J.Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 6 (7):809 -827, 2015

PARTIAL SUBSTITUTION OF MINERAL NITROGEN FERTILIZER BY ORGANIC AND BIO-FERTILIZER ON MAIZE Dalia A. Sayed; Lamyaa, A. Abd EI-Rahman and Magda, A. Ewais

Soils, Water and Environ. Res., Institute, Agric. Res. Center, Giza, Egypt

ABSTRACT

Two field experiments were conducted to study the effect of bio and organic fertilizer as a partial alternative to mineral-nitrogen fertilizer, on growth, yield and guality of maize plants (c.v. tri- hybrid 324). The study was carried out during the two successive seasons of 2013 and 2014 at El- Gemmeiza Research Station(30° 47' 22.5" N- 31° 07' 34" E, elev. 10 m), Agricultural Research Center, El-Gharbia Governorate, Egypt, Significant positive influences of 50% of the recommended N rate (120kg N/fed.) +25% of the recommended N rate as organic N +Bio treatment were observed on growth traits after75 days from planting, leaf contents of nitrogen, phosphorus, potassium and yield quality when compared to the other combined treatments. The same treatment, gave the highest grain yield (4450 Kg/fed) which was 9.88 % higher than the (100% mineral N) control (10% Kg/fed) and 51.4% more than the lowest yield of 50% M.N.F. (2940 Kg/fed). Also, results indicated that the treatments comprising 50or 75% mineral N + 4.2 or 2.1 ton/fed. organic N +Bio and/or humic acid significantly increased plant height, weight of 100 grain, grains, straw and biological yields than control. All quality parameters i.e. protein, oil %, total carbohydrate and starch contents under 50% mineral N + 4.2 ton/fed. organic N +Bio and/or humic acid treatments recorded the highest and significant values comparing to the control. Hence, it can be concluded that organic and biofertilizers could be used to minimizing the amount of mineral N fertilizer fot different crops avoiding soil or water pollution.

Keywords: Biofertilizer, humic acid, minerals content, oil, organic manure, protein, Zea mays,

INTRODUCTION

Maize is called "King of cereals" because of its productivity potential compared to any other cereal crop. Being an exhaustive crop, it has very high nutrient requirement and its productivity is closely depends on nutrient management system. Under the present trend of exhaustive agriculture in Egypt, inherent soil fertility can no longer be maintained on the sustainable basis. It is said that nutrient supplying capacity of soil declines steadily under continuous and intensive cropping system. The optimum levels of N, P, K failed to maintain yield levels probably due to increasing secondary and micronutrient deficiencies and also unfavorable alterations in the physical and chemical properties of soil. Apart from the soil fertility and productivity issues, use of chemical fertilizers is also becoming more and more difficult for the farmers due to their high costs and scarcity during peak season. On thus, increasing awareness is being created on the use of organics including biofertilizers which are the sources of macro, micro and secondary nutrients to sustain the soil fertility and productivity.

Mineral nutrition is one of the most important factors for plant growth and yield. Mineral fertilizers, particularly mineral-nitrogen, are important means of plant nutrition; however, they are also a potential source of environmental pollution (Hartman, 1988). An attention has been therefore focused on alternative fertilizers, including bio-fertilizers in Middle East. Nowadays, there is renewed interest in bio fertilizers for nutrient supply and improve soil fertility and productivity in this region. The integrated use of biofertilizers and mineral fertilizers is considered the best option not only to reduce the intensive consumption of chemical fertilizers, but also to sustain the soil with minimum undesirable impacts and to maximize fertilizer use efficiency in soil. Bio-fertilizers are considered as an eco-friendly way to sustainable agriculture. They positively affect plant growth and yield, reduce the negative effects of chemical fertilizers and minimize some chemicals such as NO₃ and NO₂ ions in the soil and consequently in plants. Therefore, the way to a healthy agriculture with a minimum pollution requires a conjunctive use of bio-nitrogen and mineral-nitrogen fertilizers.

Bio-fertilizers, microbial inoculants that can promote plant growth and productivity, are internationally accepted as an alternative source of N-fertilizer. In the bio-fertilizer technology, new systems are being developed to increase the biological N₂-fixation with cereals and other non-legumes by establishing N₂-fixing bacteria within the roots (EI-Haddad *et al.*, 1993).

Organic matter also improves water holding capacity of sandy soil and drainage in clayey soil. Organic manure provides nutrients for the soil microorganisms, thus increases the activities of microbes in soil, which in turn help to convert unavailable plant nutrients into available form for plant growth promotion.

Humic acid (HA) is a vital constituent and an intimate part of soil organic structure. It has been used by many scientists, agronomists and farmers for improving soil conditions and plant growth. In plants, humic acids have positive effects on enzyme activity, plant nutrients, and growth stimulant and are considered as a "plant food". Humates are most responsive in high carbohydrate crops like potato, carrot, maize, rice, wheat, etc. (Sharif *et al.*, 2003). Humic acid contains 51% to 57% C, 4% to 6% N and 0.2% to 1% P and other micronutrients in minute amounts. Application of 1.0 kg ha⁻¹ to the soil can bring appreciable increase (up to 20%) in yields of wheat, maize, cotton, sugar beet and groundnut and improvement in soil physico-chemical conditions. Application of such minute amounts of HA suggests its enzymatic characteristics. Treating seeds with HA may further increase its beneficial effects to enhance crop yield, (Kaya and Khawar 2005).

Therefore, the objective of this study was to investigate the possibility of using bio and organic fertilization partially instead of recommended N mineral fertilizers on growth, yield and quality of maize.

MATERIALS AND METHODS

Field Experiments

Two field experiments were conducted at El-Gimmeiza Research Station, Agricultural Research Center, El-Gharbia Governorate, Egypt, during the two successive seasons of 2013 and 2014, to study the possibility of using bio and organic fertilization as a partial alternative to mineral-nitrogen fertilizer on growth, yield and quality of maize plants (c.v. tri- hybrid 324).

The experiments included 11 treatments as follows:

T₁. 100%M.N.F. (control represents a recommended rate) =120kgN/fed (Urea source).

T2. 75%M.N.F. (Mineral N fertilizer)

T₃. 50%M.N.F.

T₄. 50%M.N.F. + 0.1% HA (potassium humate as foliar 0.1%)

 T_5 . 50%M.N.F. + Bio. (containing 10⁷ cfu ml⁻¹ from each bacterium)

T₆- 50%M.N.F. + 0.1% HA+ Bio

T₇. 50%M.N.F. + 50 % O.N.F. (4.2 ton/fed organic N fertilizer)

T₈, 50%M.N.F. + 25 % O.N.F. (2.1 ton/fed organic N fertilizer) + Bio.

T₉.75%M.N.F + 0.1% HA

T₁₀. 75%M.N.F+ 0.1% HA + Bio

T₁₁. 75%M.N.F. + 25 % O.N.F

The treatments were arranged in a completely randomized block design with three replicates. Randomized samples were taken from the experimental soils before sowing and compost to determine the physical and chemical properties according to Jackson, (1973) as shown in Tables (1 & 2). The organic manure (compost) was thoroughly mixed with 0-20 cm soil surface layer two weeks before sowing.

Super phosphate (15 %P₂O₅) was added as a single dose at the rate of 30 kg P₂O₅ /fed and mixed in the same time with such surface layer. The nitrogen fertilizer (as urea 46%N) was added according to the treatment in three equal portions, i.e. 21, 35 and 50 days after sowing. Also, potassium fertilizer (as potassium sulphate, 48% K₂O) was added at a rate of 24kg K⁻₂O/fed., which was divided into three equal portions applied with N fertilizer. Foliar spray of potassium humate 0.1% was done on 30th, 45th and 60th days after sowing.

The compound of potassium humate granule contained of: 85% potassium humates, 12% potassium oxide, 1% iron, 0.9 organic nitrogen, 1.1% other compounds and with a pH= 7.0. As for bio fertilization, seeds of maize were inoculated with bio-nitrogen fertilizer (*Azotobacter chroococcum* + *Azospirillium brasilense*) (containing10⁷ cfu ml⁻¹ from each bacterium) were kindly obtained from Microbio. Dept., Soils, Water and Environ. Res. Instit. Agric. Res. Center, Giza, Egypt. Prior to sowing, maize

any Kine

Property	Value
Particle size distribution (%)	
Sand	21.5
Silt	31.2
Clay	47.3
Texture grade	clay
pH(1:2.5 soil water suspension)	7.80
ECe (dS/m) (soil paste extract)	1.74
SP	40
Soluble cations (meq/L)	
Ca++	4.50
Mg++	3.50
Na+	8.95
K+	0.42
Soluble anions (meq/L)	
CO ₃	-
HCO ₃	0.5
СГ	9.5
SO4	7.37
Organic matter (%)	1.62
Available nutrient (mg/kg)	
N	45.00
Ρ	7. 35
ĸ	375.00
DTPA-extractable ((mg/kg)	
Fe	3.74
Mn	1.94
Zn	0.78

Table 1. Physical and chemical properties of the experime

Sec.

J.

Table 2. Physical and chemical properties of the compost

Properties	Values
EC value (1:10) (dS/m)	7.90
pH value (1:10)	6.70
Moisture content (%)	28.00
Organic matter (%)	44.48
Organic carbon (%)	25.80
Total nitrogen (%)	1.42
C/N ratio	18.20
Soluble ammonia-N (ppm)	615.00
Soluble nitrate-N (ppm)	362.00
P (%)	0.57
K (%)	. 0.82

Grains were inoculated by soaking in liquid culture of Azospirillum and Azotobacter. Arabic gum was added to liquid culture as adhesive agent. Inoculated grains were air dried by spreading over a plastic sheet for short time before planting. After 75 days from sowing, fresh and dry weights/plant were measured. N, P and K percentages in ear leaf were estimated in the digested plant material. At harvesting, the following characteristics were estimated:

1-Yield and its components:

Plant height (cm), ear characters (i.e., ear length (cm), ear diameter (cm), row number/ear and grain number /row), weight of 100 grain (g), grains, straw, biological yield (kg /fed.) and harvest index were measured.

II- Chemical analysis

- Grains and straw samples were digested with H₂SO₄ + HClO₄ mixture for chemical analysis to determine N, P and K contents, according to Chapman and Pratt, (1978).
- Nitrogen content in grains and straw was determined by Keldahl method as described by A.O.A.C (1990). Protein content in the grains was calculated by multiplying N% by 5.75 factor. Phosphorus was determined calorimetrically according to Chapman and Pratt, (1978). Potassium was determined by flam photometer according to Jackson (1973).
- Oil content (%) was determined by soxhelt apparatus using hexane as a solvent as described by A.O.A.C. (1990). Oil and protein yield (kg/fed.) was estimated by multiplying grain yield (kg/fed.) by grain oil and protein percentages respectively.
- Total soluble sugars and total carbohydrates content in the grains were also determined according to Smith *et al.* (1956). Starch content was obtained by calculating the difference between total carbohydrate and total soluble sugar content.

The obtained results were statistically analyzed according to Gomez and Gomez (1984) to define the statistical significance of L.S.D. at 0.05.

RESULTS AND DISCUSSION

Fresh and dry weights /plant and ear leaf NPK contents after 75 days from planting

The effect of mineral N, organic and bio-fertilizers on plant fresh and dry weights and ear leaf mineral content of maize plants after 75 days from planting is variable (Table 3). Data revealed that plants received T₈ (50% mineral N +25% compost N +Bio) recorded the highest values of these parameters followed by T₁₀ (75%M.N.F+ 0.1% HA + Bio), T₁₁ (75% mineral N +25% compost N) and T₁ (100% mineral N). The promotion of vegetative growth of maize plants after 75 days could be attributed to the effect of organic and non symbiotic N₂-Fixing bacteria *Azotobacter* and *Azospirillum* in exerting a positive effect on plant growth through the synthesis of phytohormones, N₂ fixation, reduction of membrane potential of the root, synthesis of some enzymes (such as ACC deaminase) that modulate the level of plant hormones as well as the solubilization of inorganic phosphate

and mineralization of organic phosphate, which make phosphorus available to the plants (Hellal et al., 2011). The increases in fresh and dry weights of maize plants by N application may be attributed to the beneficial effects of N on stimulating the meristmatic activity for producing more tissues and organs, since N plays a major roles in the synthesis of structural proteins and other several macro molecules, in addition to its vital contribution in several biochemical processes in the plant related to growth. In this concern, fertilizing plants with (50% mineral N +25% organic N +Bio) gave the highest leaf N percentage compared with the other treatments followed by (75%M.N.F+ 0.1% HA + Bio), (75% mineral N +25% organic N) and100% mineral N fertilizer (treatments 8, 10, 11 and 1respectively)., Phosphorus and potassium concentrations were also higher in plants fertilized with (M.N.F + 0.1% HA + Bio) or fertilized with M.N.F +organic fertilized compared to those received (M.N.F) alone. These results emphasized that the (M.N.F + 0.1% HA + Bio) or fertilized with M.N.F + Bio +organic fertilized treatments were great enough to reach the highest levels of N, P and K. This could be attributed to the release of organic acids that can either reduce pH of the surrounding soil or directly dissolve the mineral phosphate or due to the chelating property of the organic acids produced by bio such as acetate, lactate, oxalate and citrate. etc. The same trend was observed by Atiyeh et al., (2002) who reported that the reason behind the effectiveness of humic acid on plant growth and development is the existence of plant growth regulators such as IAA, GAs and CKs. Moreover, some investigators attributed the positive effects of humic acid to its influence on plants root.

Table 3. Effect of mineral N and some organic accompanied with bio fertilizers on fresh and dry weights of maize plants (g/plant) and ear leaf mineral percentages of maize after 75 days from planting during 2013 and 2014 seasons

Treatments	Fresh weight (g/plant)	dry weight (g/plant)	N%	P%	K%
T ₁ 100%M.N.F. (control)	484	90	2.75	0.35	1.45
T ₂ 75%M.N.F.	377	77	2.46	0.33	1.35
T ₃ 50%M.N.F.	276	58	1.72	0.30	1.25
T ₄ 50%M.N.F. + 0.1% HA	294	60	1.88	0.42	1.32
T ₅ 50%M.N.F. + Bio.	369	67	2.46	0.38	1.36
T ₆ 50%M.N.F. + 0.1% HA+ Bio	394	76	2.65	0.45	1.54
T ₇ 50%M.N.F. + 50 % O.N.F	433	84	2.59	0.46	1.51
T ₈ 50%M.N.F. + 25 % O.N.F. + Bio	627	108	2.97	0.48	1.55
T ₉ 75%M.N.F + 0.1% HA	392	88	2.59	0.35	1.36
T ₁₀ 75%M.N.F+ 0.1% HA + Bio	531	101	2.95	0.46	1.52
T ₁₁ 75%M.N.F. + 25 % O.N.F	497	91;	2.88	0.45	1.57
L.S.D at 5%	11.43	5.93	0.26	0.08	[^] 0.10

Yield and its components

Data in Table (4) show the effect of treatments on yield and yield components of maize (plant height, ear length, ear diameter, No. of row/ear, No. of grain /row, 100-grain weight, grain yield, biological yield and harvest index). The plant height varied significantly among the treatments and maximum plant height (267.33 cm, 265.67 cm, 264.5 cm and 264.33 cm

respectively), were recorded by T₈ (50% mineral +25% compost N +Bio), followed by T₁₀ (75%M.N.F+ 0.1% HA + Bio), T₁₁ (75% mineral +25% compost) and T1 (100% mineral N) with no significant differences. The lowest value of plant height (226.67 cm) was observed with T₃ (50% mineral N) . This indicates clearly that combined use of organic N, bio and humic acid increased the efficiency of fertilizer, solubilization and transport of nutrients and increased the plant height. The increase in plant height can be attributed to the fact that nitrogen promotes plant growth, increases the number and length of the internodes which results in progressive increase in plant height. Similar results were reported by Abdel Gader, (2007). The superiority of T₈ (50% mineral +25% organic N +Bio), T₁₀ (75%M.N.F+ 0.1% HA + Bio) orT₁₁ (75% mineral +25% organic) may be referred to the increase in microorganisms activity and increasing adsorbing capacity of essential nutrients against leaching. Moreover, adding mineral + organic fertilizer together improve the mineralization of organic-N. Furthermore, Azotobacter and Azospirillum could produce IAA and cytokinins which increase the surface area per unit root length and were responsible for root hair branching with an eventual increase in acquisition of nutrients from the soil. Maximum ear length (26.00 cm) was observed with T₈ (50% mineral +25% organic N +Bio), followed by T₁₁ (75% mineral +25% organic) and T₁₀ (75%M.N.F+ 0.1% HA + Bio respectively). The reason of more ear length may be due to more photosynthetic activities of the plant on the account of adequate supply of nitrogen in these treatments. A typical view of maize cob is that it serves as a temporary storage organ and as a conveyor of nutrients to the developing kernels. Therefore, the better development of cob length will be the index of the better economic yield of maize (Khan et al., 2008). The result in this experiment was in agreement with Rajeshwari etal., (2007). Maximum number of rows per ear (16 rows) and number of grains per row (52 grains) were significantly higher with T₈ (50% mineral N+25% organic N +Bio). These findings may be attributed to the slow and steady supply of N by bio-N and organic, which met the N requirements of plants at different stages of development. N acts as a nutrient reservoir through N2-fixation and N ions are released slowly over the entire growth period leading to higher yields and yield quality. The data regarding the 100-grain weight in Table (4) showed that all treatments differed significantly from each others. Maximum 100-grain weight 44g, was shown by T₈ (50% mineral +25% organic N +Bio) followed by T_{10} (75%M.N.F+ 0.1% HA + Bio) T_{11} (75% mineral+25% organic) and $T_1(100\%$ mineral N). Similar results were reported by Shah *et al.*, (2009) .The obtained results showed that the beneficial effects of the applied treatments (T₈, T₁₀ and T₁₁) were positively reflected in the nutritional status of maize plants and consequently reflected in the increased growth, yields and their quality. These results may be explained by the role of Azotobacter and Azospirillum in atmospheric nitrogen fixation, better root proliferation and uptake of nutrients and water. The obtained results are also in harmony with those undertaken by Yu et al., (1999).

£

Table 4. Effect of mineral N and organic accompanied with bio fertilizers on	yield and yield component kg/fed of
maize during 2013 and 2014 season	

		:	Eard	haracter	Total yield kg/fed				
Treatments	Plant height (cm)	Ear length (cm)	Ear diameter (cm)	No .of row /ear	No. grain /row	100-grain weight (g)	Grain Yield (.kg/fed)	Biological Yield (kg/fed)	Harvest index
T ₁ 100%M.N.F. (control)	264.33	24.67	5.09	15	51.00	39.0	4050	8804	0.46
T ₂ 75%M.N.F.	248.00	23.67	4.77	14	44.00	35.0	3651	8298	0.44
T ₃ 50%M.N.F.	226.67	21.00	4.45	12	36.33	32.0	2940	7350	0.40
T₄ 50%M.N.F. + 0.1% HA	230.33	23.00	4.45	13	39.33	35.0	3268	7781	0.42
T ₅ 50%M.N.F. + Bio.	239.00	23.50	4.56	14	44.00	36.0	3406	7741	0.44
T ₆ 50%M.N.F. + 0.1% HA+ Bio	257.33	24.00	4.77	14	48.50	38.0	3893	8463	0.46
T ₇ 50%M.N.F. + 50 % O.N.F	262.33	24.50	4.88	14	49.00	38.5	3976	8643	0.46
T ₈ 50%M.N.F. + 25 % O.N.F. + Bio	267.33	26.00	5.09	16	52.00	44.0	4450	9468	0.47
T ₉ 75%M.N.F + 0.1% HA	260.00	23.33	4.77	14	47.00	35.5	3717	8448	0.44
T ₁₀ 75%M.N.F+ 0.1% HA + Bio	265.67	25.67	4.94	15	50.00	42.0	4250	9239	0.46
T ₁₁ 75%M.N.F. + 25 % O.N.F	264.50	25.00	5.10	15	48.50	41.0	4081	8872	0.46
L.S.D at 5%	14.27	2.34	n.s	2.14	5.88	3.72	190.06	344.72	0.02

5

816

.

Grain Yield (kg fed⁻¹):

The present study showed that, there was a significant and positive effect of different treatments on grain yield of maize (Table 4). The grain yield of maize responded significantly to combined treatments .The highest grain yield (4450 kg/fed) was recorded by treatment T₈ (50% mineral +25% organic N +Bio) which was 51.36% more than the lowest yield of T₃ and 9.88% more than control (4050 kg/fed.) . This might be due to the positive effect of organic and bio fertilizers on better root development which resulted in more nutrient uptake. These microorganisms also produce vitamins and plant growth promoting substances for the betterment of plant growth. Organic manures not only release nutrients slowly but also prevent the losses of leaching (Arshad et al., 2004). This might lead to more availability of nutrients from compost and beneficial effects accrued due to Azotobacter and Azospirillum inoculation which provide nitrogen to plant growth. It may also be due to production of promoting substances like indole acetic acid, gibberellic acid and cytokinins as well as some synthesized vitamins secreted by these introduced beneficial microorganisms which resulted in enhanced nutrient uptake, translocation and synthesis of photosynthetic assimilates which resulted increased plant growth characters and in obtaining economically profitable yield (Suke et al., 2011 and Noel et al. 1996). These products increase the surface area/unit root length and improved the root hair branching with an ultimate increase on the uptake of nutrients and adsorption of water from the soil that eventually yield larger and in many cases, more productive plants (Dobbelaere et al. 2001). The analyzed data revealed that significant differences in harvest index were observed among fertilizer treatments. The comparison of mean showed variation in harvest index ranged from 0.40 to 0.47. The maximum value for harvest index was observed in T₈ (50% mineral +25% organic N +Bio) .The treatmentsT₁₀ (75%M.N.F+ 0.1% HA + Bio), T₁₁ (75% mineral +25% organic) ,T₁ (100% mineral N) and T7 (50%M.N.F. + 50 % O.N.F.)was statistically similar for harvest index values 0.46.

Nutrient contents

Nutrient concentrations and contents in both grains and straw of maize plant (Tables 5 and 6) differ significantly amongst all the treatments.

	Grains										
reatmonte	Ni	trogen ·	Phos	phorus	Potassium						
3 50%M.N.F. 4 50%M.N.F. + 0.1% HA 5 50%M.N.F. + Bio. 3 50%M.N.F. + 0.1% HA+ Bio	%	Content (Kg/fed.)	%	Content (Kg/fed.)	%	Content (Kg/fed.)					
1 100%M.N.F. (control)	1.93	78	0.47	19	0.77	31					
2 75%M.N.F.	1.70	62	0.38	14	0.64	23					
3 50%M.N.F.	1.50	44	0.35	10	0.58	17					
4 50%M.N.F. + 0.1% HA	1.60	52	0.37	12	0.60	20					
5 50%M.N.F. + Bio.	1.75	60	0.42	14	0.64	22					
6 50%M.N.F. + 0.1% HA+ Bio	1.85	72	0.44	17	0.64	25					
7 50%M.N.F. + 50 % O.N.F	1.88	75	0.51	20	0.81	32					
\$ 50%M.N.F. + 25 % O.N.F. + Bio	2.08	93	0.48	21	0.79	35					
「 ₉ 75%M.N.F + 0.1% HA	1.83	68	0.39	14	0.69	26					
10 75%M.N.F+ 0.1% HA + Bio	1.98	84	0.44	19	0.71	30					
11 75%M.N.F. + 25 % O.N.F	1.95	. 80	0.49	20	0.78	32					
S.D at 5%	0.17	7.68	n.s.	3.99	n.s.	6.42					

 Table 5. Effect of mineral N and some accompanied organic with bio fertilizers on N, P and K contents of maize grains of during 2013 and2014 seasons.

818

4

1

Dalia A. Sayed et al.

ر.

	Straw									
	Nit	rogen	Phosp	horus	Potassium					
2 75%M.N.F. 3 50%M.N.F. 4 50%M.N.F. + 0.1% HA 5 50%M.N.F. + 8io. 5 50%M.N.F. + 0.1% HA + 8io 7 50%M.N.F. + 50 % O.N.F. 3 50%M.N.F. + 25 % O.N.F. + 8io 3 50%M.N.F. + 0.1% HA 4 50%M.N.F. + 0.1% HA 50%M.N.F. + 0.1% HA 10	%	Content (Kg/fed.)	%	Content (Kg/fed.)	%	Content (Kg/fed.)				
T1 100%M.N.F. (control)	0.82	39	0.20	10	2.2	105				
Γ ₂ 75%M.N.F.	0.70	33	0.18	8	1.7	79				
Γ ₃ 50%M.N.F.	0.52	23	0.15	7	1.3	57				
Γ₄ 50%M.N.F. + 0.1% HA	0.60	27	0.17	8	1.5	68				
Γ ₅ 50%M.N.F. + Bio.	0.65	28	0.19	8	1.5	65				
6 50%M.N.F. + 0.1% HA+ Bio	0.75	34	0.20	9	1.8	82				
Γ ₇ 50%M.N.F. + 50 % O.N.F	0.74	35	0.24	11	2.4	112				
Г _в 50%M.N.F. + 25 % O.N.F. + Bio	0.85	43	0.23	12	2.8	141				
9 75%M.N.F + 0.1% HA	0.72	34	0.18	9	1.9	90				
Г ₁₀ 75%M.N.F+ 0.1% НА + Вю	0.84	42	0.22	11	2.3	115				
11 75%M.N.F. + 25 % O.N.F	0.80	38	0.22	11	2.4	115				
.S.D at 5%	0.09	4.67	0.03	1.80	0.52	24.45				

۰,

 Table 6. Effect of mineral N and some organic accompanied with bio fertilizers on N, P and K content in straw of

 maize during 2013 and2014 seasons

819

1

J.Soil Sci. and Agric. Eng., Mansoura Univ., Vol. 6 (7), July, 2015

Grain inoculation with bio-fertilizer in combination with 50% mineral N+ 25% organic N or Bio +50%M.N.F. + 0.1% HA increased nutrient content (NPK) compared to control. T₈ (50% mineral N+25% organic N +Bio) recorded the highest nutrient contents for N, P, and K, followed by T10 (75%M.N.F+ 0.1% HA + Bio), T11 (75% mineral +25% organic) and T₁ (100% mineral N). Combined application of inorganic N with biofertilizers as a partial substitute for chemical fertilizers was very effective in stimulating nutrients concentration and contents of maize plant. These findings are in harmony with those obtained by (Wani et al., 2007 and Abou-El-Seoud and Abdel-Megeed, 2012). These results might be due to that Azotobacter and Azospirillum species increased the solubility of soil nutrients as mentioned before. This might be attributed to the increased activity and efficiency of bacteria in reduction of soil pH by secreting organic acid, i.e. acetic, propionic, fumaric and succinic and consequently more solubility and availability of nutrients for plants. It may also be due to production of amino acids, vitamins and growth promoting substances like indole acetic acid and gibberellic acid secreted by these introduced beneficial microorganisms which resulted in enhanced nutrient uptake, translocation and synthesis of photosynthetic assimilates which resulted in increasing plant growth characters and in obtaining economically profitable yield (Singh et al., 2006 and Suke et al., 2011). The beneficial effects of using organic fertilizers along with mineral -N fertilizer on increasing nutrients concentration and contents of maize plant could be due to their effect on providing plants with their requirements from different nutrients at a longer time as well as their effect on increasing the availability of nutrients in the soil for uptake by plants and enhancing the nutritional status of the plants in favors of yield and quality.

Quality parameters

Protein Content and Yield

The protein content and yield of maize grain were significantly affected by different treatments (Table 7). The combination treatments gave the highest values especially T₈ (50% mineral +25% organic N +Bio) which ranked the first in this respect. The treatment T₃ (50% mineral N only) gave the lowest crude protein (8.6 %) as compared with the other treatments while the highest crude protein content (12.0%) was recorded only with T₈ (50% mineral +25% organic N +Bio) .The maximum protein yield (534 kg/fed) was recorded by treatment T₈ (50% mineral +25% organic N +Bio) which was 17.62 % more than the control increasing of protein content may be due to the fact that nitrogen often plays a great role in the synthesis of protein. The increase in protein yield of maize could be attributed to the enhanced nutrient use efficiency in the presence of organic fertilizer. Many research studies have shown that the composted organic materials release nutrients slowly and may reduce the leaching losses, particularly N (Nevens and Reheul, 2003 and Naveed et al., 2008). On the other hand, foliar sprays with humic acid(potassium humate) resulted in the highest mean value for protein yield. This result may be due to the role of humic acid as a source of nutrients which consequently increased production of assimilates and results in increased crude protein and protein yield. Free living N-fixing bacteria such as Azotobacter and Azospirillum have the ability not only to fix nitrogen but

also to release certain phytohormones, i.e. GA3, IAA and cytokinins which could stimulate plant growth and increase the availability of nutrients for plant roots by the increase in their dissolutions (Osman, 2007). **Oil Content and Yield**

The applied different treatment combinations caused increases in grain oil content and oil yield (Table 7). T₈ (50% mineral +25% organic N +Bio) recorded the highest oil content (9.78%) and oil yield (435 kg fed⁻¹). Increases in grain oil percentage and oil yield (kg fed⁻¹) by Azospirillum and Azotobacter might be due to their positive effect on nutrients absorption, higher photosynthetic rate, higher dry matter accumulation and higher vegetative growth (Singh and Sinsinwar, 2006). The application of humic acid(potassium humate) in combination with other fertilizers has significant beneficial effect on the growth and yield of maize. Humic acid influences plant growth both in direct and indirect ways. Indirectly, it improves physical, chemical and biological conditions of soil. While directly, it increases chlorophyll content, accelerates plant respiration and hormonal growth responses, increases penetration in plant membranes, etc. Similarly, Chris et al. (2005) reported that both the foliar and soil application of humic acid significantly improved seed yield and oil content of mustard. The total carbohydrates content was maximum with T₈ (50% mineral +25% organic N +Bio) (75.54%) followed by T₁₀ (75%M.N.F+ 0.1% HA + Bio), T₁₁ (75% mineral +25% organic) and T7 (50%M.N.F. + 50 % O.N.F). The carbohydrate content was 4.90 % increased with application of 50% mineral +25% organic N + bio as compared to the control 100% mineral N. Increase in total carbohydrates content with the use of bio and humic acid might be due to the fact that these substances enhance the nutrients availability to plant nutrients which are associated in sugar synthesis and transport. The promoting effect of humic acid (potassium humate) on the maize quality may be referring to potassium element which is the prevalent action in plant and involved in maintenance of ionic balance in cells and it bounds initially to the enzyme pyruvate kinase which is essential in respiration (Aisha et al., 2007). Cangi et al. (2006) indicated that foliar spraying of humic acid on asparagus plants increased uptake of macro and micro elements in shoot and rhizome has increased carbohydrates production, chlorophyll and carotenoids in edible stems. Concerning Total soluble sugars (%) and Starch (%) contents, it is noticed that treatments (T8, T10 and T 11) increased these parameters than the control. These results are agreed with this obtained by Osman, (2007).

Treatments	Protein (%)	Protein yield (kg/fed)	Oil %	Oil yield (kg/fed)	Total soluble Sugars (%)	(%)	Carbohydrate %
T ₁ 100%M.N.F. (control)	11.2	454	8.53	345	4.87	67.14	72.01
T ₂ 75%M.N.F.	9.8	358	7.68	280	4.38	67.2	71.58
T ₃ 50%M.N.F.	8.6	- 253	5.77	170	3.99	63.80	67.79
T ₄ 50%M.N.F. + 0.1% HA	9.2	301	6.42	210	4.15	65.65	69.80
T ₅ 50%M.N.F. + Bio.	10.1	344	6.98	238	4.60	64.30	68.90
T ₆ 50%M.N.F. + 0.1% HA+ Bio	10.6	413	7.50	292	4.65	67.19	71.84
T ₇ 50%M.N.F. + 50 % O.N.F	10.8	429	7.95	316	4.97	67.92	72.89
T ₈ 50%M.N.F. + 25 % O.N.F. + Bio	12.0	534	9.78	435	5.62	69.92	75.54
T ₉ 75%M.N.F + 0.1% HA	10.5	390	7.44	277	4.78	67.4	72.18
T ₁₀ 75%M.N.F+ 0.1% HA + Bio	11.4	485	8.75	372	4.95	69.01	73.96
T ₁₁ 75%M.N.F. + 25 % O.N.F	11.2	457	8.93	364	4.90	68.67	73.57
L.S.D at 5%	1.25	45.29	0.67	26.40	n.s.	0.60	1.53

5

 Table 7. Effect of mineral N and some organic accompanied with bio fertilizers on quality parameters of maize during 2013 and 2014 season

822

٠. 1

Dalia A. Sayed et al.

J.Soil Sci. and Agric. En	
I Sci.	
and /	
Agric.	
ric. Eng., Maı	
ıg., Mansoura Univ., Vol. 6 (7), -	
Univ.,	
Vol. 6	
Ĵ	
July,	
(7), July, 2015	

Table 8: Economic Study

T₁ 100%M.N.F. (control)

Treatment

Yield/fed.

Straw (ton/fed.)

Grain

(LE)

28.9 4.754 8678.6 713.1

Grain (ard. /fed.)

823

Price of N (50kg) =LE170 Price of HA (L) =LE 15 price of bio = LE 10									Ano	ther co	st =LE 10	000	
	Ardab of maize = 140 kgPrice of grain (Ard.) =LE 300Price of straw (ton) =LE 150price of compost (ton) =LE180												
	T ₁₁ 75%M.N.F. + 25 % O.N.F	29.2	4.791	8745	718.65	9463.7	360	306	-	-	1000	1666	779
1	T ₁₀ 75%M.N.F+ 0.1% HA + Bio	30.4	4.989	9107.1	748.35	9855.5	-	306	18	10	1000	1334	85
	T ₉ 75%M.N.F + 0.1% HA	26.6	4.731	7965	709.65	8674.7	-	306	18	-	1000	1324	73
	T ₈ '50%M.N.F. + 25 % O.N.F. + Bio	31.8	5.018	9535.7	752.7	10288.4	360	204	-	10	1000	1574	87
	T ₇ 50%M.N.F. + 50 % O.N.F	28.4	4.667	8520	700.05	9220.1	720	204	-	-	1000	1924	72
	T ₆ 50%M.N.F. + 0.1% HA+ Bio	27.8	4.57	8342.1	685.5	9027.6		204	18	10	1000	1232	779
	T ₅ 50%M.N.F. + Bio.	24.3	4.335	7298.6	650.25	7948.8	-	204	1	10	1000	1214	673
	T₄ 50%M.N.F. + 0.1% HA	23.3	4.513	7002.9	676.95	7679.8		204	18	-	1000	1222	64
	T₃ 50%M.N.F.	21.0	4.41	6300	661.5	6961.5	-	204	-	-	1000	1204	57
	T ₂ 75%M.N.F.	26.1	4.647	7823.6	697.05	8520.6	-	306	-	-	1000	1306	72
	11 10070001.14.1 . (Condion)	20.0	4.704	0010.0	110.1	0001.1		100			1000	1100	10

1

Income (LE)/fed.

Straw

(LE)

Total

(LE)

9391.7

Compost

-

Ν

408

Cost (LE)/fed.

Bio

-

others

1000

total

1408

HA

-

Economic Evaluation:

The Net return of the different treatments was presented in Table (8), which reflects that the most economically beneficial treatment was the application of T_8 (50% mineral +25% organic N +Bio) followed by T_{10} (75%M.N.F+ 0.1% HA + Bio) where the return reached 8714.4 and 8521.5 LE, respectively. This corresponds to an increase in the return reached about 730.7 and 537.8LE, respectively compared to the control.

CONCLUSION

From the abovementioned results, it could be concluded that fertilizing maize plants with organic manure, bio-fertilizers and/or humic acid with 50% or 75% mineral N treatments had a positive effect on maize growth and yields, since applying bio ,OM with 50% or 75% mineral N increased yield than those fertilized with the recommended N rate. Also, adding bio-fertilizer + humic with 50% mineral N highly increased yield than without adding them. This means that maize plants responded mainly to HA application and bio-fertilizer. On the other hand, treatments (T_8 , T_{10} and T_{11}) increased total carbohydrates, TSS and Starch content than the control. However, it seems that fertilizing maize plants with T_8 (50% mineral +25% organic N +Bio) or T_{10} (75%M.N.F+ 0.1% HA + Bio), are promising treatments under this study conditions.

REFERENCES

- Abdel Gader, E.O., (2007). Effect of different nitrogen sources on growth and yield of maize (Zea mays L.). Unpublished M.Sc. Thesis, Omdurman Islamic University, Faculty of Agriculture (inArabic).
- Abou-El-Seoud, I.I. and A. Abdel-Megeed, (2012). Impact of rock materials and biofertilizations on P and K availability for maize (*Zea maize*) under calcareous soil conditions. *Saudi J. of Biolo. Sci.* 19: 55–63.
- Aisha, A.H., F.A. Rizk, A.M. Shaheen and M.M. Abdel-Mouty,(2007). Onion plant growth, bulbs yield and its physical and chemical properties as affected by organic and natural fertilization. Res. J. Agric. Biol. Sci., 3: 380-388.
- Arshad, M., A. Khalid, M. H. Mahmood, and Z.A. Zahir, (2004). Potentiality of nitrogen and L-tryptophan enriched compost for improving growth and yield of hybrid maize. *Pak. J. Agric. Sci.*, 41:16-24.
- Atiyeh, R.M., S. Lee and C.A. Edwards. (2002). The influence of humic acids derived from earthwormprocessed organic wastes on plant growth. Bioresearch Technology. 84: 7-14.
- A.O.A.C.(1990). Official Methods of Analysis. 15th ed., Association of Official Analytical Chemists, Washington, D.C., USA.
- Cangi, R., C. Tarakcioglu and H. Yasar. (2006). Effect of humic acid applications on yield, fruit characteristics and nutrient uptake in Ercis grape (*Vitis vinifera* L.) cultivar. Asian J. Chemi.. 18: 1493-1499.

- Chapman, H.D. and R.T. Pratt, (1978). "Methods of Analysis for Soils, Plants and Water" Univ. of California, Div. Agric. Sci. Priced Publication 4030, pp: 12-19.
- Chris, W., N. Anderson and R. B. Stewart. (2005). Soil and foliar application of humic acid for mustard production. Environ. Pollution, pp. 254-257.
- Dobbelaere, S., A. Croonenborghs, A. Thys, D. Ptacek and J. Vanderleyden (2001). Responses of agrinomically important crops to inoculation with *Azospirillum*. Aust. J. Plant Physiol., 28: 871-879.
- El-Haddad, M.E., Y.Z. Ishac and M.I. Mostafa, (1993). The role of biofertilizers in reducing agriculture costs, decreasing environmental pollution and raising crop yield. Arab. Univ. J. Agric. Sci., Ain Shams Univ., Cairo, 1(1): 147-195.
- Gomez, K.A. and A.A. Gomez (1984). "Statistical Procedures for Agriculture Research". 2nd ed. Willey Inter Science Publisher, pp. 357-423.
- Hartman, A. (1988) "Ecophysiological aspects of growth and nitrogen fixation in Azospirillium species". Plant Soil, vol. 110, pp. 225–238.
- Hellal, F. A., S. A. Mahfouz and F. A. S. Hassan (2011). Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (*Anethum graveolens* L.) plant. Agric. Biol. J. N. Am., 2011, 2(4): 652-660
- Jakson, M.L., (1973). "Soil and Chemical Analysis". Prentice-Hall of India Private Limited, New Delhi.
- Kaya, M. and Khawar, K.M. (2005) Effect of pre-sowing seed treatment with zinc and foliar spray of humic acids on yield of common bean. *International J. of Agric. and Biology*, 7, 875-878.
- Khan H, M. Malik, M. Saleem, H. Khan, M. Malik and M. Saleem. (2008). Effect of rate and source of organic material on the production potential of spring maize (Zea mays L.). Pak. J. Agric. Sci .45: 40-43
- Naveed, M., M Khalid, D.L Jones, R. Ahmad, and Z.A., Zahir, (2008). Relative efficacy of *Pseudomonas* spp., containing ACC-deaminase for improving growth and yield of maize (*Zea mays* L.) in the presence of organic fertilizer. *Pak. J. Bot.*, 40(3): 1243-1251.
- Nevens, F. and D.Reheul. (2003). The application of vegetable, fruit and garden waste (VFG) compost in addition to cattle slurry in a silage maize monoculture: nitrogen availability and use. *Europ. J. Agron.*, 19: 189-203.
- Noel, T.C., C. Sheng, Ç.K. Kost, R.P. Phris and M.E. Hymes, (1996). *Rhizobium lequminosaium* as a plant growth-promoting rhizobacterium: Direct growth promoting of canola and lettuce. Can. J. Microbiol., 42: 279-283.
- Osman, A. Sh. (2007) "Effect of partial substitution of mineral-N by biofertilization on growth, yield and yield components of potato". The 3rd Conf. Sustain. Agric. Develop., Fac. Agric., Fayoum Univ., 12–14 Nov., pp. 381–396.
- Rajeshwari, R.S.; N.S. Hebsur ; H.M. Pradeep, and T.D. Bharamagoudar, (2007).Effect of integrated nutrient management on the growth and yield of maize. Karnataka J. Agric.Sci., 20: 399-400.

- Shah, S.T.H., M.S.I Zamir, M. Waseem, A. Ali, M. Tahir, W.B. Khalid, (2009). Growth and yield response of Maize (Zea mays L.) to organic and inorganic sources of nitrogen. Pak. J. Life. Soc. Sci. 7: 108-111
- Sharif, M., R.A. Khattak, and M.S. Sarir, (2003). Residual effect of humic acid and chemical fertilizers on maize yield and nutrient accumulation. *Sarhad J. of Agric.*, 19, 543-550.
- Singh, Y., C.S. Singh, T.K. Singh, and J.P. Singh (2006). Effect of fortified and unfortified rice-straw compost with NPK fertilizers on productivity, nutrient uptake and economics of rice (*Oryza sativa*). *Indian J. Agron.*, 51(4):297–300.
- Singh, R. and B.S. Sinsinwar, (2006). Effect of integrated nutrient of brinjal (Solanam melongana L.) to different sources management of growth,

yield, oil content and nutrient of nitrogen. Veg. Sci., 29(1): 9-11.

- Smith, F.; M. Dubois,; K.A. Gilles ; J. K. Hamilton, and L.N. Kebers, (1956).Colorimetric methods for determination of sugars and related substances. Anal. Chem., 28:350-354.
- Suke, S.N., R.D. Deotale, H. Priyanka, D. Mitali and S.N. Sorte (2011). Effect of nutrients and biofertilizers of chemical and biochemical parameters of maize (*Zea mays L.*).*J. Soil and Crops*, 21(1):107-112
- Yu, L.; B.Chen,; S. Yu,; Z. Li, and Z. Min, (1999). Effects of organic and chemical complex fertilizers treated with EM. Sixth International Conference on Kyusei. Nature Farming Pretoria, South Africa, 28-31.
- Wani, P.A., M.S. Khan, and A. Zaidi (2007). Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J. Plant Nut. Soil Sci., 170: 283–287.

الاستبدال الجزئي للنيتروجين المعدني بالتسميد العضوى والحيوى على الذرة داليا عدروز سيد ، لمياء عبد الحليم عبد الرحمن و ماجدة على عويس معهد بحوث الأراضي والمياه والبيئة – مركز البحوث الزراعية – الجيزة – مصر

أجريت تجربتان حقليتان لدراسة تأثير استخدام الاسمدة البيولوجية والعضوية كبديل جزنى عن الازوت المعدنى على نمو محصول الذرة وجودته (صنف هجين ثلاثى ٢٢٤). وقد اجريت الدراسة خلال موسمى ٢٠١٢ و ٢٠١٤ فى محطة بحوث الجميزة محافظة الغربية مركز البحوث الزراعية الجيزة تم تصميم التجربة فى قطاعات كاملة العشوانية بثلاث مكرارات.

اظهرت نتائج التجربة

ان المعاملة رقم (٨) (٥٠% نتروجين معدنى + ٢٥% نتروجين عضوى+ حيوى) اثرت ايجابيا على صفات النمو ومحتوى الورقة من العناصر الغذائية (النتروجين والفوسفور والبوتاسيوم) مقارنة مع المعاملات الاخرى وذلك بعد ٧٥ يوم من الزراعة.

ادى استخدام الاسمدة البيولوجية والعضوية وحامض الهيوميك مع ٥٠ أو ٧٥% من التسميد الازوتى المعدنى إلى إعطاء أفضل المواصفات للنمو مثل ارتفاع النبات حوزن ١٠٠حبة محصول الحبوب والمحصول البيولوجي (كجم للغدان) مقارنة بالنباتات التي استخدم قيها المعدل الموصى به من التسميد النيتروجيني.

وتم الحصول على النتيجة نفسها لجميع قياسات الجودة متل محتوى البروتين والزيت(%) ومحصول البروتين والزيت (كجم للفدان) وكذالك الكربو هيدرات الكلية والنشا عند استخدام نفس المعاملات التى تحتوى على الاسمدة البيولوجية والعضويةمع ٥٠ أو ٧٥%من التغنميد الازوتى المعدنى مقارنة بالمعدل الموصى به من الازوت المعدنى.

اعطت المعاملة رقم (٨) والتي تحتوى على ٥٠% نتروجين معدني + ٢٥% نتروجين عضوى+ حيوى أعلى محصول حبوب (٤٥٠ كجم للفدان) والذي زادت انتاجيتها بمقدار ٨٨ ٩ %مقارنة بالكنترول (٢٠٥٠ كجم للفدان) وبزيادة مقدرها ٢١٤ ٥ %عن اقل محصول في معاملة (٣) ٢٩٤٠ كجم للفدان

وجد أن أفضل عاند أقتصادى عند معاملة ٨ والتــى تحتـوى علَــى ٥٠% نتّـروجين معـدنى + ٢٥%نتروجين عضوى+حيـوى ويليها معاملة ١٠ والتــى تحتـوى على ٢٥% نيتروجين معدنى + الـرش بحمض الهيوميك + حيوى مقارنة بمعاملة الكنترول

ومن هنا يمكن استنتاج أن استخدام الاسمدة البيولوجية والعضوية كبديل جزئى للاسمدة النتروجينية. المعدنية ربما يكون الطريقة المناسبة للحصول على أعلى محصول حبوب ذات جودة عالية وأفضل عاند أقتصادى والحد من تلوث التربة والمياة الناتجة عن الاستخدام الزاند من هذه الاسمدة ._