

Zagazig J. Agric. Res., Vol. 42 No. (4) 2015

http://www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

AN ECONOMIC STUDY OF THE MAIN FACTORS AFFECTING THE MILK PRODUCTION IN SHARKIA GOVERNORATE

Ahmed E.M. Mohammed^{1*} and Abdallah M. El-Shenawy²

1. Agric. Econ. Dept., Fac. Agric., Zagazig Univ., Egypt

2. Econ. Dept., Fac. Commerce, Zagazig Univ., Egypt

ABSTRACT

The main objectives of the study can be summarized as follows: (i) studying the production performance and economic efficiency for different types of dairy cows. (ii) studying the main dairy production problems or constraints affecting the milk productivity and total return per dairy head. The main results can be summarized as follows: (i) the total costs per kg of milk is estimated at 6.84 LE/kg for baladi cow, 4.77 LE/kg for crossbred cow and 5.35 LE/kg for buffalo cow. (ii) the net total costs per kg of milk (*i.e.*, total costs less non-milk return) is estimated at 2.74 LE/kg for baladi cow, 2.07 LE/kg for crossbred cow and 2.59 LE/kg for buffalo cow. (iii) the gross margins and the net profits per kg of milk for baladi cow, crossbred cow and buffalo cow are estimated at 1.44 LE/kg, 1.21 LE/kg; 2.02 LE/kg, 1.88 LE/kg and 3.04 LE/kg as well as 2.86 LE/kg, respectively. (iv) the farmer incentive per kg of milk is estimated at 31% for baladi cow, 48% for crossbred cow and 53% for buffalo cow. (v) the milk quantities produced from the studied cows increase when the problem degrees decrease. (ii) the total returns from milk per head increase when the problem degrees decrease.

Key words: Total costs, gross margin, farmer incentive, total returns, Sharkia Governorate.

INTRODUCTION

The milk production is considered as an important part of the animal production sector in Egypt. The value of milk production reached about 23.39 billion LE, which represents about 26.33% of the value of livestock production which is about 88.84 billion LE in 2012 (Egypt in Figures, 2014). 88% of buffaloes and cattle population are available in farms with less than 5 faddan and five heads (General Statistics Year Book, 2012). In these farms the local cattle and buffalo together are loaded on berseem area. Some of those farmers are particularly interested in dairy farming and the majority is contributing to the milk marketing. Women play a major role in the upbringing and care of animals especially processes and milk manufacturing milk (Ibrahim, 1996).

The local milk production reached about 5.85 million tons in 2012. The average milk and its

products per capita consumption was about 70.80 kg in the same year (The Statistical Year Book, 2013). The small dairy farms represent the majority of animal population in Egypt. These farms characterized by inefficient technically and economically. This may be due to many problems such as lack of green fodders, high prices of livestock, dry fodders and veterinary drugs, shortage in concentrates and veterinary services, long distance between production sites and markets, and lack of finance.

The main objectives of the study can be summarized as follows: (i) studying the production performance and economic efficiency for different types of dairy cows. (ii) studying the main dairy production problems or constraints affecting the milk productivity and total return per dairy head.

^{*} Corresponding author: Tel. : +201061625204 E-mail address: Ahmed saied8219@yhaoo.com

MATERIALS AND METHODS

Sharkia Governorate is very important region in agriculture sector especially in dairy animals. It is considered the second Governorate for dairy population in Egypt. The total numbers of buffaloes and local cattle are estimated at 329171 and 529635 heads which represent about 8.62%, and 11.20% of the total number of buffaloes and local cattle in Egypt, respectively.

The field primary published and unpublished data have been used to accomplish the previous objectives. A questionnaire sheet has been designed to collect and conduct a suitable primary field data. The questionnaire sheets have been applied in the targeted site, i.e., sharkia Governorate during November and December 2014. The questionnaire sheet includes main three types of field primary data. These data are: (i) the inputs and outputs data of dairy production, (ii) socio-economic aspects data, (iii) the dairy production problems or constraints affecting the income from milk. The field data has been collected from one hundred and twenty dairy farms and conducted from three districts (i.e., Deyerb-Negm, Minya-Qamh and Zagazig). Two villages have been selected from each district. twenty dairy farms were selected from each village. The dairy farms with 5 faddans and less as well as 5 dairy heads and less were targeted.

The dairy budget for dairy cow has been used to estimate the main economic efficient indicators (Maxwell, 1979 and Heady, 1968). These indicators are : (1) Feed and non-feed costs, (2) Total production costs per liter of milk, (3) Gross margin per liter of milk, (4) Profit per milking cow per year, (5) Profit per man/day, (6) Profit per liter of milk, (7) Profit per LE., and (8) The percentage of farmer incentive. In addition the descriptive statistical analysis has been applied and covariance analysis to achieve the objectives of the study (Huitema, 1980). The dummy variables model has been applied to measure the economic impacts of milk production problems on the milk yield and total return per milking head as follows:

$$Y_{i} = \mu + \sum \alpha_{ii} \qquad (I)$$

$$TR_i = \mu + \sum \alpha_{ij} \qquad (II)$$

Where:

 Y_i = the estimated of milk yield for the i dairy cow and i = 1 (local cattle), 2 (crossbred) or 3 (buffalo).

 TR_{i} = the estimated total return for the i dairy cow.

 μ = the overall mean of milk yield or the total return per milk head.

 α_{ij} = the impacts of the j problem on the milk yield or total return per the i dairy cow.

RESULTS AND DISCUSSION

The Dairy Farm Budget

The dairy farm budget for local cattle (baladi cows) is presented in Table 1. The data in the table indicate that: (i) the market and culling values of cow are estimated at 7581 and 6488 LE/head, respectively. (ii) the calving interval, milk per lactation period and milk per year are estimated at 370 days, 1262 kg of milk per lactation period and 1244 kg of milk per year, respectively. (iii) the milk farm gate price of local cattle is quite low (i.e., 3.95 LE per kg). The total return, variable costs, total costs of cow are estimated at 10014.12, 8220.06 and 8509.81 LE/head, respectively. (iv) the total digested nutrient (TDN) of local cattle is estimated at 2904.33 kg. wherein 33.20% of the TDN comes from the concentrate, whereas 66.80% of the TDN comes from the fodders.

The dairy farm budget for crossbred cow is presented in Table 2. The data in the table indicate that: (i) the market and culling values of cow are estimated at 9008 and 7758 LE/head, respectively. (ii) the calving interval, milk per lactation period and milk per year are estimated at 362 days, 2255 kg of milk per lactation period and 2273.35 kg of milk per year, respectively. (iii) the milk farm gate price of crossbred is quite low (i.e., 3.95 LE per liter). The total return, variable costs, total costs of cow are estimated at 15118.90, 10532.27 and 10834.24 LE/head, respectively. (iv) the total digested nutrient (TDN) of crossbred is estimated at 3645.23 kg. where in 32.20% of the TDN comes from the concentrate, whereas 67.80% of the TDN comes from the fodders.

Name of farmer	Average		No. Dairy c			1	
Governorate	Sharkia		Type of Strain			baladi	
Date of data collect.	11-12/2014		Herd Structure				
Live weight	Kg	372	Animals bor	rn / birth		No.	1
Culling value	LE	6488	Calving inte	rval		Day	370
Replacement	(%)	14	Calf weight			Kg	120
Market value	LE	7581	Milk yield /	lactation		Liter	1262
Output			Unit/Head	Tota	l/Kg	LE/Unit	Total/LE
Culling			0.14	53	3	17.5	928
Calf			1	11	8	27	3203
Milk	(per year)			124	44	3.95	4916
Manure	m ³			30.	00	32.25	968
Total return							10014.12
Variable input		Total/Kg	TDN/g	Total	TDN	Price/Kg	Total/LE
Concentrates		1251.59	680	851	081	2.04	2553
Bran		192.66	590	113	669	1.86	358
Berseem		10880	120	1305	600	0.15	1632
green sorghum		1190	179	213	010	0.19	223
Strew		97 9	430	420	970	0.49	484
Feeding cost	Total TDN			2904	331		5250
Replacement	14.00%						1084
Labour (man-day)							75
Labour wage			-				21
labour cost							1584
Veterinary service + me	edicine						118
All Service							88
Subtotal							2970
Total variable costs							8220.06
Total variable cost/lite	er of milk						6.61
Gross margin/dairy h	ead						1794.1
Fixed input							
Buildings							8549
Equipment							1188
Subtotal							9736
Building depreciation				Production			171
Equipment depreciation	n -		1	Depreciati	on rate:	10%	119
Total Fixed costs						,	290
Total costs/dairy head	L						8509.81
Profit/head							1504.31
				of conc.	(%)	of fodder	(%)
Estimate of feed energy			2904331	964751	33.2	1939580	66.8
Estimate of feed cost (p	proportions in L	E)	5249.75	2911.59	55.5	2338.16	44.5

Table 1	. The	dairy f	farm h	udget	for b	ocal	cattle	(baladi	cows).	2014
---------	-------	---------	--------	-------	--------------	------	--------	---------	--------	------

Source: calculated and compiled from the field sample survey which collected on Dec. and Nov. 2014.

Name of farmer	Average		No. Dairy	cattle		1	
Governorate	Sharkia		Type of St			crossbred	
Date of data collect.	11-12/2014		Herd Stru	cture			
Live weight	Kg	437	Animals bo		th	No.	1
Culling value	LE	7758	Calving int			Day	362
Replacement	(%)	20	Calf weigh	t		Kg	120
Market value	LE	9008	Milk yield	/ lactati	on	Liter	2255
Output			Unit/Hea	ud '	Total/Kg	LE/Unit	Total/LE
Culling			0.20		87	17.8	1552
Calf			1		121	30	3620
Milk	(per year)				2273.35	3.95	8980
Manure	m ³				30.00	32.25	968
Total return							15118.90
Variable input		Total/Kg	TDN/g	T	otal/TDN	Price/Kg	Total/LE
Concentrates		1563.56	680		1063221	2.04	3194
Bran ·		185.5	590		109445	1.86	345
Berseem		13920	120		1670400	0.15	2140
green sorghum		1627.5	179		291323	0.19	309
Strew		1188	430		510840	0.49	582
Feeding cost	Total TDN				3645228		6571
Replacement	20.00%					2	1802
Labour (man-day)							86
Labour wage							21
labour cost							1811
Veterinary service + n	nedicine						118
All Service							97
Subtotal							3961
Total variable costs							10532.27
Total variable cost/li	ter of milk						4.63
Gross margin/dairy	head						4586.6
Fixed input							
Buildings							8836
Equipment							1253
Subtotal							10089
Building depreciation			Pr	oductio	n life 50 ye	ears	- 177
Equipment depreciation	on		De	epreciat	tion rate 10	%	125
Total Fixed costs							302
Total costs/dairy hea	d		•				10834.24
Profit/head							4285
			Total of	f conc.	(%)	of fodder	(%)
Estimate of feed energy	gy (proportions in T	'DN) 3	645228 1 1	72666	32.2	2472563	67.8
Estimate of feed cost	(proportions in LE)	6	570.93 3	539.38	53.9	3031.55	46.1

Table 2. The dairy farm budget for dairy cattle crossbred, 2014

Source: calculated and compiled from the field sample survey which collected on Dec. and Nov. 2014.

.

The dairy farm budget for buffalo cow is presented in Table 3. The data in the table indicate that: (i) the market and culling values of cow are estimated at 11933 and 8438 LE/head, respectively. (ii) the calving interval, milk per lactation period and milk per year are estimated at 396 days, 1970 kg of milk per lactation period and 1816 kg of milk per year, respectively. (iii) the milk farm gate price of buffalo is relatively low (i.e., 5.45 LE per liter). The total return, variable costs, total costs of cow are estimated at 14905.52, 9382.64 and 9706.38 LE/head, respectively. (iv) the total digested nutrient (TDN) of cow is estimated at 3339.36 kg. where in 31.10% of the TDN comes from the concentrates, whereas 68.90% of the TDN comes from the fodders.

Economic Efficiency Measures

The production and economic efficiency measures for local cattle are presented in Table 4. The results show that: (i) the milk return represents 49% of the total return of dairy cow. (ii) the variable and feed costs represent 97% and 62% of the total costs of dairy cow, respectively. (iii) the total costs per kg of milk is estimated at 6.84 LE/kg whereas the net total costs per kg of milk (i.e., total costs less non milk return) is estimated at 2.74 LE/kg. (iv) the gross margins and the net profits per kg of milk are estimated at 1.44 LE/kg and 1.21 LE/kg, respectively. (v) the farmer incentive per kg of milk (i.e., profit/kg ÷ farm gate price/kg) is estimated at 31% only. (vi) the annual TDN maintenance and for milk required for production are estimated at 1017.67 kg/head and 374.58 kg, respectively. Consequently the total annual TDN required for dairy cow is estimated at 1392.25 kg/year (vii) Therefore the surplus of annual TDN per cow is estimated at 1512.08 kg/year (i.e., 2904.33 kg of TDN/year - 1392.25 kg of TDN/year). This surplus of TDN is sufficient to produce 5023.54 kg of milk/year.

The production and economic efficiency measures for crossbred cow are presented in Table 4. The results show that: (i) the milk return represents 59% of the total return of dairy cow. (ii) the variable and feed costs represent 97% and 61% of the total costs of dairy cow, respectively. (iii) the total costs per kg of milk is estimated at 4.77 LE/kg whereas the net total costs per kg of milk is estimated at 2.07 LE/kg. (iv) the gross margins and the net profits per kg of milk are estimated at 2.02 LE/kg and 1.88 LE/kg, respectively. (v) the farmer incentive per kg of milk is estimated at 48% only. (vi) the annual TDN required for maintenance and for milk production are estimated at 1196 kg/head and 684 kg, respectively. Consequently the total annual TDN required for dairy cow is estimated at 1880.57 kg/year (vii) Therefore the surplus of annual TDN per cow is estimated at 1765 kg/year. This surplus of TDN is sufficient to produce 5863 kg of milk/year.

The production and economic efficiency measures for buffalo cow are presented in Table 4. The results show that: (i) the milk return represents 66% of the total return of dairy cow. (ii) the variable and feed costs represent 97% and 61% of the total costs of dairy cow, respectively. (iii) the total costs per kg of milk is estimated at 5.35 LE/kg whereas the net total costs per kg of milk is estimated at 2.59 LE/kg. (iv) the gross margins and the net profits per kg of milk are estimated at 3.04 LE/kg and 2.86 LE/kg, respectively. (v) the farmer incentive per kg of milk is estimated at 53%. (vi) the annual TDN required for maintenance and for milk production are estimated at 1360 kg/head and 547 kg/head, respectively. Consequently the total annual TDN required for dairy cow is estimated at 1906.54 kg/year (vii) Therefore the surplus of annual TDN per cow is estimated at 1433 kg/year. This surplus of TDN is sufficient to produce 4760 kg of milk/year.

Main Constraints Affecting on Farm Incomes from the Milk Production

In this part of the study, the impacts of main constraints affecting the quantities produced of milk and total return per dairy head have been measured for the studied cows. These problems are: (1) lack of green fodders, (2) high prices of livestock, (3) high prices of concentrates and dry fodders, (4) high prices of veterinary drugs, (5) unavailability of concentrates and dry fodders, (6) lack of veterinary services, (7) distance among the production and markets sites and (8) lack of finance.

Name of farmer Governorate		Average Sharkia		airy cattle of strain		1 Buffalo	
Date of data collect.		5пагкіа 11-12/2014	• -	structure		DUIIAIO	
Live weight	Kg	497	Anim	als born / bi	irth	No.	1
Culling value	LE	8438	Calvi	ng interval		Days	396
Replacement	(%)	10	Calf	weight		Kg	120
Market value	LE	11933	Milk	yield / lacta	tion	Liter	1970
Output			Ur	nit/Head	Total/Kg	LE/Unit	Total/LE
Culling				0.10	50	17.0	844
Calf				1	111	26	2876
Milk	(per year)				1816	5.45	9896
Manure	m ³				40.00	32.25	1290
Total return							14905.52
Variable input		Total/Kg	g	ΓDN/g	Total/TDN	Price/Kg	Total/LE
Concentrates		1393.419)	680	947525	2.04	2843
Bran .		154		590	90860	1.86	286
Berseem		12660		120	1519200	0.15	1899
green sorghum		1540		179	275660	0.19	293
Strew		1177		430	506110	0.49	577
Feeding cost	Total TDN				3339355		5897
Replacement	20.00%					<u>਼</u>	1193
Labour (man-day)							92
Labour wage							21
labour cost							1929
Veterinary service +	medicine						137
All Service							114
Subtotal							3485
Total variable costs							9382.64
Total variable cost/	iter of milk						5.17
Gross margin/dairy	head						5522.9
Fixed input							
Buildings							9152
Equipment							1407
Subtotal							10559
Building depreciation	n			Produc	tion life 50		- 183
Equipment depreciat	•			Deprec	iation rate 10%	6	141
Total Fixed costs				_			324
Total costs/dairy he	ad						9706.38
Profit/head							5199.15
			Total	of cone	c. (%)	of fodder	(%)
Estimate of feed ener	rgy (proportion	is in TDN)	3339355	103838	5 31.1	2300970	68.9
Estimate of feed cost			5897.34	3129.0	1 53.1	2768.33	46.9

Table 3. The dairy farm budget fo	or dairy buffalo cow, 2014
-----------------------------------	----------------------------

Source: calculated and compiled from the field sample survey which collected on Dec. and Nov. 2014.

.

Table 4. The production and economic efficiency measures for local cattle (baladi cows), crossbred cow and buffalo cow, 2014

Indicators	Unit	Baladi	Crossbred	buffalo
Calving interval	Day	370	362	396
Milk yield per dairy head per year	Kg/head/year	1244	2273	1816
Milk price per liter	LE/liter	3.95	3.95	5.45
TDN from conc./total TDN	(%)	33	32	31
TDN cost from conc./total TDN cost	(%)	55	54	53
Total revenue per dairy head per year	LE/head/year	10014.12	15118.90	14905.52
Milk revenue	(%)	49	59	66
Non-milk revenue	(%)	51	41	34
Feed costs	(%)	62	61	61
Variable costs	(%)	97	97	97
Fixed costs	(%)	3	3	3
Total production costs per dairy head per year	LE/head/year	8509.81	10834.24	9706.38
Total production costs per dairy head per day	LE/head/day	23.31	29.68	26.59
Total production costs per liter of milk	LE/liter	6.84	4.77	5.35
Net total production costs per liter of milk	LE/liter	2.74	2.07	2.59
Gross margin per dairy head per year	LE/head/year	1794.05	4586.63	5522.88
Gross margin per liter of milk	LE/liter	1.44	2.02	3.04
Gross margin per labour	LE/man day	23.79	53.19	60.13
Profit per dairy head per year	LE/head/year	1504.31	4284.65	5199.15
Profit per man day	LE/man day	19.95	49.69	56.61
Profit per liter of milk	LE/liter	1.21	1.88	2.86
Profit per LE	LE/LE	0.18	0.40	0.54
Farmer incentive	(%)	31	48	53
Farmer margin per liter of milk	LE/liter	-2.89	-0.82	0.10
Annual TDN requirement for maintenance	Kg/head	1017.67	1196	1360
Annual TDN requirement for milk production	Kg	374.58	684	547
Surplus or shortage in annual TDN requirement	Kg	1512.08	1765	1433
annual loss in terms of milk (liters)	Liter/year	5023.54	5863	4760
Daily annual loss in terms of milk (liters)	Liter/day	13.8	16.1	13.0

Source: calculated and compiled from the field sample survey which collected on Dec. and Nov. 2014.

1- Net total production costs = total production costs - return from (culling, calf and manure).

2- Gross margin = total revenue - variable production costs.

3- Profit = total revenue - total production costs.

4- Farmer incentive = profit per liter of milk/milk price per liter.

5- Farmer margin per liter of milk = milk price per liter - total production costs per liter of milk

The impacts of the dangerous degree of the eight previous production problems (*i.e.*, no problem, weak or severe) on the quantities produced of milk and total returns per dairy head of local cattle, crossbred and buffalo have been identified, compared and discussed in Table 5. The data shown in the table indicate that (i) the milk quantities produced from local cattle, crossbred and buffalo increase when the problem degrees decrease. (ii) the total returns from milk per head of local cattle, crossbred and buffalo increase when the problem degrees decrease.

Estimation of the Impacts of Main Constraints Affecting the Milk Production

Local Dairy cattle

The impacts of problem degrees (i.e., severe, weak and no problem) of green fodders lack on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (1). The results indicate that: (i) the milk production is estimated at 0.992 ton/lactation period when the problem impact of green fodders lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.429 and 0.595 ton/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of green fodders lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of green fodders lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 10.92). (v) the variations in problem degrees of green fodders lack explain 56% of the variations of the milk quantities produced.

 $Y_i = 0.992 + 0.429 Weak_1 + 0.595 No problem_1$

 $(12.41)^{**}$ $(3.55)^{*}$ $(4.13)^{**}$ F-Ratio = $(10.92)^{**}$ $R'^2 = 0.56$

Where:

 Y_{i} = the estimated quantity of milk produced from local cattle (ton/lactation).

Constant = the impact of green fodders lack on the milk quantities produced is severe.

 $Weak_1$ = the net impact of green fodders lack on the milk quantities produced is weak.

No problem₁ = the net impact of green fodders lack on the milk quantities produced is no problem.

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of livestock high prices on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (2). The results indicate that: (i) the milk production is estimated at 1.043 ton/lactation period when the problem impact of livestock high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.436 and 0.440 ton/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of livestock high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of livestock high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 6.34). (v) the variations in problem degrees of livestock high prices explain 43% of the variations of the milk quantities produced.

 $Y_i=1.043+0.436Weak_2+0.440No \text{ problem}$ (2) (12.02)** (3.22)** (2.44)*

 $F-Ratio = (6.34)^{**}$ $R'^2 = 0.43$

(1)

The impacts of problem degrees (*i.e.*, severe, . weak and no problem) of concentrates and dry fodders high prices on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (3). The results indicate that: (i) the milk production is estimated at 1.050 ton/lactation period when the problem impact of concentrates and dry fodder high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.371 and 0.407 ton/lactation period when the net problem impacts of concentrates and dry fodders high prices are weak or no, respectively.

Zagazig Journal of Agricultural Economics and Rural Sociology and Agricultural Extension Research 887

Table 5. The relationship among milk production problems, the milk quantities produced in
lactation period and the total milk returns per head of the local cattle, crossbred cattle
and buffalo, 2014

the main da	iry	Milk yield	/ lactation pe	eriod (ton)	Total milk return / head (L		nead (LE)
production		baladi	Crossbred	Buffaloes	baladi	crossbred	Buffaloes
problems			0.0000.04				
1- Lack of gre	en fodders	3					
No problem	(%)	20 1.59	30	20 2.33 35	20 11240	30 16577	20 19198
•	Méan (%)	35	2.56 35	35	35	35	35
Weak	(%) Mean	1.42	2.32	2.06	10755	15827	16755
Severe '	(%) Mean	45 0.99	35 1.93	45 1.74	45 9202	35 13893	45 14265
Total	(%)	100	100	100	100	100	100
Total	Mean	1.26	2.25	1.97	10153	15375	16121
2- High prices	(%)	15	30	15	15	30	15
No problem	(%) Mean	1.48	2.59	2.33	11312	17133	19170
Weak	(%) Mean	35 1.48	35 2.27	35 2.10	35 10751	35 15261	35 17240
Severe	(%)	50	35	50	50	35	50
Severe	Mean	1.04 100	1.95 100	1.77 100	9387 100	13983 100	14424 100
Total	(%) Mean	1.26	2.25	1.97	10153	15375	16121
3- High prices	s of concen	trates and dry	fodder				
No problem	(%) Mean	15 1.62	10 2.81	35 2,19	15 11550	10 2.81	35 17803
Weak	(%) Mean	30	30	30	30	30	30
W Cak	Mean	1.46	2.47	2.10 35	10680	16406	16766
Severe	(%) Mean	55 1.06	60 2.05	1.64	55 9484	60 14469	35 13888
Total	(%)	100	100	100	100	100	100
	Méan of veterin	1.26 arv drugs	2.25	1.97	10153	15375	16121
4- High prices No problem	(%)	25	20	20	25 11293	20	20
-	Mean	1.50 50	2.68	2.33	11293 50	17125	18794 45
Weak	(%) Mean	1.30	55 2.28	45 2.07	10192	55 15478	16671
Severe	(%)	25	25	35	25	25	35
	Mean (%)	0.96 100	1.86 100	1.64 100	8936 100	13750 100	13888 100
Total	Méan	1.26	2.25	1.97	10153	15375	16121
	(%)	centrates and d 20	ry lodders	30	20	25	30
No problem	Méan	1.56	2.68	2.22	11380	16946	17980
Weak	(%) Mean	25 1.53	20 2.39	25 2.08	25 11036	20 16692	25 16897
Savara	(%)	55	55	45	55	55	45
Severe	Mean	1.03	2.01	1.74	9305	14183	14451
Total	(%) Mean	100 1.26	100 2.25	100 1.97	100 10153	100 15375	100 16121
6- Lack of ve	terinary se	rvices					
No problem	(%) Mean	10 1.63	15 2.65	10 2.40	10 11740	15 17443	10 19490
Weak	(%)	40	35	50	40	35 16222	50
	Mean	1.40 50	2.46 50	2.06 40	10754	16222 50	16709 40
Severe	(%) Mean	1.08	1.99	1.75	50 9355	14162	14545
Total	(%)	100	100	100	100	100	100
	Mean ngth amon	1.26 of the production	2.25 n and markets si	1.97 tes	10153	15375	16121
No problem	(%)	- 30	40	20	30	40	20
•	Mean	1.52 25	2.46	2.20 •40	11268	16632	17595
Weak	(%) Mean	1.40	25 2.37 35	2.09	25 10732	25 15451	40 17082
Severe	(%)	1.40 45	35	40	45	35	40
	Mean (%)	1.02	1.93 100	1.74 100	9089 100	13885 100	14424 100
Total	Mean	1.26	2.25	1.97	10153	15375	16121
8- Lack of fin	(%)	15	15	45	15	15	45
No problem	Méan	15 1,65	15 2.67 25	2.11 25	11846	17471	17123
Weak	(%)	20	25	25	20	25	25
	Mean (%)	1.43	2.50 60	2.08 30	11105 65	16613 60	16749 30
Severe	Mean	1.12	2.05	1.67	9469	14335	14095
Total	(%)	100	100 2.25	100 1.97	100	100 15375	100
	Mean	1.26	2.23	1.97	10153	15375	16121

Source: calculated and compiled from the field sample survey which collected on Dec. and Nov. 2014.

That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of concentrates and dry fodders high prices is also statistically significant at 5% level (i.e., F-Ratio = 4.17). (v) the variations in problem degrees of concentrates and dry fodders high prices explain 33% of the variations of the milk quantities produced.

 $Y_{i}=1.050+0.371 \text{ Weak}_{3}+0.407 \text{ No problem}_{3}$ (3) (10.61)** (2.48)** (2.28)* F-Ratio = (4.17)* R'^{2} = 0.33

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary drugs high prices on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (4). The results indicate that: (i) the milk production is estimated at 0.960 ton/lactation period when the problem impact of veterinary drugs high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.335 and 0.536 ton/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary drugs high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary drugs high prices is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.21). (v) the variations in problem degrees of veterinary drugs high prices explain 33% of the variations of the milk quantities produced.

 $Y_i = 0.960 + 0.335 Weak_4 + 0.536 No problem_4$ (4)

 $(7.24)^{**}$ $(2.06)^{*}$ $(2.86)^{**}$ F-Ratio = $(4.21)^{*}$ $R^{12} = 0.33$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders unavailability on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (5). The results indicate that: (i) the milk production is estimated at 1.030 ton/lactation period when the problem impact of concentrates and dry fodders unavailability on the milk quantities produced is severe. (ii) the milk production will increase by 0.500 and 0.532 ton/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no. respectively. That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders unavailability are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities, produced and problem degrees of concentrates and dry fodders unavailability is also statistically significant at 1% level (*i.e.*, F-Ratio = 12.09). (v) the variations in problem degrees of concentrates and dry fodders unavailability explain 59% of the variations of the milk quantities produced.

$$Y_{i}=1.030+0.500Weak_{5}+0.532No \text{ problem}_{5}$$
(5)
(14.66)** (3.98)** (3.91)**
F-Ratio = (12.09)** $R'^{2} = 0.59$

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary services lack on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (6). The results indicate that: (i) the milk production is estimated at 1.080 ton/lactation period when the problem impact of veterinary services lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.318 and 0.545 ton/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary services lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on

the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary services lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.22). (v) the variations in problem degrees of veterinary services lack explain 33% of the variations of the milk quantities produced.

$$Y_{i}=1.080+0.318Weak_{6}+0.545No \text{ problem}_{6}$$
(6)
(11.52)** (2.26)* (2.37)*
F-Ratio = (4.22)* R² = 0.33

The impacts of problem degrees (i.e., severe, weak and no problem) of distance among the production and markets sites on the milk quantities produced in lactation period per head of the local cattle are estimated in equation (7). The results indicate that: (i) the milk production is estimated at 1.017 ton/lactation period when the problem impact of distance among the production and markets sites on the milk quantities produced is severe. (ii) the milk production will increase by 0.379 and 0.500 ton/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of distance among the production and markets sites are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of distance among the production and markets sites is also statistically significant at 1% level (*i.e.*, F-Ratio = 7.14). (v) the variations in problem degrees of distance among the production and markets sites explain 46% of the variations of the milk quantities produced.

 $Y_{i}=1.017+0.379 \text{ Weak}_{7}+0.500 \text{ No problem}_{7}$ (7) (11.41)** (2.54)* (3.55)** F-Ratio = (7.14)** R'² = 0.46

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of finance lack on the milk quantities produced in lactation period per head of the local cattle are estimated in equation

(8). The results indicate that: (i) the milk production is estimated at 1.098 ton/lactation period when the problem impact of finance lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.322 and 0.522 ton/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of finance lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of finance lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 5.71). (v) the variations in problem degrees of finance lack explain 40% of the variations of the milk quantities produced.

 $Y_i=1.098+0.322$ Weak₈+0.522No problem₈ (8) (13.57)^{**} (2.16)^{*} (3.05)^{**}

F-Ratio = $(5.71)^{**}$ R¹² = 0.40

Dairy crossbred cattle

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of green fodders lack on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (9). The results indicate that: (i) the milk production is estimated at 1.929 ton/ lactation period when the problem impact of green fodders lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.391 and 0.631 ton/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of green fodders lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of green fodders lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 8.43). (v) the variations in problem degrees of green fodders lack explain 50% of the variations of the milk quantities produced.

(9)

$$Y_i = 1.929 + 0.391 Weak_1 + 0.631 No problem_1$$

 $(18.15)^{**}$ $(2.60)^{**}$ $(4.04)^{**}$ F-Ratio = $(8.43)^{**}$ $R'^2 = 0.50$

Where:

 Y_i = the estimated quantity of milk produced from crossbred cattle (ton/lactation).

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of livestock high prices on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (10). The results indicate that: (i) the milk production is estimated at 1.954 ton/lactation period when the problem impact of livestock high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.313 and 0.638 ton/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of livestock high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of livestock high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 8.23), (v) the variations in problem degrees of livestock high prices explain 49% of the variations of the milk quantities produced.

 $Y_{i}=1.954+0.313 \text{ Weak}_{2}+0.638 \text{ Noproblem}_{2}$ (10) (18.28)** (2.07)* (4.05)** F-Ratio = (8.23)** R² = 0.49

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders high prices on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (11). The results indicate that: (i) the milk production is estimated at 2.052 ton/lactation period when the problem impact of concentrates and dry fodders high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.421 and 0.760 ton/lactation period when the net problem impacts of concentrates and dry fodders high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of concentrates and dry fodders high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 9.35). (v) the variations in problem degrees of concentrates and dry fodders high prices explain 52% of the variations of the milk quantities produced.

 $Y_{i}=2.052+0.421 \text{Weak}_{3}+0.760 \text{No problem}_{3}$ (11) (25.97)** (3.08)** (3.64)** F-Ratio = (9.35)** R'^{2} = 0.52

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of veterinary drugs high prices on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (12). The results indicate that: (i) the milk production is estimated at 1.855 ton/lactation period when the problem impact of veterinary drugs high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.426 and 0.826 ton/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary drugs high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary drugs high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 11.43). (v) the variations in problem degrees of veterinary drugs high prices explain 57% of the variations of the milk quantities produced.

$$Y_{i}=1.855+0.426 \text{Weak}_{4}+0.826 \text{ No problem}_{4}$$
(12)
(16.01)** (3.05)** (4.75)**
F-Ratio = (11.43)** R¹² = 0.57

The impacts of problem degrees (i.e., severe, weak and no problem) of concentrates and dry fodders unavailability on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (13). The results indicate that: (i) the milk production is estimated at 2.012 ton/lactation period when the problem impact of concentrates and dry fodders unavailability on the milk quantities produced is severe. (ii) the milk production is estimated will increase by 0.382 and 0.667 ton/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders unavailability are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of concentrates and dry fodders unavailability is also statistically significant at 1% level (i.e., F-Ratio = 13.15). (v) the variations in problem degrees of concentrates and dry fodders unavailability explain 61% of the variations of the milk quantities produced.

 $Y_i = 2.012 + 0.382 Weak_5 + 0.667 No \text{ problem}_5$ (13)

 $(26.84)^{**}$ $(2.63)^{**}$ $(4.97)^{**}$ F-Ratio = (13.15)^{**} $R^{12} = 0.61$

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary services lack on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (14). The results indicate that: (i) the milk production is estimated at 1.989 ton/lactation period when the problem impact of veterinary services lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.474 and 0.664 ton/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary services lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary services lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 10.61). (v) the variations in problem degrees of veterinary services lack explain 56% of the variations of the milk quantities produced.

$$Y_{i}=1.989+0.474 \text{Weak}_{6}+0.664 \text{No problem}_{6}$$
(14)
(23.77)** (3.64)** (3.81)**
E-Ratio = (10.61)* $\mathbf{R}^{12} = 0.56$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of distance among the production and markets sites on the milk quantities produced in lactation period per head of the crossbred cattle are estimated in equation (15). The results indicate that: (i) the milk production is estimated at 1.932 ton/lactation period when the problem impact of distance among the production and markets sites on the milk quantities produced is severe. (ii) the milk production will increase by 0.442 and 0.530 ton/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of distance among the production and markets sites are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of distance among the production and markets sites is also statistically significant at 1% level (*i.e.*, F-Ratio = 6.35). (v) the variations in problem degrees of distance among the production and markets sites explain 43% of the variations of the milk quantities produced.

$$Y_{i}=1.932+0.442 Weak_{7}+0.530 No \text{ prolem}_{7}$$
(15)
(17.03)** (2.51)* (3.42)**
F-Ratio = (6.35)** R'² = 0.43

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of finance lack on the milk quantities produced in lactation period per

head of the crossbred cattle are estimated in equation (16). The results indicate that: (i) the production is estimated at 2.049 milk ton/lactation period when the problem impact of finance lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.451 and 0.617 ton/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of finance lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of finance lack is also statistically significant at 1% level (i.e., F-Ratio = 8.22). (v) the variations in problem degrees of finance lack explain 49% of the variations of the milk quantities produced.

Y_i=2.049+0.451Weak₈+0.617No problem₈ (16) (25.10)** (2.99)* (3.38)** $R'^2 = 0.49$ $F-Ratio = (8.22)^{**}$

Dairy buffalo

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of green fodders lack on the milk quantities produced in lactation period per head of buffalo are estimated in equation (17). The results indicate that: (i) the milk production is estimated at 1.744 ton/lactation period when the problem impact of green fodders lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.313 and 0.581 ton/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of green fodders lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of green fodders lack is also statistically significant at 1% level (i.e., F-Ratio = 6.41). (v) the variations in problem degrees of green fodders lack explain 43% of the variations of the milk quantities produced.

$Y_i = 1.744 + 0.313$ Weak ₁ + 0.581 No problem ₁					
(18.59)**	(2.20)*	(3.43)**			

 $R'^2 = 0.43$ $F-Ratio = (6.41)^{**}$

Where:

 Y_i = the estimated quantity of milk produced from buffaloes (ton/lactation).

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of livestock high prices on the milk quantities produced in lactation period per head of buffalo are estimated in equation (18). The results indicate that: (i) the milk production is estimated at 1.770 ton/lactation period when the problem impact of livestock high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.330 and 0.563 ton/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of livestock high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of livestock high prices is also statistically significant at 1% level (i.e., F-Ratio = 5.37). (v) the variations in problem degrees of livestock high prices explain 39% of the variations of the milk quantities produced.

Y _i =1.770+	0.330Weal	k ₂ +0.563No pr	oblem ₂	(18)

 $(19.18)^{**}$ $(2.30)^{*}$ (2.93)**

 $R'^2 = 0.39$ F-Ratio = (5.37)**

The impacts of problem degrees (i.e., severe, weak and no problem) of concentrates and dry fodders high prices on the milk quantities produced in lactation period per head of buffalo are estimated in equation (19). The results indicate that: (i) the milk production is estimated at 1,643 ton/lactation period when the problem impact of concentrates and dry fodders high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.457 and 0.543 ton/lactation period when the net problem impacts of concentrates and dry fodders

high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of concentrates and dry fodders high prices is also statistically significant at 1% level (i.e., F-Ratio = 8.43). (v) the variations in problem degrees of concentrates and dry fodders high prices explain 50% of the variations of the milk quantities produced.

 $Y_{i}=1.643+0.457 Weak_{3}+0.543 No \text{ problem}_{3}$ (19) (16.46)** (3.11)** (3.85)** F-Ratio = (8.43)** $R'^{2} = 0.50$

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary drugs high prices on the milk quantities produced in lactation period per head of buffalo are estimated in equation (20). The results indicate that: (i) the milk production is estimated at 1.643 ton/lactation period when the problem impact of veterinary drugs high prices on the milk quantities produced is severe. (ii) the milk production will increase by 0.424 and 0.682 ton/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary drugs high prices are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary drugs high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 11.09). (v) the variations in problem degrees of veterinary drugs high prices explain 57% of the variations of the milk quantities produced.

$$Y_{i}=1.643+0.424 Weak_{4}+0.682 No \text{ problem}_{4}$$
(20)
(17.71)** (3.43)** (4.43)**
F-Ratio = (11.09)** R'² = 0.57

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders unavailability on the milk quantities produced in lactation period per head of buffalo are estimated in equation (21). The results indicate that: (i) the milk production is estimated at 1.744 ton/lactation period when the problem impact of concentrates and dry fodders unavailability on the milk quantities produced is severe. (ii) the milk production will increase by 0.336 and 0.472 ton/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no. respectively. That means, the relationship among the milk quantities produced and degree of concentrates and dry fodders unavailability are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of concentrates and dry fodders unavailability is also statistically significant at 1% level (*i.e.*, F-Ratio = 5.08). (v) the variations in problem degrees of concentrates and dry fodders unavailability explain 37% of the variations of the milk quantities produced.

$$Y_{i}=1.744+0.336Weak_{5}+0.472 \text{ No problem}_{5}$$
(21)
(17.75)** (2.04)* (3.04)**
F-Ratio = (5.08)** $B^{12}=0.37$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of veterinary services lack on the milk quantities produced in lactation period per head of buffalo are estimated in equation (22). The results indicate that: (i) the milk production is estimated at 1.750 ton/lactation period when the problem impact of yeterinary services lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.310 and 0.650 ton/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of veterinary services lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on

the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of veterinary services lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.67). (v) the variations in problem degrees of veterinary services lack explain 36% of the variations of the milk quantities produced.

$$Y_i=1.750+0.310Weak_6+0.650No \text{ problem}_6$$
 (22)
(16.53)** (2.18)* (2.75)**
F-Ratio = (4.67)* R¹² = 0.36

The impacts of problem degrees (i.e., severe, weak and no problem) of distance among the production and markets sites on the milk quantities produced in lactation period per head of buffalo are estimated in equation (23). The results indicate that: (i) the milk production is estimated at 1.738 ton/lactation period when the problem impact of distance among the production and markets sites on the milk quantities produced is severe. (ii) the milk production will increase by 0.350 and 0.462 ton/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of distance among the production and markets sites are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of distance among the production and markets sites is also statistically significant at 5% level (*i.e.*, F-Ratio = 3.99). (v) the variations in problem degrees of distance among the production and markets sites explain 32% of the variations of the milk quantities produced.

 $Y_i=1.738+0.350Weak_7+0.462No \text{ problem}_7$ (23) (15.98)** (2.28)* (2.46)** F-Ratio = (3.99)* R¹² = 0.32

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of finance lack on the milk quantities produced in lactation period per head of buffalo are estimated in equation (24).

The results indicate that: (i) the milk production is estimated at 1.667 ton/lactation period when the problem impact of finance lack on the milk quantities produced is severe. (ii) the milk production will increase by 0.413 and 0.444 ton/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the milk quantities produced and degree of finance lack are negative. The milk quantities produced increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the milk quantities produced are statistically significant. (iv) the mathematical relationship between the milk quantities produced and problem degrees of finance lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.29). (v) the variations in problem degrees of finance lack explain 34% of the variations of the milk quantities produced.

 $Y_{i}=1.667+0.413 \text{ Weak}_{\$}+0.444 \text{ No problem}_{\$}$ (24) (13.43)** (2.25)* (2.78)** F-Ratio = (4.29)* R'^{2} = 0.34 **

Estimation of the Impacts of Main Constraints Affecting Total Return from the Milk Production

Local Dairy cattle

The impacts of problem degrees (i.e., severe, weak and no problem) of green fodders lack on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (25). The results indicate that: (i) the total returns of milk production is estimated at 9202.163 LE/lactation period when the problem impact of green fodders lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1552.582 and 2037.470 LE/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of green fodders lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the total returns from milk production are statistically significant. (iv) the mathematical

relationship between the total returns from milk production and problem degrees of green fodders lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 6.46). (v) the variations in problem degrees of green fodders lack explain 43% of the variations of the total returns from milk production.

 $TR_{i}=9202.163+1552.582Weak_{1}+2037.47No \text{ problem}_{1} (25)$ $(25.30)^{**} (2.82)^{**} (3.11)^{**}$ F-Ratio = (6.46)^{**} R'² = 0.43

Where:

 TR_i = the estimated total returns from milk per head of local cattle (LE/lactation).

Constant = the impact of green fodders lack on the total returns from milk is severe.

Weak₁ = the impact of green fodders lack on the total returns from milk is weak.

No problem₁ = the impact of green fodders lack on the total returns from milk is no problem.

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of livestock high prices on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (26). The results indicate that: (i) the total returns of milk production is estimated at 9260.815 LE/lactation period when the problem impact of livestock high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1670.148 and 2051.288 LE/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of livestock high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of livestock high prices is also statistically significant at 1% level (i.e., F-Ratio = 7.11). (v) the variations in problem degrees of live animal high prices explain 46% of the variations of the total returns from milk production.

TR_i=9260.815+1670.148Weak₃+2051.29No problem₃ (26)

 $(27.41)^{\bullet\bullet}$ $(3.17)^{\bullet\bullet}$ $(2.92)^{\bullet\bullet}$ F-Ratio = $(7.11)^{\bullet\bullet}$ $R'^2 = 0.46$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders high prices on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (27). The results indicate that: (i) the total returns of milk production is estimated at 9307.176 LE/lactation period when the problem impact of concentrates and dry fodders high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1293.334 and 1966.088 LE/lactation period when the net problem impacts of concentrates and dry fodders high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates and dry fodders high prices is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.80). (v) the variations in problem degrees of concentrates and dry fodders high prices explain 36% of the variations of the total returns from milk production.

TR_i=9307.176+1293.334Weak₃+1966.09No problem₃ (27)

(24.12)**	(2.22)*	(2.83)**	
F-Ratio = (4.80)*		$R'^2 = 0.36$	*

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of veterinary drugs high prices on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (28). The results indicate that: (i) the total returns of milk production is estimated at 8935.595 LE/lactation period when the problem impact of veterinary drugs high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1256.339 and 2357.183 LE/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary drugs high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary drugs high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 5.45). (v) the variations in problem degrees of veterinary drugs high prices explain 39% of the variations of the total returns from milk production.

 $(17.68)^{\bullet\bullet}$ $(2.03)^{\bullet}$ $(3.30)^{\bullet\bullet}$ F-Ratio = $(5.45)^{\bullet\bullet}$ $R'^2 = 0.39$

The impacts of problem degrees (i.e., severe, weak and no problem) of concentrates and dry fodders unavailability on the total returns from milk production in lactation period per head of the local are estimated in equation (29). The results indicate that: (i) the total returns of milk production is estimated at 9305.449 LE/lactation period when the problem impact of concentrates and dry fodders unavailability on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1730.543 and 2074.878 LE/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders unavailability are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the total returns milk production are statistically from significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates and dry fodders unavailability is also statistically significant at 1% level (*i.e.*, F-Ratio = 8.51). (v) variations in problem degrees the of concentrates and dry fodders unavailability explain 50% of the variations of the total returns from milk production.

TR_i=9305.449+1730.543Weak₅+2074.88No problem₅ (29)

$$(30.15)^{**}$$
 $(3.13)^{**}$ $(3.47)^{**}$
F-Ratio = $(8.51)^{**}$ $R^{*2} = 0.50$

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary services lack on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (30). The results indicate that: (i) the total returns of milk production is estimated at 9355.030 LE/lactation period when the problem impact of veterinary services lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1398.938 and 2384.554 LE/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary services lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary services lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 5.69). (v) the variations in problem degrees of veterinary services lack explain 40% of the variations of the total returns from milk production.

 $TR_i = 9355.030 + 1398.938 Weak_6 + 2384.55 No problem_6 (30)$

(26.40)**	(2.63)**	(2.75)**
F-Ratio = (5.69)**		$R'^2 = 0.40$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of distance among the production and markets sites on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (31). The results indicate that: (i) the total returns of milk production is estimated at 9088.459 LE/lactation period when the problem impact of distance among the production and markets sites on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1643.351 and 2179.213 LE/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of distance among the production and markets sites are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of distance among the production and markets sites is also statistically significant at 1% level (i.e., F-Ratio = 10.07). (v) the variations in problem degrees of distance among the production and markets sites length explain 54% of the variations of the total returns from milk production.

 $TR_{i} = 9088.459 + 1643.351 Weak_{7} + 2179.21 No \ problem_{7} (31)$ $(27.84)^{**} \qquad (3.01)^{**} \qquad (4.22)^{**}$

 $F-Ratio = (10.07)^{\bullet \bullet}$ $R'^2 = 0.54$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of finance lack on the total returns from milk production in lactation period per head of the local cattle are estimated in equation (32). The results indicate that: (i) the total returns of milk production is estimated at 9414.370 LE/lactation period when the problem impact of finance lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1495.551 and 2432.019 LE/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of finance lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of finance lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 8.69). (v) the variations in problem degrees of finance lack explain 51% of the variations of the total returns from milk production.

$$TR_i = 9414.370 + 1495.551 Weak_8 + 2432.02 No problem_8 (32)$$

 $(32.03)^{**}$ $(2.76)^{**}$ $(3.70)^{**}$ F-Ratio = $(8.69)^{**}$ $R'^2 = 0.51$

Dairy crossbred cattle

The impacts of problem degrees (i.e., severe, weak and no problem) of green fodders lack on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (33). The results indicate that: (i) the total returns of milk production is estimated at 13893.393 LE/ lactation period when the problem impact of green fodders lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1933.554 and 2683.552 LE/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of green fodders lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of green fodders lack is also statistically significant at 1% level (*i.e.*, F-Ratio = 7.90). (v) the variations in problem degrees of green fodders lack explain 48% of the variations of the total returns from milk production.

TR_i=13893.393+1933.55Weak₁+2683.55No problem₁ (33)

 $(28.95)^{**}$ $(2.85)^{**}$ $(3.80)^{**}$ F-Ratio = (7.90)^{**} $R'^2 = 0.48$

Where:

 TR_i = the estimated total returns from milk per head of crossbred cattle (LE/lactation).

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of livestock high prices on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (34). The results indicate that: (i) the total returns of milk production is estimated at 13982.781 LE/lactation period when the problem impact of livestock high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1278.112

and 3150.275 LE/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of livestock high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the returns from milk production total are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of livestock high prices is also statistically significant at 1% level (i.e., F-Ratio = 13.25). (v) the variations in problem degrees of livestock high prices explain 61% of the variations of the total returns from milk production.

 $TR_{i}=13982.781+1278.11 Weak_{2}+3150.28 No \ problem_{2} (34)$ $(33.56)^{**} \qquad (2.17)^{*} \qquad (5.14)^{**}$ F-Ratio = (13.25)^{**} $R'^{2} = 0.61$

The impacts of problem degrees (i.e., severe, weak and no problem) of concentrates and dry fodders high prices on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (35). The results indicate that: (i) the total returns of milk production is estimated at 14468.810 LE/lactation period when the problem impact of concentrates and dry fodders high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1937.579 and 3251.190 LE/lactation period when the net problem impacts of concentrates and dry fodders high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates and dry fodders high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 9.03). (v) the variations in problem degrees of concentrates and dry fodders high prices explain

52% of the variations of the total returns from milk production.

TR _i =14468.810+1937.58Weak ₃ +3251.19No	problem ₃ (35)
--	---------------------------

(40.82)**	(3.16)**	(3.47)**
F-Ratio = (9.03)**	$R'^2 = 0.52$	

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary drugs high prices on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (36). The results indicate that: (i) the total returns of milk production is estimated at 13750.000 LE/lactation period when the problem impact of veterinary drugs high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1727.792 and 3374.583 LE/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary drugs high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary drugs high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 11.43). (v) the variations in problem degrees of veterinary drugs high prices explain 48% of the variations of the total returns from milk production.

TR_i=13750.000+1727.79Weak₄+3374.58No problem₄ (36)

$$(24.26)^{**}$$
 $(2.53)^{*}$ $(3.97)^{**}$
F-Ratio = $(11.43)^{**}$ $R'^2 = 0.48$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders unavailability on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (37). The results indicate that: (i) the total returns of milk production is estimated at 14182.641 LE/lactation period when the problem impact of concentrates and dry fodders unavailability on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2509.234 and

2762.859 LE/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders unavailability are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates fodders unavailability and drv is also statistically significant at 1% level (i.e., F-Ratio = 16.52). (v) the variations in problem degrees of concentrates and dry fodders unavailability explain 65% of the variations of the total returns from milk production.

 $TR_{i}=14182.641+2509.23 \text{ Weak}_{5}+2762.86 \text{ No problem}_{5} (37)$ $(45.77)^{**} \qquad (4.18)^{**} \qquad (4.98)^{**}$ F-Ratio = (16.52)^{**} R'² = 0.65

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary services lack on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (38). The results indicate that: (i) the total returns of milk production estimated at 14161.833 is LE/lactation period when the problem impact of veterinary services lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2060.531 and 3281.222 LE/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary services lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary services lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 16.65). (v) the variations in problem degrees of veterinary services lack explain 62% of the variations of the total returns from milk production.

$TR_i = 14161.833 + 2060.53 Weak_6 + 3281.22 No problem_6 (38)$				
(40.99)**	(3.83)**	(4.56)**		
$F-Ratio = (16.65)^*$	$R'^2 = 0.62$			

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of distance among the production and markets sites on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (39). The results indicate that: (i) the total returns of milk production is estimated at 13885.357 LE/lactation period when the problem impact of distance among the production and markets sites on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 1565.286 and 2746.310 LE/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of distance among the production and markets sites are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites length on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of distance among the production and markets sites is also statistically significant at 1% level (i.e., F-Ratio = 9.71). (v) the variations in problem degrees of distance among the production and markets sites explain 53% of the variations of the total returns from milk production.

$TR_i = 13885.357 + 1565.29 Weak_7 + 2746.31 No problem_7 (39)$				
(30.50)**	(2.22)*	(4.41)**		
F-Ratio = (9.71)**	$R'^2 = 0.53$			

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of finance lack on the total returns from milk production in lactation period per head of the crossbred cattle are estimated in equation (40). The results indicate that: (i) the total returns of milk production is

estimated at 14335.476 LE/lactation period when the problem impact of finance lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2277.524 and 3135.635 LE/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of finance lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of finance lack is also statistically significant at 1% level (i.e., F-Ratio = 15.08). (v) the variations in problem degrees of finance lack explain 64% of the variations of the total returns from milk production.

 $TR_{i}=14335.476+2277.52Weak_{8}+3135.64No \text{ problem}_{8} (40)$ $(46.91)^{\bullet\bullet} \qquad (4.04)^{\bullet\bullet} \qquad (4.59)^{\bullet\bullet}$ F-Ratio = (15.08)^{\bullet\bullet} R² = 0.64

Dairy buffalo

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of green fodders lack on the total returns from milk production in lactation period per head of buffalo are estimated in equation (41). The results indicate that: (i) the total returns of milk production is estimated at 14264.907 LE/lactation period when the problem impact of green fodders lack on the total returns from milk production is Severe. (ii) the total returns from milk production will increase by 2490.511 and 4923.843 LE/lactation period when the net problem impacts of green fodders lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of green fodders lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of green fodders lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of green fodders lack is also statistically significant at 1% level (i.e., F-Ratio = 22.47). (v) the variations in problem degrees of green fodders lack explain 73% of the variations of the total returns from milk production.

$TR_i = 14264.907 + 2490.51 Weak_1 + 4923.84 No problem_1 (41)$				
(33.93)**	(3.92)**	(6.50)**		
F-Ratio = (22.47)**	R' ² =	= 0.73		
Where:				

 TR_i = the estimated total returns from milk per head of buffaloes (LE/lactation).

The impacts of problem degrees (i.e., severe, weak and no problem) of livestock high prices on the total returns from milk production in lactation period per head of buffalo are estimated in equation (42). The results indicate that: (i) the total returns of milk production is estimated at 14423.871 LE/lactation period when the problem impact of livestock high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2815.977 and 4745.944 LE/lactation period when the net problem impacts of livestock high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of livestock high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of livestock high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of livestock high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 16.83). (v) the variations in problem degrees of livestock high prices explain 66% of the variations of the total returns from milk production.

 $TR_{i}=14423.871+2815.98Weak_{2}+4745.94No \text{ problem}_{2}(42)$ (32.71)**
(4.10)**
(5.17)**
F-Ratio = (16.83)**
R'^{2} = 0.66

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of concentrates and dry fodders high prices on the total returns from milk production in lactation period per head of buffalo are estimated in equation (43). The results indicate that: (i) the total returns of milk production is estimated at 13887.955 LE/

lactation period when the problem impact of concentrates and dry fodders high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2877.643 and 3914.592 LE/lactation period when the net problem impacts of concentrates and dry fodders high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates and dry fodders high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 11.77). (v) the variations in problem degrees of concentrates and dry fodders high prices explain 58% of the variations of the total returns from milk production.

 $TR_{i}=13887.955+2877.64Weak_{3}+3914.59No \text{ problem}_{3} (43)$ $(23.57)^{\bullet\bullet} \qquad (3.32)^{\bullet\bullet} \qquad (4.70)^{\bullet\bullet}$ F-Ratio = (11.77)^{\bullet\bullet} R² = 0.58

The impacts of problem degrees (i.e., severe, weak and no problem) of veterinary drugs high prices on the total returns from milk production in lactation period per head of buffalo are estimated in equation (44). The results indicate that: (i) the total returns of milk production is estimated at 13887.955 LE/ lactation period when the problem impact of veterinary drugs high prices on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2782.567 and 4906.225 LE/lactation period when the net problem impacts of veterinary drugs high prices are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary drugs high prices are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary drugs high prices on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary drugs high prices is also statistically significant at 1% level (*i.e.*, F-Ratio = 11.09). (v) the variations in problem degrees of veterinary drugs high prices explain 67% of the variations of the total returns from milk production.

 $TR_i = 13887.955 + 2782.57Weak_4 + 4906.23No problem_4 (44)$

 $(26.66)^{\bullet\bullet}$ $(4.01)^{\bullet\bullet}$ $(5.68)^{\bullet\bullet}$ F-Ratio = $(11.09)^{\bullet\bullet}$ $R^{*2} = 0.67$

The impacts of problem degrees (i.e., severe, weak and no problem) of concentrates and dry fodders unavailability on the total returns from milk production in lactation period per head of buffalo are estimated in equation (45). The results indicate that: (i) the total returns of milk production is estimated at 14451.383 LE/l actation period when the problem impact of concentrates and dry fodders unavailability on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2445.203 and 3528.903 LE/lactation period when the net problem impacts of concentrates and dry fodders unavailability are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of concentrates and dry fodders unavailability are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of concentrates and dry fodders unavailability on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of concentrates and dry fodders unavailability is also statistically significant at 1% level (*i.e.*, F-Ratio = 16.52). (v) the variations in problem degrees of concentrates and dry fodders unavailability explain 65% of the variations of the total returns from milk production.

TR_i=14451.383+2445.20Weak₅+3528.91No problem₅ (45)

$$(25.36)^{\bullet\bullet}$$
 $(2.57)^{\bullet}$ $(3.92)^{\bullet}$

 $F-Ratio = (8.36)^{**}$ $R'^2 = 0.50$

The impacts of problem degrees (*i.e.*, severe, weak and no problem) of veterinary services lack on the total returns from milk production in lactation period per head of buffalo are estimated in equation (46). The results indicate that: (i) the total returns of milk production is estimated at 14544.700 LE/lactation period when the problem impact of veterinary services lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2164.305 and 4945.022 LE/lactation period when the net problem impacts of veterinary services lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of veterinary services lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of veterinary services lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of veterinary services lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 7.46). (v) the variations in problem degrees of veterinary services lack explain 47% of the variations of the total returns from milk production.

TR_i=14544.700+2164.31Weak₆+4945.02No problem₆ (46)

 $(23.42)^{**}$ $(2.60)^{**}$ $(3.56)^{**}$ F-Ratio = (7.46)^{*} $R^{12} = 0.47$

The impacts of problem degrees (i.e., severe, weak and no problem) of distance among the production and markets sites on the total returns from milk production in lactation period per head of buffalo are estimated in equation (47). The results indicate that: (i) the total returns of milk production is estimated at 14424.132 LE/lactation period when the problem impact of distance among the production and markets sites on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2657.484 and 3171.146 LE/lactation period when the net problem impacts of distance among the production and markets sites are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of distance among the production and markets sites are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of distance among the production and markets sites on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of distance among the production and markets sites is also statistically significant at 1% level (*i.e.*, F-Ratio = 5.60). (v) the variations in problem degrees of distance among the production and markets sites explain 40% of the variations of the total returns from milk production.

 $TR_i=14424.132+2657.48Weak_8+3171.15No problem_7 (47)$ (21.83)** (2.77)** (2.84)**

$$(21.83)^{**}$$
 $(2.77)^{**}$ $(2.84)^{**}$
F-Ratio = $(5.60)^{**}$ $R'^2 = 0.40$

The impacts of problem degrees (i.e., severe, weak and no problem) of finance lack on the total returns from milk production in lactation period per head of buffalo are estimated in equation (48). The results indicate that: (i) the total returns of milk production is estimated at 14095.206 LE/lactation period when the problem impact of finance lack on the total returns from milk production is severe. (ii) the total returns from milk production will increase by 2653.693 and 3028.279 LE/lactation period when the net problem impacts of finance lack are weak or no, respectively. That means, the relationship among the total returns from milk production and degree of finance lack are negative. The total returns from milk production increase when the problem degrees decrease. (iii) the previous net impacts of problem degree of finance lack on the total returns from milk production are statistically significant. (iv) the mathematical relationship between the total returns from milk production and problem degrees of finance lack is also statistically significant at 5% level (*i.e.*, F-Ratio = 4.82). (v) the variations in problem degrees of finance lack explain 36% of the variations of the total returns from milk production.

 $TR_{i}=14095.206+2653.69Weak_{8}+3028.28No \text{ problem}_{8} (48)$ $(17.95)^{\bullet\bullet} (2.28)^{\bullet} (2.99)^{\bullet\bullet}$ F-Ratio = (4.82)* R¹² = 0.36

Recommendations

Providing the green fodder for the dairy heads will increase the milk yield for the dairy cow from 0.99 ton/lactation period to 1.59 ton/ lactation period (*i.e.*, 61%) for baladi cow, from 1.93 ton/lactation period to 2.56 ton/lactation period (*i.e.*, 33%) for crossbred cow and from 1.74 ton/lactation period to 2.33 ton/lactation period (*i.e.*, 34%) for buffalo cow.

Providing the concentrates and dry fodders for the dairy heads will increase the milk yield for the dairy cow from 1.03 ton/lactation period to 1.56 ton/lactation period (*i.e.*, 51%) for baladi cow, from 2.01 ton/lactation period to 2.68 ton/lactation period (*i.e.*, 33%) for crossbred cow and from 1.74 ton/lactation period to 2.22 ton/lactation period (*i.e.*, 28%) for buffalo cow.

Providing the veterinary services for the dairy heads will increase the milk yield for the dairy cow from 1.08 ton/lactation period to 1.63 ton/lactation period (*i.e.*, 51%) for baladi cow, from 1.99 ton/lactation period to 2.65 ton/lactation period (*i.e.*, 33%) for crossbred cow and from 1.75 ton/lactation period to 2.40 ton/lactation period (*i.e.*, 37%) for buffalo cow.

Providing the finance for the dairy heads will increase the milk yield for the dairy cow from 1.12 ton/lactation period to 1.65 ton/lactation period (*i.e.*, 47%) for baladi cow, from 2.05 ton/lactation period to 2.67 ton/lactation period (*i.e.*, 30%) for crossbred cow and from 1.67 ton/lactation period to 2.11 ton/lactation period (*i.e.*, 26%) for buffalo cow.

Providing the green fodder for the dairy heads will increase the total return from milk cow from 9202 LE/head to 11239 LE/head (*i.e.*, 22%) for baladi cow, from 13893 LE/head to 16576 LE/head (*i.e.*, 19%) for crossbred cow and from 14264 LE/head to 19188 LE/head (*i.e.*, 35%) for buffalo cow.

Providing the concentrates and dry fodders for the dairy heads will increase the total return from milk cow from 9305 LE/head to 11380 LE/head (*i.e.*, 22%) for baladi cow, from 14183 LE/head to 16946 LE/head (*i.e.*, 19%) for crossbred cow and from 14451 LE/head to 17980 LE/head (*i.e.*, 24%) for buffalo cow.

Providing the veterinary services for the dairy heads will increase the total return from milk cow from 9355 LE/head to 11740 LE/head (*i.e.*, 25%) for baladi cow, from 14162 LE/head

to 17443 LE/head (*i.e.*, 23%) for crossbred cow and from 14545 LE/head to 19490 LE/head (*i.e.*, 34%) for buffalo cow.

Providing the finance for the dairy heads will increase the total return from milk cow from 9469 LE/head to 11846 LE/head (*i.e.*, 25%) for baladi cow, from 14335 LE/head to 17471 LE/ head (*i.e.*, 22%) for cross bred cow and from 14095 LE/head to 17123 LE/head (*i.e.*, 21%) for buffalo cow.

REFERENCES

- Egypt in Figures (2014). Central Agency For Public Mobilization and Statistics.
- General Statistics Year Book (2012). Ministry of Agriculture and Land Reclamation, Economic Affairs Sector, Central Administration for Economic.
- Heady, E.O. (1968). Economics of Agricultural, Production and Resource. Prentice-hall, new Delhi.
- Huitema, B. (1980). The Analysis of Covariance and Alternatives, New York: Awileg-Interscience Publication.
- Ibrahim, A.A. (1996). Impacts of marketing, production and institutional factors on investment efficiency in dairy cattle farms, The Egyptian J. Agric. Economics. 6(2).
- Maxwell, L.B. (1979). Farm Budgets: from Farm Income Analysis to Agricultural Project Analysis, Published For the World Bank, the John Hopkins University Press, Baltimore and London.
- The Statistical Year Book (2013). Central Agency For Public Mobilization and .Statistics.

دراسة اقتصادية لأهم العوامل المؤثرة على إنتاج الألبان في محافظة الشرقية

أحمد السبيد محمد محمد ! _ عبدالله محمد الشناوي "

١ - قسم الاقتصاد الزراعي – كلية الزراعة – جامعة الزقازيق – مصر
 ٢ - قسم الاقتصاد – كلية التجارة – جامعة الزقازيق – مصر

تهدف الدراسة إلى دراسة الكفاءة الإنتاجية والاقتصادية لإنتاج الألبان من الأبقار البلدية والخليطة والجاموس، ودراسة أهم مشاكل أو محددات إنتاج الألبان وتأثير ها على إنتاجية اللبن والعائد الإجمالي من الرأس الحلابة، ويمكن حصر أهم نتائج الدراسة في الأتي: (أ) التكاليف الكلية لكل كيلو جرام من اللبن تقدر بنحو ٢,٨٤ جنيه، ٤,٧٧ جنيه، ٥,٣٥ جنيه للأبقار البلدية والخليطة والجاموس على الترتيب. (ب) صافي التكاليف الكلية لكل كيلو جرام من اللبن تقدر بنحو ٢,٨٤ جنيه، ٢,٥٩ جنيه للأبقار البلدية والخليطة والجاموس على الترتيب. (ب) صافي التكاليف الكلية لكل كيلو جرام من اللبن تقدر بنحو ٢,٧٤ جنيه، ٢,٥٩ من بن الأبقار البلدية والخليطة والخليطة والجاموس على الترتيب، (ت) يقدر الهامش الكلي وصافي الربح لكل كيلو جرام من لبن الأبقار البلدية نحو ٢,٤٤ جنيه، ١,٢١ جنيه على الترتيب، ويقدر الهامش الكلي وصافي الربح لكل جرام من لبن الأبقار البلدية نحو ٢,٤٤ جنيه، ١,٢١ جنيه على الترتيب، في حين يقدر الهامش الكلي وصافي الربح لكل جرام من لبن الأبقار البلدية نحو ٢,٠٢ جنيه، ١,٢١ جنيه على الترتيب، في حين يقدر الهامش الكلي وصافي الربح لكل كيلو جرام من لبن الأبقار البلدية نحو ٢,٠٢ جنيه، ١,٢٩ جنيه على الترتيب، في حين يقدر الهامش الكلي وصافي الربح لكل مرام من لبن الأبقار البلدية نحو ٢,٠٦ جنيه، ١,٢٩ جنيه على الترتيب، في حين يقدر الهامش الكلي وصافي الربح لكل مرام من لبن الأبقار البلدية نحو ٢,٠٦ جنيه، ١,٨٨ جنيه على الترتيب، في حين يقدر الهامش الكلي وصافي الربح لكل مرام من لبن الأبقار البلدية والخليطة والجاموس على الترتيب، (ث) يقدر حافز المزارع لكل كيلو جرام من اللبن نحو ٢٣٪، ٢٨٨، ٢٨٪ للابقار البلدية والخليطة والجاموس على الترتيب، (ج) يقدر حافز المزارع لكل كيلو جرام من اللبن والعائد الكلي من اللبن للأبقار البلدية والخليطة والجاموس على الترتيب، الم

الكلمات الاسترشادية: التكاليف الكلية، الهامش الكلي، حافز المزارع، الإيرادات الكلية، محافظة الشرقية.

أستاذ الاقتصاد الزراعي – كلية الزراعة سابا باشا – جامعة الإسكندرية. أستاذ الاقتصاد الزراعي المتفرغ – كلية الزراعة – جامعة الزقازيق.