (. ٢ كجم من مخلوط الرمل و الطمي (بنسبة ٢:١ حجماً).

و لقد أوضحت النتائج المتحصل عليها أن النسبة المئوية للنباتات الحية انخفضت معنويا عند المستويات المرتفعة من الملوحة (٨٠٠٠، ١٠٠٠ جزء في المليون) حتى بلغت النسبة المئوية للنباتات الميتة ١٠٠% عند الري بمياه ملوحتها ١٠٠٠٠ جزء في المليون و ذلك في غياب التسميد بالفوسفورين أو عند التسميد به بمعدل ٥٠ مل/أصيص. و لقد انخفضت تدريجياً جميع قياسات النمو الخضري و الجذري بزيادة مستوى الملوحة، باستثناء الوزن الطازج و الجاف للجذور و اللذان تحسنا معنوياً نتيجة للري بمستويي ٢٠٠٠، ٢٠٠٠ جزء في المليون. على الجانب الأخر، فان تحسنا القياسات قد تحسنت معنوياً استجابة لمعاملات التسميد بالفوسفورين، مع تفوق المعدل ١٠٠ مل أصيص و الذي أعطى أعلى المتوسطات في هذا الخصوص. أما النسبة المئوية لمعامل تحمل مل/أصيص و الذي أعطى أعلى المتوسطات في هذا المعارين، مع تفوق المعدل ٢٠٠ كم أراصيص و الذي أعطى أعلى المتوسطات في هذا الخصوص. أما النسبة المئوية لمعامل تحمل الملوحة (%SRI) فقد كانت أكبر من ٢٠٠% لنباتات المقارنة و تلك التي رويت بتركيزات ملوحة من ٢٠٠٠ محتوى الأوراق من كلوروفيللي أ ، ب ، النيتروجين ، الفوسفورين. كذلك انخفض محتوى الأوراق من كلوروفيللي أ ، ب ، النيتروجين ، الفوسفور و البوتاسيوم بشكل متصاعد كلما زاد تركيز الملوحة، بينما زاد محتوى هذه المكونات بريادة معدل التسميد بالفوسفورين. و لقد كان العكس صحيحا فيما يتعلق بمحتوى الأوراق من الكاروتينويدات، الصوديوم، الكلوريد و البرولين.

باختصار، فان النتائج السابقة توضح أن شتلات الفيكس بنجامينا عمر سنة النامية في أصص بلاستيك قطر ها ٣٠سم تستطيع تحمل ملوحة مياه الري حتى ٢٠٠٠ جزء في المليون، مع 'امكانية تحسن مظهر ها و نمو ها بشكل أفضل اذا سمدت بالفوسفورين بمعدل ١٠٠ مل/أصيص ثلاث مر ات بفاصل زمني شهر بين كل مرتين متتاليتين خلال موسم النمو.