UTLIZATION OF UNIFORMITY TRIALS TO ESTIMATE THE OPTIMUM PLOT SIZE AND SHAPE AND THE NUMBER OF REPLICATIONS IN WHEAT YIELD TRIALS

S.K.A. Ismail* and Sahar, A. Farag*
*Agronomy Department, Faculty of Agriculture, Fayoum University. **Central Laboratory for Design \&Statistical Analysis Research,Agriculture Research Center, Giza, Egypt

ABSTRACT

In the present work, two uniformity trials were carried out during the first and the second winter seasons of 2011/2012 and 2012/2013 in the Experimental farm Demo, Faculty of Agriculture, Fayoum University. The main objectives were to estimate the optimum plot size, plot shape and number of replicates for wheat yield traits using the variety Sakha 93 as plant material. The cultivated area of each field trial was divided into 12 strips; each of which consisted of 100 rows, 0.2 m width and 3.0 m long. Two statistical methods including soil variability index and maximum curvature were used to estimate the optimum plot size and shape using the yield data of 1200 basic units (each of $0.6 \mathrm{~m}^{2}$). The data were subjected to two procedures of statistical analysis to estimate the optimum plot size, when the cost of conducting the experiment is not taken into consideration and to evaluate the effect of changing the plot shape on the variability. The first statistical method was that of maximum curvature which is based on the exponential relationship between plot size and the coefficient of variability. The second method was that developed by smith's method (1938). Bartlett's test for homogeneity of variances, as outlined by Steel and Torrie (1980), was used to study the effect of changing plot shape. The obtained results could be summarized as follows: Increasing the plot size decreased the variance per basic unit and the coefficient of variability. However, the reduction was not in proportion with the increase in plot size. The index of soil variability ranged from 0.6433 to 0.6018 as an average for the $1^{\text {st }}$ and the $2^{\text {nd }}$ seasons, respectively. The relationship between the coefficient of variability (C.V.) and plot size (X) were mathematically expressed by the following equation C.V. $=19.21 \mathrm{X}^{-0.2595}$ for the $1^{\text {st }}$ season and C.V. $=19.60 \mathrm{X}^{-0.2725}$ for the $2^{\text {nd }}$ one. Accordingly, using the soil variability index, the optimum plot size was 2 basic units ($1 / 3500$ fed.) for the two seasons, while it was 4 basic units ($1 / 1750$ fed.) in both seasons when the maximum curvature method was applied. The required number of replications for the optimum plot size using Smith method detecting a 15% difference among treatment means varied 13 and 14 in the $1^{\text {st }}$ and the $2^{\text {nd }}$ seasons, respectively. But, for detecting a 20% difference among treatment means, 7 replications in the $1^{\text {st }}$ season and 8 replications in the $2^{\text {nd }}$ one were found necessary. Optimum plot size estimated using the maximum curvature method detecting a 15% difference among treatment means varied 7 and 8 in the $1^{\text {st }}$ and the $2^{\text {nd }}$ seasons, respectively.

But, for detecting a 20% difference among treatment means, 4 replications in the $1^{\text {st }}$ and $2^{\text {nd }}$ season's one were found necessary. Generally, the plot shape did not affect on the precision of wheat yield trial in most cases in the two growing seasons.

Key words: Wheat, number of replicates, plot size and shape, uniformity trials.

 INTRODUCTIONWheat is the most important cereal crop in Egypt as well as all of the world population. In Egypt the local production of wheat does not cover the total consumption. Consequently, increasing wheat production is a national target to fulfill the food security for the people. This target can be achieved by means of raising the productivity through growing high yielding varieties and the application of improved agro-techniques.

In field trials, the precision of significance tests are largely controlled by the size and shape of plots in addition to the area available for the particular trial, the nature of fertility and other soil variations. To cope with proper research practice, it has become necessary to standardize a suitable plot size and shape, and determine an optimum number of replicates for the major crops grown under different conditions. This will reduce the standard error of the experiments. The use of improper field-plot techniques may inflate the experimental error and lead to erroneous inferences. Hence, to improve the quality and credibility of research results, there is a need to proper on field plot techniques (Masood and Raza, 2012).

Determining optimum plot size, shape and number of replications provides useful information to minimize the error variance and the cost of handing the plot. Finally, such information should help agronomists, plant breeders and experimental statisticians in planning more efficient experiments to attain desirable high precision. Results of replicated field trails generally are the major criteria upon which the retention or rejection of strain is based.

Uniformity trails on wheat (Triticum aestivium L.) have been used in this study to determine the soil heterogeneity, the optimum plot size, shape and number of replications in wheat trails.

MATERIALS AND METHODS

1-Field layout:

Two uniformity trials were carried out at the Experimental farm of Demo, Faculty of Agriculture, Fayoum University, during the two successive growing seasons of 2011/2012 and 2012/2013 using the wheat Sakha 93 variety. The study was designed to find out the optimum plot size, plot shape and the proper number of replications for wheat experiments. Cultivated area of each field trial was divided into 12 strips; each consisted of 100 rows, 3.0 m long and 0.2 m width. Each row was considered as a basic unit i.e. $0.6 \mathrm{~m}^{2}$, consequently, a total of 1200 basic units. Every row was of 3.0 m long and 0.2 m apart, and contained 15 seeds, 20 cm apart. At harvest, data were recorded on a random sample of 10 guarded plants from each row.

2-Statistical Analysis:

Two methods are applied on the data sets to calculate the index of heterogeneity ' b ' and ultimately the plot size under different situations. The effect of plot size and shape on the variance per basic unit area (v_{x}), comparable variance

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014
(v), coefficient of variability (C.V.) and number of replications (r). Before running the statistical analysis, data were arranged in sequence. To apply these methods, it is necessary to conduct the uniformity trials, which are expensive and time consuming.

There were 40 plot combinations ranging from 1 to 120 basic units covering variety of plot sizes and shapes (Tables 1 and 2). Number of plots was calculated by dividing the total number of basic units (1200 units) by the number of basic units for each plot size.
2.1 Optimum plot size

Optimum plot size was determined using two statistical procedures as follows:

2.1.1. Smith's method

The index of soil variability (b), proposed by Smith (1938), was estimated from the empirical relationship between plot size and variance per basic unit. This relationship may be expressed in logarithmic form as:

$$
\log V x=\log v_{i}-b \log x
$$

Where:

V_{x} : is the variance per basic unit calculated as among plot variance $\mathrm{V}(\mathrm{x})$ divided by the square of plot size in(x) basic units.
$V_{i}=$ is the variance among plots of one basic unit.
b : is the regression coefficient which is a measure of the association between adjacent basic units.
Smith (1938) suggested the use of simple weighting of variances by their respective degrees of freedom to calculate (b).
Federer (1955) recommended the following equation to calculate (b):

$$
\mathrm{b}=\frac{\left(\sum w_{i} \log v x_{i} \log x_{i}\right)-\frac{\sum w_{i} \log v x_{i} \mid \sum w_{i} \log x i}{\sum \sum v_{i}}}{\sum w_{i}\left(\log x_{i}\right)^{2}-\frac{\left.\sum w_{i} \log x_{i}\right)^{2}}{\left(\Sigma w_{i}\right)^{2}}}
$$

Where:
$\mathbf{b}=$ Weighted index of soil variability
$\mathbf{w}_{\mathrm{i}}=$ Degrees of freedom associated with V_{Xi}
$\mathbf{V}_{\mathbf{X}}=$ Weighted variance per basic unit of the $i t h$ plot size.
$\mathbf{X}_{\mathbf{i}}=$ Number of basic units in the ith plot size
Smith used this index in conjunction with the estimates of cost factors to determine the optimum plot size. However, Hatheway (1961) pointed out that in field research, scientists are generally more interested in designing experiments that are able to detect difference of specified size ignoring cost factors. Therefore, the optimum plot size was ($\mathrm{X}_{\mathrm{Opt}}$) calculatếd from the formula : $\mathrm{X}_{\mathrm{Opt}}=\mathrm{b} /(1-\mathrm{b})$

2.1.2 . Maximum curvature procedure

The second method used was the maximum curvature approach which was modified by Meier and Lessman (1971), and Galal and Abou El-Fittouh (1971).

The point of maximum curvature $\left(\mathrm{X}_{0}\right)$, for the exponential curve (C.V. $=\mathrm{Ax}^{-\mathrm{B}}$) relating the coefficient of variability (C.V.) and plot size (x), was determined using the following equation:
$\mathrm{X}_{0}=\left(\mathrm{A}^{2} \mathrm{~B}^{2}(2 \mathrm{~B}+1) /(\mathrm{B}+2)\right)^{1 /(2 \mathrm{~B}+2)}$
Using the principles of linear regression, values of A and B were estimated as follows:

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

$$
\begin{gathered}
B=\frac{n \Sigma \log \operatorname{cov} \log x-\Sigma \log c \cdot v \Sigma \log x}{n \Sigma(\log x)^{2}-(\Sigma \log x)^{2}-} \\
\log A=\frac{\sum \log (v, v}{n}-B \frac{\sum \log x}{n}
\end{gathered}
$$

The equation used to determine X_{0} was then converted to logarithmic form as follows:

$$
\log x_{0}=\frac{2 \log n+2 \log B+\log (2 B+1)-\log (B+2)}{(2 B+2)}
$$

Plot size directly beyond the X_{0} value on the curve is considered optimum.

2.2. Optimum plot shape

To study the effect of plot shape, differences among shapes of plots composed of the same number of basic units, were tested for significance by comparing their variances using Bartlett Chi square test for homogeneity of variances as outlined by Steel and Torrie (1980).

2.3. Optimum number of replications

Several methods can be used to determine the required number of replications, based on the coefficient of variation to detect a specified percentage difference between treatment means. A commonly used method, based on Student " t " statistic, was given by Federer (1955). The number of replications of different plot sizes for the two trials was calculated according to the following formula:

$$
r=\frac{2 L^{2} \propto(c, v .)^{2}}{D^{2}}
$$

Where:

t : is the value of Students " t " the level of significance for degrees of freedom associated with the C.V.
$\propto<:$ is the significance level
C.V.: is the coefficient of variability

D: is the minimum difference to be detected, expressed in percentage of the mean.
$\mathbf{r}=$ is the appropriate number of replications.

RESULTS AND DISCUSSION

The Data in Tables (1 and 2) presented the variances per basic unit area, among plots and C.V. for 40 combinations of plot size and shape in the first and second seasons, respectively. Two procedures; namely Smith's method and maximum curvature method were used to estimate the optimum plot size for wheat trials grown at farm Demo in the 2011/2012 and 2012/2013 seasons.

1. Smith's method

The following estimates were calculated using the Smith's method to determine the optimum plot size for each experiment:

1.1 Variance per basic unit area:

The results in Tables (1 and 2) show that the variance per basic unit area was generally decreased with the increase in plot size. The variance per basic unit area in the $2011 / 2012$ season was decreased from 0.0042 for the smallest plot size (one basic unit) to 0.0003 for the plot size of 120 basic units. However, in 2012/2013 season variance per basic unit decreased from 0.0047 for one basic unit per plot to 0.00009 for 120 basic units per plot.

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

UTLIZATION OF UNIFORMITY TRIALS TO ESTIMATE
Table (1): Variance and coefficients of variability for 40 combinations of plot sizes and shapes for wheat resulting from 1200 basic units in season (2011/2012).

	Plot size \& shape No. of basic units			Plot Dimension (m) width x length s	Plot area		No. of plots	Variance		CV \%
				m^{2}	$\begin{array}{\|c\|} \hline \text { Per } \\ \text { Faddan } \end{array}$					
	Size	Rows	Strips			Per basic Unit (Vx)		$\begin{array}{\|c} \text { Among } \\ \text { Plots } V(x) \\ \hline \end{array}$		
1	1	1	1	0.2×3.0	0.60	1/7000	1200	0.0042	. 0042	20.78
2	2	1	2	0.2×6.0	1.20	1/3500	600	0.0033	. 0133	18.51
3	2	2	1	0.4×3.0	1.20	1/3500	600	0.0039	. 0349	19.92
4	3	1	3	0.2×9.0	1.80	1/2333	400	0.0024	. 0388	15.76
5	4	1	4	0.2×12.0	2.40	1/1750	300	0.0019	. 0681	13.91
6	4	2	2	0.4×6.0	2.4	1/1750	300	0.0021	. 0082	14.51
7	4	4	1	0.8×3.0	2.4	1/1750	300	0.0016	. 0026	12.94
8	5	5	1	1.0×3.0	3.00	1/1400	240	0.0019	. 0681	13.92
9	6	1	6	0.2×18.0	3.60	1/1167	200	0.0019	. 0766	11.07
10	6	2	3	0.4×9.0	3.6	1/1167	200	0.0009	. 1323	9.70
11	8	2	4	0.4×12.0	4.80	1/875	150	0.0013	. 0220	11.52
12	8	4	2	0.8×6.0	4.80	1/875	150	0.0011	. 0677	10.40
13	10	5	2	1.0×6.0	6.0	1/700	120	0.0012	. 1768	11.21
14	10	10	1	2.0×3.0	6.0	1/700	120	0.0008	. 1987	8.91
15	12	1	12	0.2×36.0	7.2	1/583	100	0.0006	. 3337	7.7
16	12	2	6	0.4×18.0	7.2	1/583	100	0.0012	. 0289	10.88
17	12	4	3	0.8×9.0	7.2	1/583	100	0.0010	. 0956	9.89
18	15	5	3	1.0×9.0	9.0	1/467	80	0.0011	. 2502	10.67
19	16	4	4	0.8×12.0	9.6	1/438	75	0.0008	3073	8.87
20	20	5	4	1.0×12.0	12.0	1/350	60	0.0006	. 5081	7.6
21	20	10	2	2.0×6.0	12.0	1/350	60	0.0007	. 0716	8.56
22	20	20	1	4.0×3.0	12.0	1/350	60	0.0006	. 2387	7.81
23	24	2	12	0.4×36.0	14.4	1/292	50	0.0007	. 6285	8.45
24	24	4	6	0.8×18.0	14.4	1/292	50	0.0005	. 8149	7.21
25	25	25	1	5.0×3.0	15.0	1/280	48	0.0003	1.249	5.9
26	30	5	6	1.0×18.0	18.0	1/233	40	0.0005	. 1976	7.11
27	30	10	3	2.0×9.0	18.0	1/233	40	0.0004	. 6698	6.54
28	40	10	4	2.0×12.0	24.0	1/175	30	0.0005	1.788	7.10
29	40	20	2	4.0×6.0	24.0	1/175	30	0.0004	2.331	6.10
30	48	4	12	0.8×36.0	28.8	1/146	25	0.0003	3.768	5.10
31	50	25	2	$5.0 \times 6.0{ }_{*}$	30.0	1/140	24	0.0005	. 3167	7.20
32	50	50	1	10.0×3.0	30.0	1/140	24	0.0004	1.075	6.60
33	60	5	12	1.0×36.0	36.0	1/117	20	0.0005	2.907	7.20
34	60	10	6	2.0×18.0	36.0	1/117	20	0.0004	3.838	6.6
35	60	20	3	4.0×9.0	36.0	1/117	20	0.0003	6.755	5.5
36	75	25	3	5.0×9.0	45.0	1/93	16	0.0004	1.003	6.40
37	80	20	4	4.0×12.0	48.0	1/88	15	0.0003	3.491	5.90
38	100	25	4	5.0×12.0	60.0	1/70	$\cdot 12$	0.0004	9.783	6.60
39	100	50	2	10.0×6.0	60.0	1/70	12	0.0003	13.22	5.00
40	120	10	12	2.0×36.0	72.0	1/58	10	0.0003	24.80	5.00

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

Table (2): Variance and coefficients of variability for 40 combinations of plot size and shapes for wheat resulting from 1200 basic units in season (2012/2013).

$\frac{\dot{0}}{\frac{\mathbb{E}}{2}}$	Plot size \& shape			Plot dimension (m) width x length s	Plot area		No. of plots	Variance		CV \%
	No. of basic units				m^{2}	Per Faddan				
	Size	Rows	Strips					Per basic Unit (Vx)	Among Plots V(x)	
1	1	1	1	0.2×3.0	0.6	1/7000	1200	0.0047	. 0047	21.68
2	2	1	2	0.2×6.0	1.2	1/3500	600	. 00374	. 0149	19.17
3	2	2	1	0.4×3.0	1.2	1/3500	600	. 00474	. 0402	20.96
4	3	1	3	0.2×9.0	1.8	1/2333	400	. 00264	. 0423	16.31
5	4	1	4	0.2×12.0	2.4	1/1750	300	. 00214	0773	14.53
6	4	2	2	0.4×6.0	2.4	1/1750	300	. 00262	. 0104	16.05
7	4	4	1	0.8×3.0	2.4	1/1750	300	. 00208	. 0333	14.30
8	5	5	1	1.0×3.0	3.0	1/1400	240	. 00247	. 0891	15.60
9	6	1	6	0.2×18.0	3.6	I/1167	200	. 00143	. 0919	11.80
10	6	2	3	0.4×9.0	3.6	1/1167	200	. 00119	. 1719	10.83
11	8	2	4	0.4×12.0	4.8	1/875	150	. 00132	. 0211	11.40
12	8	4	2	0.8×6.0	4.8	1/875	150	. 00107	. 0686	10.26
13	10	5	2	1.0×6.0	6.0	1/700	120	. 00124	1794	10.06
14	10	10	1	2.0×3.0	6.0	1/700	120	. 00074	. 1895	8.53
15	12	1	12	0.2×36.0	7.2	1/583	100	. 00064	. 3715	7.96
16	12	2	6	0.4×18.0	7.2	1/583	100	. 00125	. 0312	11.09
17	12	4	3	0.8×9.0	7.2	1/583	100	. 00102	. 1029	10.06
18	15	5	3	1.0×9.0	9.0	1/467	80	. 00119	. 2683	10.82
19	16	4	4	0.8×12.0	9.6	1/438	75	. 00078	. 3134	8.77
20	20	5	4	1.0×12.0	12.0	1/350	60	. 00069	. 6220	8.24
21	20	10	2	2.0×6.0	12.0	1/350	60	. 00068	. 0680	8.18
22	20	20	1	4.0×3.0	12.0	1/350	60	. 00056	2262	7.45
23	24	2	12	0.4×36.0	14.4	1/292	50	. 00065	5876	8.01
24	24	4	6	0.8×18.0	14.4	1/292	50	. 00045	7259	6.67
25	25	25	1	5.0×3.0	15.0	1/280	48	. 00037	1.354	6.00
26	30	5	6	1.0×18.0	18.0	1/233	40	. 00045	.1811	6.70
27	30	10	3	2.0×9.0	18.0	1/233	40	. 00040	. 6536	6.33
28	40	10	4	2.0×12.0	24.0	1/175	30	. 00044	1.608	6.60
29	40	20	2	4.0×6.0	24.0	1/175	30	. 00034	2.208	5.80
30	48	4	12	0.8×36.0	28.8	1/146	25	. 00031	4.541	5.50
31	50	25	2	$5.0 \times 6,0$	30.0	1/140	24	. 00040	. 2520	6.30
32	50	50	1	10.0×3.0	30.0	1/140	24	. 00031	7971	5.59
33	60	5	12	1.0×36.0	36.0	1/117	20	. 00040	2.259	6.20
34	60	10	6	2.0×18.0	36.0	$1 / 117$	20	. 00024	2.493	4.90
35	60	20	3	4.0×9.0	36.0	1/117	20	. 00018	4.095	4.20
36	75	25	3	5.0×9.0	45.0	1/93	16	. 00016	4109	4.01
37	80	20	4	4.0×12.0	48.0	1/88	15	00013	1.364	3.60
38	100	25	4	5.0×12.0	60.0	1/70	12	00017	3.827	4.00
39	100	50	2	10.0×6.0	60.0	1/70	12	00086	3.463	2.90
40	120	10	12	2.0×36.0	72.0	1/58	10.	. 000095	8.563	3.00

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

1.2 Index of soil variability

The weighted index of soil variability (b) proposed by Federer (1955) was found to be 0.6433 in the first season and 0.6018 in the second one as shown in Table (3). The coefficient of soil heterogeneity (B) is a reflection of the association between adjacent plots and it is expected to vary between zero to one. The value near zero denotes complete uniformity and the value near one denotes random soil variability. Thus, the obtained values of soil variability index in both seasons reflect moderate variability in the soil of the experiment at Farm Demo.
Table (3): Optimum plot size estimated using Smith's method in 2011/ 2012 and 2012/2013 seasons.

Seasons		Optimum plot size		
		Basic unit	Plot area	
			Feddan	
$2011 / 2012$	0.6433	2	$\mathbf{1 . 2}$	$1 / 3500$
$2012 / 2013$	0.6018	2	1.2	$1 / 3500$

1.3 Optimum plot size

Values of soil variability index (B) were used to calculate the optimum plot size which was found to be 2 basic units in both seasons. Consequently it may be concluded that the optimum plot size was 2 basic units or $1.2 \mathrm{~m}^{2}$ ($1 / 3500$ feddan) in the first and second seasons.

2. Maximum curvature method

Average variance per basic unit, average yield and average of observed and estimated coefficient of variability for each plot size are presented in Table (4). The results showed that the value of the coefficient of variation was generally decreased as plot size increased. Coefficient of variation was decreased from 19.21 for one basic unit per plot to 4.37 for a plot size of 120 basic units in the first season and correspondingly from 19.60 for one basic unit per plot to 4.14 for 120 basic units per plot in the second season. On the other hand, the reduction in C.V was not in proportion with the increase in the plot size. Moreover, the rate of reduction decreased as plot size became larger. This confirms the fact that the relationship between plot size and the variance per basic unit or the coefficient of variability is of exponential nature.

The exponential relationships obtained for the current study were found to be C. $\mathrm{V}=19.21 \mathrm{X}^{-0.2595}$ and C.V. $=19.60 \mathrm{X}^{-0.2725}$ and graphically in figs. (1 and 2) for the first and the second seasons, respectively, where (X) is the plot size.

According to the maximum curvature method, the coefficient of variation is used as an indicator of optimum plot size and it is graphed on the (Y) axis in relation to various plot sizes on (x) axis (Figs. 1 and 2). On the other
\& hand, the optimum plot size is considered to be the point on the curve where the rate of change in the estimate of (Y) per increase of (x) is greatest, thus called the maximum curvature. The point of maximum curvature was 3.06 and 3.21 in

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014
the first and the second seasons, respectively. The optimum plot size was 4 basic units for both seasons, being $2.4 \mathrm{~m}^{2}$ or $1 / 1750$ feddan (Table 5).
Table (4): Average variance per basic unit (v_{x}), average yield (Y) and average coefficient of variability (C.V.) for each plot size in 2011/2012 and 2012/2013 seasons.

Plot size		2011/2012 season				2012/2013season			
		\mathbf{v}_{x}	Y (kg)	C.V.		$\mathbf{V}_{\mathbf{x}}$	Y (kg)	C.V.	
				Observed	Estimated			Observed	Estimated
1	1200	0.0042	0.313	20.78	19.21	0.0047	0.319	21.68	19.60
2	600	0.0036	0.798	19.22	15.25	0.0042	0.782	20.07	15.38
3	400	0.0024	1.251	15.76	13.41	0.0026	1.276	16.31	13.43
4	300	0.0019	1.251	13.91	13.84	0.0023	1.276	14.96	13.90
5	240	0.0019	1.876	13.92	12.07	0.0025	1.915	15.60	12.03
6	200	0.0014	3.127	10.39	10.64	0.0013	3.191	11.32	10.54
8	150	0.0012	1.876	10.96	12.31	0.0012	1.915	10.83	12.28
10	120	0.0010	4.377	10.06	9.72	0.0010	4.467	9.30	9.59
12	100	0.0009	4.065	9.49	10.55	0.0010	4.148	9.70	10.45
15	80	0.0011	4.690	10.67	9.51	0.0012	4.787	10.82	9.37
16	75	0.0008	6.253	8.87	8.83	0.0008	6.382	8.77	8.66
20	60	0.0006	6.253	7.99	9.12	0.0006	6.382	7.96	8.96
24	50	0.0006	10.943	7.83	7.67	0.0006	11.169	7.34	7.47
25	48	0.0003	18.760	5.90	6.64	0.0004	19.146	6.00	6.42
30	40	0.0005	9.380	6.83	8.33	0.0004	6.701	6.52	7.92
40	30	0.0004	21.887	6.60	6.40	0.0004	22.337	6.20	6.18
48	25	0.0003	37.521	5.10	5.55	0.0003	38.292	5.50	5.32
50	24	0.0005	11.725	6.90	7.65	0.0004	11.966	5.95	7.45
60	20	0.0004	33.873	6.43	6.44	0.0003	34.569	5.10	5.54
75	16	0.0004	15.634	6.40	6.96	0.0002	15.955	4.01	6.75
80	15	0.0003	31.267	5.90	5.82	0.0001	31.910	3.60	5.59
100	12	0.0004	54.717	5.80	5.05	0.0005	55.843	3.45	4.82
120	10	0.0003	93.801	5.00	4.37	0.0001	95.730	30.00	4.14

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

Table (5): Optimum plot size estimated using the maximum curvature method in 2011/2012 and 2012/2013 seasons.

Seasons	\mathbf{A}	$\mathbf{*}$	Optimum Plot size		
			Basic unit	\mathbf{m}^{2}	Plot area
$2011 / 2012$	19.21	0.2595	4	2.40	$1 / 1750$
$2012 / 2013$	19.60	0.2725	4	2.40	$1 / 1750$

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

Generally, the estimated optimum plot size is always affected by several factors that might cause extreme fluctuations such as crop, location, agricultural practices, size of performed basic unit and statistical technique utilized for calculating such optimum size plot. Many investigators confirmd these results, among them Kassem et al (1971), El-kalla and Gomaa (1977), Ashfaq et al. (1983)and Shaboon et al,(2013).
3. Plot shape

The results of Bartlett test for the homogeneity of variances for different plot shapes of a given plot size in the first and seconed seasons are shown in Table (6). The results clearly reported that the variances of different shapes for the respective given plot size significantly affected only the variances of plot sizes of $2,4,6,10$ and 12 basic units in the first season. In the second season, changing the plot shape for a specified plot size, significantly affected only the variances of plot sizes of $2,10,12$ and 100 basic units.

Generally, the plot shape did not affect the precision of wheat yield trial in most cases in the two growing seasons. Referring to Tables (1 and 2) and comparing the variances of different shapes for a given plot size, it may be concluded that the suited plot shape for a specified plot size were varied according to soil heterogeneity. Accordingly, the soil heterogeneity is ranked first as the limiting factors for identifying the optimum plot size and shape. These results are in accordance with the findings obtained by El-Bakery (1980), El-Rassas et al. (1982), El-Rayes et al (1993), El-Taweel (1999) and Kavitha (2010).

The investigator must take into account some important practical rules when determining the most desirable plot size and shape in the field experiments. The field plot should be sufficiently large to include a representative sample of the crop population, allow the elimination of border effects and to apply the experimental materials and their respective agricultural practices. On the contrary, the plot size should be sufficient by small to minimize the soil heterogeneity (intra plot variability) (Galal and Abou EIFittouh, 1971).

4. Number of replications:

Table (7) shows the number of replications required to detect differences of 15% and 20% between treatment means. In the first season, the number of replications required to detect a 15% difference between treatments means decreased from 15 replicates for a plot size of one basic unit, to one replicate for plots comprising 20 basic units. For detecting a 20% difference, the number of replicates varied from 8 for a plot size of one basic unit, to one replicate for a plot size of 20 basic units

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

Table (6): Results of the Bartlett's test for the homogeneity of variances for different plot shapes of wheat trials in 2011/2012 and 2012/2013 seasons.

No. of basic units per plot	Chi-square value	
	$\mathbf{2 0 1 1 / 2 0 1 2}$	$\mathbf{2 0 1 2 / 2 0 1 3}$
2	4.1782^{*}	8.3949^{*}
4	5.5671^{*}	4.8244
6	27.2220^{*}	1.6809
8	1.0417	1.6448
10	4.8784^{*}	7.8744^{*}
12	11.9403^{*}	11.0007^{*}
20	0.4693	0.7731
24	1.3946	1.6642
30	0.4908	0.1369
40	0.3665	0.4891
50	0.2920	0.3809
60	1.1854	3.0676
100	0.2375	6.8614^{*}

*: Significant and highly significant at 0.05 and 0.01 probability levels,
In the second season, the number of replications required to detect a 15% difference decreased from 16 replicates for the plot size of one basic unit to 2 replications for the plot size of 20 basic units. To detect a 20% difference, the number of replicates decreased from 9 with for the plot size of one basic unit to one replicate for plots comprising 20 basic units.
Table (7): Number of replications required to detect differences of $\mathbf{1 5 \%}$ and $\mathbf{2 0 \%}$. among treatment means at the 5% level of significance for wheat trials in 2011/2012 and 2012/2013.

Plot size		Required number of replications in 201 1/2012 season		Required number of replications in 2012/2013 season	
Number of basic units	Plot area (m^{2})	in 2011 15% differences	season 20\% differences	in 2012 differences	season 20\% differences
1	0.6	15	8	16	9
2	1.2	13	7	14	8
3	1.8	9	5	9	5
4	2.4	7	4	8	4
5	3.0	7	4	8	5
6	3.6	4	2	5	3
8	4.8	4	2	4	2
10	6.0	4	2	3	2
12	7.2	3	2	3	2
15	9.0	3	2	3	2
16	9.6	3	2	3	2
20	12.0	2	1	2	1

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

Thus, number of replications required for detecting differences of 15% and 20% among treatment means generally decreased with the increase in plot size, but the reduction was not in proportion with the increase in plot size. The results show that the highest number of replications was required for the plot size of one basic unit.

In this investigation, the optimum size was 2 basic units. Consequently, the required number of replications for detecting a 15% difference treatment means would be 13 replications in the first season and 14 in the second season. For detecting a 20% difference among treatment means, it was found that 7 replications in the first season and 8 replications in the second season would be necessary. The present results are in harmony with those obtained by ElTaweel (1999) and Mohamed (2005).

REFERENCES

Ashfaq, M., Zafar, M.I., Khan, M.Y. and Khurram, H.Z. (1983). Plot size studies using experimental data on wheat. Pakistan J. Agri. Sci., 20:127-33.
El-Bakry, A.E. (1980) A study of optimum plot size and relative efficiency using experimental data for some major field crops. M.Sc. Thesis, Fac. Agric. Al-Azhar Univ., Egypt.
El-Kalla S. E. and Gomaa A. A. (1977). Estimation of soil variability and optimum plot size and shape for wheat (Triticum aestivum L.) trials. Agric. Res. Rev., 9:81-88.
El-Rassas H. N. (1982). Precision of some statistical procedures in evaluating yield components of some cereal crops. Ph.D.Thesis, Fac. Agric., Cairo Univ., Egypt.
El-Rayes F. M., Thanaa. M. El-Gammal Mohamed T.A. and Hannan, L.T. (1993). Optimum plot size shape and number of replications for wheat yield trials in middle Egypt. Agric.Res. Rev., 71:1-16.
El-Taweel A. M. A. (1999). Field plot technique studies in maize experiments. Ph.D. Thesis, Fac. Agric., Al-Azhar Univ., Egypt.
Federer, W. T. (1955) .Experimental designs. McMillan Co., New York.
Galal H. E. and Abou El-Fittouh H.A.A. (1971). Estimation of optimum plot size and shape for Egyptian cotton yield trials. Alex. J. Agric. Res., 19:233- 238.
Hatheway, W.H.(1961). Convenient plot size. Agron. J., 53: 279-80.
Kassem, A. A.; Khadr, F. H. and El-Rouby, M. M. (1971). Optimum size and shape of plots and relative efficiency of different designs of yield trials in wheat. Alex. J. Agric. 19:223-232.
Kavitha B. (2010). Study on optimum plot size and optimum plot shape of soybean crop. M.sc. Sci. Thesis, Fac. Agric., Dharwad Univ.
Meir V. D. and Lessman K. J. (1971). Estimation of optimum field plot shape and size fortesting yield in crambe abyssinica Hochst. Crop Sci., 11 : 648-650.

Fayoum J. Agric. Res. \& Dev., Vol. 29, No.2, July, 2014

UTLIZATION OF UNIFORMITY TRIALS TO ESTIMATE.
Mohamed N. A. (2005). Influence of plot size and number of replications on precision of field experiments with maize grown under different fertilization conditions and plant densities. J. Agric. Sci., Mansoura Univ., 30(2):763-772.
Masood M. A. and Raza I. (2012). Estimation of optimum field plot size and shape in paddy yield trials. American-Eurasian J. Sci. Res. 7 (6): 264269.

Shaboon A.M.Sh., Hayam,S,A. Fateh and W.M.Fares (2013).utlization of uniformity trials to estimate optimum plot size and shape and number of replications in maize yield trials. Bull. Fac. Agric. Cairo Univ.,64:379-388.
Smith, H.F. (1938). An empirical law describing heterogeneity of yields of agricultural crops. J. Agric. Sci., 28: 1-23.
Steel, R. G. D. and Torrie J. H. (1980). Principles and Procedures of Statistics. Mc- Graw Hill Book Co., Inc., New York, USA.

> إستخدام تجارب التجاتس لتققير أنسب مساحة وشكل للتطعة التجريبية وعدد المكررات فى تجارب محصىل القمتح
> " سمير كامل علي اسماعيل" - سحر عبد العزيز فر ج "قسم المحاصبل - كلية الزراعة بالفيوم - جامعة الفيرم
> " : "المعطل المركزى لبحوت التّصميه و التحطليل الإصطائى- مركز البحوث اللزر اعية- الجيزة - مصر

تهـف هنة الدراسة الى تقديرِ أنسب مساحة وشكل للقطعة التجريبية وكذلك أنسب عدد من المكررات فى تجارب محصول القمح وذلك باستخدام كلا من طريتتى دليل تجانس التربة وطريقة اقصىى انحناء. وتم لتحقيق هذا الهـف اجراء تجربتي تجانس بمزرعة دمو التّابعة لكلية اللزراءة - جامعة الفيوم خلم الموسمين

 أظهرت النتاتج ان زيادة مساحة القطعة التجريبية أدت الى نقص كل من التَباِن لوحدة المساحة ومعامل

 مما يدل على أن درجة تجانس التُربة فى مزرعة دمو متوسطة، وبناء عليه كانت أنسب مساحة للقطعة

 تحيد العلاقة بين معامل الاختلضف ومساحة القطعة (X) فى صورة رياضبة، فقى الموسم الاول كان معامل

 الموسمين. حيث اتضحح ان زيادة مساحة القطعة التجريبية طوليا خلا الشُريحة الواحدة فى الموسم الاول فـد ادى للى انخفاض كل من فيمة التباين لوحدة المساحة ومعامل الاخثتلا مقارنة بزيادة نفس المساحة عرضيا
 عرضيا خلا الشُر انتح مقارنة بالزيادة طوليا خلى الشُريحة الواحدة. تثير هذه النتائج النى ان تجانس الحتل اللتجرببي يعتبر هو العأمل الاهم فی تحديد انسب مساهة وشكىل اللتطعة التجريبية. كما وجد ان عدد المكررات
 النقص في عدد المكررات لم يكن متتاسبا مع الزيادة فى مساحة التطعة.

