

Zagazig J. Agric. Res., Vol. 43 No. (4) 2016

http:/www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

MORPHOLOGICAL AND FLOWERING VARIABILITY OF Lathyrus odoratus BY USING SOME PHYSICAL AND CHEMICAL MUTAGENS

Yaser A. Abdel Mageed^{1*}, M.A.I. Abdelkader², A.E. Awad² and Bahan M. Khalil¹

1. Fruit and Ornamental Plants Breed. Res. Dept., Hort. Res. Inst., ARC, Egypt

2. Hort. Dept., Fac. Agric., Zagazig Univ., Egypt

ABSTRACT

An investigation to study the influence of gamma rays as seeds exposing (0, 1, 5, 10, 15 and 20 kr)and N – Nitroso – N – Methyl Urea (NMU) as seed soaking in concentrations (0.0, 30, 60, 90, 120 and 150 ppm) on Lathyrus odoratus, it was conducted at the Experimental Farm of Fruit and Ornamental Plants Breeding Research Department, Horticulture Research Institute, ARC, Egypt during the two consecutive seasons of 2012/2013 and 2013/2014. The two experiments were arranged in randomized complete block design (RCBD) with three replicates. In M1-generation, the results revealed lower in seed germination percentage, plant height, leaf chlorophyll content and number of flowers with increasing doses and concentrations of physical and chemical mutagens. However, the effect of mutagens on leaf length and flower anthocyanin content was insignificant at M₁ and M₂-generations. The higher doses of gamma-rays and concentrations of NMU led to delay the flowering date in M1 and M₂-generations, decrease the seed germination percentage in M₂-generation, while lower doses and concentrations caused an increase in plant height, number of branches/plant, number of leaves/plant, number of flowers/plant and leaf chlorophyll content in M2-generation. The variations means squares indicated insignificant difference between gamma-rays and NMU in M1 and M2-generations, in seed germination percentage, number of branches per plant, number of leaves per plant, flowering date and number of flowers per plant. However, higher variation was observed between gamma-rays and NMU in M₁ and M₂-generations, for plant height, leaf length and leaf chlorophyll content. The obtained results clearly indicated that different doses and concentrations of mutants can be effectively utilized to create variability for plant height (dwarfeness plants and compact) fasciata, chlorophyll mutation, leaf shape and flowers cluster length of sweet pea plants.

Key words: Lathyrus odoratus, gamma rays, Nitroso Methyl Urea, fasciata, mutation

INTRODUCTION

The species of the genus Lathyrus (Leguminosae-Fabaceae) are distributed mainly in temperate zones of the Northern hemisphere, Africa and South America (Goyder, 1986). The genus consists of about 160 annual and perennial species (Allkin *et al.*, 1986; Plitman *et al.*, 1995). The species are separated into 13 sections based on morphological traits (Kupicha, 1983). Some species such as Lathyrus odoratus, L. sativus, L. cicera and others were of agricultural importance as forage, fodder or

ornamental plants and had a long history as cultivated plants.

Gamma rays (are a part of electromagnetic spectrum) belong to ionizing radiation can be energetically charged particles, such as electrons or high-energy photons. The biological effect of gamma rays based on the interaction with atoms or molecules in the cell, particularly with water to produce free radicals in cells (Wi *et al.*, 2005). The effects of gamma irradiation on different parts of plant; *i.e.*, bulb, tuber, stem cutting, fruits and seeds were investigated. Irradiated seeds with gamma rays induced

^{*} Corresponding author. Tel.: +2001095188787 Email address: mohammedahmed1980@yahoo.com

biochemical contents; *i.e.*, enzyme, protein and phytohormones. They were severely changed by exposing seeds to gamma rays. It is worthy to notice that gamma irradiation induced either stimulation or inhibition of growth and endogenous hormones. Lower dosage of gamma rays could stimulate growth.

The number of chemical mutagens are very great and in continually increasing. However, for practical purposes of mutation in cultivate plants, so far only a few are really useful, most of these belong to the special class of alkylating agents and may be listed as follows: Nitroso Methyl Urea (NMU), Nitroso Ethyl Urea (NEU), Ethyl Methane Sulphonate (EMS), Methyl Methane Sulphonate (MMS), Dielhyl Sulphate (DES), Ethyleneimine (EI). Azides are also effective mutagens, also chochicine is important for inducing chromosomal doubling (Badr *et al.*, 1990).

This investigation aimed to study the effect of different doses of physical mutagen (gamma radiation) and concentrations of chemical mutagen (N-Nitroso-N-Methyl Urea) on *Lathyrus odoratus* to induction some variations and mutations in vegetative growth and flowering.

MATERIALS AND METHODS

The present work was carried out on *Lathyrus* odoratus at the Experimental Farm of Breeding Research Department for Fruit trees, Ornamental Plant and Woody Plants, Horticulture Research Institute, Agricultural Research Center, Egypt. Seeds of a local variety (Apollo) of *Lathyrus* odoratus were taken from The Orman Botanical Garden Farm, during the two successive seasons of 2012/2013and 2013/2014. The physical and chemical properties of the experimental farm soil are shown in Table 1.

The present experimental work involved studying the following two main treatments:

Effect of Gamma Rays

AX as

This experiment included six doses of gamma rays; viz., 0, 1, 5, 10, 15 and 20 krad. Gamma rays used were generated from Cobalt – 60 source in gamma cell installed in Irradiation Laboratory at Middle East Regional Radio – Isotope Center for Arab Country at Cairo, Egypt. The cobalt source emitting radio energy of 86 rad / second (it's called chronic in dilation. Healthy and dry seeds were irradiated by gamma rays at different doses.

Effect of N-Nitroso-N- Methyl Urea (NMU)

This experiment included six concentrations of NMU viz., 0.0, 30, 60, 90,120 and 150 ppm. The used NMU in this study was obtained from mark W. Germany. Seeds were soaked in freshly prepared solutions from NUM for 12 hours and thoroughly rinsed in tap water. Then, it immediately washed in running water to remove excess solution from the surface of seeds.

The plot area of two main experiments was 6 m^2 . Seeds were sown in the field in hills 25cm apart. It was sown on 15^{th} October in the first and second seasons of 2012/2013 and 2013/2014. Seedlings were thin to one plant per hill after three weeks from sowing. The treatments were arranged in a randomized complete block design (RCBD) with three replicates for the two experiments. All the plants received normal agricultural practices whenever they were needed.

Data Recorded

Growth parameters

After 21 days from sowing, seeds germination percentage as well as after 90 days of sowing, plant height (cm), branche number per plant, number of leaves per plant and leaf dimension (as leaf length) were determined.

Flowering parameters

After 105 days from sowing, days to flowering and flower number per plant were calculated.

Chemical analysis

Leaf chlorophyll content was estimated in leaves by using SPAD-502 meter as described by (Yadava, 1986). A sample of dry petals was randomly taken from each treatment for chemical analysis. Furthermore, samples of sweet pea petals were air-dried until a constant weight was obtained. The anthocyanin content (mg/100 g) in dried petals was cholorimetrically determined according to the method described by Fuleki and Francis (1968) and adopted by Francis (2000) for *Lathyrus odoratus*.

Character	Clay	Silt	Sand	Texture	pН	Organic matter	Available nutrients (ppr		s (ppm)
	(%)	(%)	(%)			•	N	Р	К
Value	48.78	28.46	22.76	Clay	7.85	1.75	16.72	10.90	80.8

Fable 1	l. Physica	l and chemical	properties of	f experimental	farm soil
----------------	------------	----------------	---------------	----------------	-----------

Mutation frequency

Percentage and number of survival plants of *Lathyrus odoratus* were estimated.

Statistical Analysis

Analysis of variations, (F- test and mean comparison by LSD) for each mutagen, in each generation was run according to completely randomized block design (Snedecor and Cochran, 1980). Comparing variation observed and test the significance; larger mean square/ smaller mean square was done according to Snedecor and Cochran (1980). A test of equality of two variances was computed.

RESULTS AND DISCUSSION

Results of physical (gamma-rays) and chemical (N-Nitroso-N-Methyl Urea) mutagens in first (M_1) and second (M_2) mutated generations of *Lathyrus odoratus* plants, will be presented below. It is known that, the effect of mutagens in the M_1 -generation was mostly on the plant physiology, but in the M_2 -generation was the mutated.

Effect of gamma Irradiation and N-Nitroso-N-Methyl Urea (NMU) on Growth Parameters

Seed germination percentage

In the M_1 -generation, seed germination percentage was decreased with increasing the doses of gamma rays and concentrations of NMU, the dose of 20 kr, was more effective in reducing seed germination percentage (less than 50% germination) (Table 2), in M_2 -generation, the results recorded highly significant and significant reduction in seed germination percentage when subjected to the doses of gamma rays and NMU concentration, respectively in Lathyrus odoratus plants, compared with control.

When comparing the variations mean squares (Table 3), as a result of the effect of both gamma rays and NMU mutagens, it was insignificant. That means that no differences of the effect on seed germination of all the cases compared could be recorded.

The obtained results are in harmony with those reported by Abo El-Kheir (2004) on *Brassica oleraceae*, Ilbas *et al.* (2005) on barley, Khalaf (2008) on *Amaranthus caudatus*, Mostafa (2011) on *Helianthus annuus*, Ariraman *et al.* (2014) on pigeon pea and Gaswanto *et al.* (2016) on chilli plant.

Plant height

Effect of gamma-rays and NMU on plant height (Table 4) indicated that the values recorded were reduced with the increasing of the doses and concentrations, while 5 and 1 krd in the M_1 and M_2 generations and 30 ppm in the M_2 - generation increased the plant height. The reduction was highly significant than the control in the M_1 and M_2 generations.

Comparing the variations means squares (Table 5) results indicate significant difference between gamma-rays in M_1 and M_2 generations, but the variation were insignificant between NMU in the M_1 and M_2 – generation significant variation was observed between NMU and gamma-rays in M_2 and M_1 generation, respectively.

These results are in a accordance with those found by El-Ashry et al. (1992) on Lathyrus odoratus, Mahmoud (2002) on delphinium and mathiola, khalaf (2008) on Amaranthus caudatus, Quecini et al. (2008) on Petunia hybrid, Ariraman et al. (2014) on Pigeon pea and Mostafa (2015) on Khaya senegalensis.

£1----

Seed germination percentage										
Gamma rays (kr)	Mı	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂					
0 kr	94.443	91.11	0.00 ppm	95.55	91.11					
1 kr	93.33	87.776	30 ppm	87.773	83.33					
5 kr	91.106	84.44	60 ppm	81.106	75.553					
10 kr	86.663	75.553	90 ppm	77.773	71.106					
15 kr	68.886	58.886	120 ppm	75.553	69.996					
20 kr	48.886	38.886	150 ppm	72.22	64.44					
F. test	**	**	F. test	**	**					
LSD 5%	11.125	9.128	LSD 5%	8.06	6.611					
LSD 1%	15.913	13.065	LSD 1%	11.534	9.461					

Table 2. Effect of physical (gamma rays) and chemical (NMU) mutagens on seed germination percentage of *Lathyrus odoratus* in the M_1 and M_2 generations during (2012/2013 and 2013/2014) seasons

****** = Highly significant at 0.01.

Table 3. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on seed germination percentage of *Lathyrus odoratus* in the M₁ and M₂ generations during (2012/2013 and 2013/2014) seasons

	Mutag	en		Comparison				
Gamma		Chemical		Gamma		Chemical o		
M ₂ .L.g M ₁ .L.g	NS 1.244	$\frac{M_2.L.c}{M_1.L.c}$	NS 1.278	$\frac{M_{1}.L.g}{M_{1}.L.c}$ $\frac{M_{2}.L.c}{M_{2}.L.c}$	NS 4.410 NS 1.009	$\frac{M_1.L.g}{M_2.L.c}$	NS 3.454 NS 1.161	
M1; First mutated generationC; Chemical mutagenNS: Not significantL: Lathvrus odoratus		WIJ.L.g	M ₂ ; Second G; Gamma r	mutated genera	tion			

Table 4. Effect of physical (gamma rays) and chemical (NMU) mutagens on plant height (cm) of Lathyrus odoratus treated seeds in the M₁ and M₂ generations during (2012-2013 and 2013-2014) seasons

Plant height (cm)									
Gamma rays (kr)	M ₁	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂				
0 kr	134.213	139.65	0.00 ppm ·	135.076	141.203				
1 kr	135.226	154.35	30 ppm	130.966	151.033				
5 kr	135.583	139.756	60 ppm	128.553	147.513				
10 kr	133.886	134.606	90 ppm	127.32	137.38				
15 kr	130.946	130.89	120 ppm	126.163	131.973				
20 kr	127.43	129.366	150 ppm	122.503	127.416				
F. test	**	**	F. test	*	**				
LSD 5%	2.369	4.222	LSD 5%	6.609	5.726				
LSD 1%	3.389	6.043	LSD 1%	9.458	8.195				
** = Highly significan	t at 0.01.	* = Signif	icant at 0.05						

Table 5. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on plant height of *Lathyrus odoratus* in the M_1 and M_2 generations during (2012/2013 and 2013/2014) seasons

	Mutag	en		Comparison				
Gamma		Chemical		Gamma		Chemical		
M ₂ .L.g	*	M ₂ L.c	NS	M ₁ .L.c	NS	M ₂ .L.c	*	
	8.354		1.278				7.832	
$M_1.L.g$		$M_1.L.c$		M ₁ .L.g	1.878	M ₁ .L.g		
				$M_2.L.c$	NS	$M_2L.g$	NS	
					4.447		1.066	
				M _i L.g		M ₂ .L.c		
M ₁ ; First mutated generation C; Chemical mutage		mical mutagen	M ₂ ; Second mutated generation					
NS; Not significant		L; Latl	nyrus odoratus	*; Significant at 0.05		G; Gamma - ray		

Number of branches per plant

In the M_1 and M_2 –generations (Table 6) 1 and 5 krd of gamma–rays showed significant stimulation effect on branch number of *Lathyrus odorotus*, but in the M_1 –generation, it was reduced with the increase of the concentration of NMU, whereas, in the M_2 -generation 30 ppm of NMU had significant stimulation effect on branch number of *Lathyrus odoratus*.

Recorded data in M_1 and M_2 –generations (Table 7) showed highly significant reduction in branch number with gamma rays and NMU. However, testing the variation at this growth stage (Table 7) between gamma rays and NMU treatments, in the M_1 and M_2 generation were found to be insignificant, and at this growth stage the response was similarly, and no difference was recorded between M_1 and M_2 – generations.

These results are in harmony with those reported by El-Tony (1999) on *Tagetes erecta*, Badr *et al.* (2004) on *Gomphrena globosa*, Hussein (2005) on *Anethum graveolens*, Karthika and Lakshmi (2006) on soybean and Mostafa (2015) on *Khaya senegalensis*.

Number of Leaves / plant

. . .

1

Results in Table 8 show that the mutagenic treatments of gamma rays and NMU caused highly significant effect on leaf number per plant. Moreover, gamma – rays and NMU treatments had significant stimulation effect on number of leaves per plant at 1 kr and 30 ppm on both M_1 and M_2 –generations, respectively.

Comparing the variation mean squares (Table 9) results indicate insignificant difference between gamma rays and NMU in M₁ and M₂generations. These results are in agreement with those reported by El-Ashry et al. (1992) on Lathyrus odoratus, Badr et al. (2004) on Gomphrena globosa, Khalaf (2008) on Amarnthus caudatus, Ibrhium et al. (2009) on Lathyrus odoratus, Mostafa (2011) on sunflower plant and Mostafa (2015) on *Khaya* senegalensis.

Leaf length

The effect of gamma rays and NMU treatments on leaf length of M_1 and M_2 – generations are listed in Table 10. In M_1 and M_2 – generations it had insignificant effect when compared with control in each, respectively. So that, at this growth stage the response was similar, and there were no differences between M_1 and M_2 – generations.

Comparing variations (Table 11) showed higher significant mean square from gamma rays when compared mean square in M_1 and M_2 – generations. Such variation detected that NMU produced higher variation in M_1 and M_2 generations. However, it was observed that the variations between gamma rays and NMU were higher in M_2 and M_1 –generations, respectively on leaf length in *Lathyrus odoratus*.

The results are in accordance with those found by Dilta et al. (2003) on chrysanthemum, Encheva et al. (2003) on sunflower, Ibrahium et al. (2009) on Lathyrus odoratus, Naik and Murthy (2009) on Guizotia abussinicia and Li et al. (2010) on Stenotaphrum secundatum.

Number of branches per plant									
Gamma rays (kr)	M ₁	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂				
0 kr	9.48	8.076	0.00 ppm	9.72	10.336				
1 kr	11.603	10.283	30 ppm	9.316	13.72				
5 kr	11.633	11.35	60 ppm	8.306	12.886				
10 kr	10.376	9.91	90 ppm	9.423	9.813				
15 kr	10.016	8.456	120 ppm	8.65	8.523				
20 kr	8.583	7.96	150 ppm	8.206	7.796				
F. test	**	**	F. test	N.s	**				
LSD 5%	1.33	0.631	LSD 5%	_	0.803				
LSD 1%	1.903	0.902	LSD 1%	—	1.148				
** = Highly significant a	at 0.01.		NS = Not significant at 0.05						

Table 6. Effect of physical (gamma rays) and chemical (NMU) mutagen on number of branches per plant of *Lathyrus odoratus* in the M_1 and M_2 generations during (2012/2013 and 2013/2014) seasons

Table 7. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on number of branches per plant of Lathyrus odoratus in the M_1 and M_2 generations during (2012/2013 and 2013/2014) seasons

	Muta	agen		Comparison				
Gamma		Che	Chemical		Gamma		nical	
M ₂ .L.g	NS 1.612	M ₂ .L.c	NS 4,169	M ₁ .L.c	NS 3.578	M ₂ .L.c	NS 3.868	
M ₁ .L.g	1.012	M ₁ .L.c		M ₁ .L.g	5.070	M ₁ .L.g	5.000	
				M ₂ .L.g	NS 5.769	M ₂ L.c	NS 2,399	
				M ₁ L.c		M ₂ .L.g	21033	
M1; First mutated generationM2; SecondL: Lathyrus odoratusNS: Not s			M ₂ ; Second NS: Not sign	mutated genera	tion C; Che	mical mutagen		

Table 8. Effect of physical (gamma rays) and chemical (NMU) mutagen on number of leaves per
plant of Lathyrus odoratus in the M1 and M2 generations during (2012/2013 and 2013/
2014) seasons

	Number of leaves per plant									
Gamma rays (kr)	M ₁	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂					
0 kr	259.633	254.533	0.00 ppm	258.62	255.983					
1 kr	272.556	266.99	30 ppm	276.66	284.393					
5 kr	266.12	266.52	60 ppm	270.30	280.010					
10 kr	256.40	259.633	90 ppm	263.58	271.106					
15 kr	256.47	257.79	120 ppm	255.61	255.656					
20 kr	257.49	242.78	150 ppm	250.356	249.060					
F. test	**	**	F. test	**	**					
LSD 5%	4.068	4.891	LSD 5%	4.804	8.595					
LSD 1%	5.823	6.999	LSD 1%	6.904	12.291					

IJ

**; Highly significant at 0.01.

1126

Table 9. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on numberof leaves of Lathyrus odoratus in the M1 and M2 generations during (2012/2013 and 2013/2014) seasons

	Muta	agen		Comparison				
Gamma		Chen	Chemical		Gamma		nical	
M ₂ .L.g	NS	M ₂ L.c	NS	M ₁ .L.c	NS	M ₁ .L.g	NS	
	1.864		2.232		1.81		2.203	
$M_1.L.g$		M ₁ .L.c		M ₂ .L.g		$M_1.L.c$		
				$M_2.L.c$	NS	M ₂ L.c	NS	
					2.638		4.919	
				M ₂ L.g		M ₁ .L.g		
M ₁ ; First mutated generation C; Ch		C; Chemic	C; Chemical mutagen		M ₂ ; Second mutated generation			
NS; Not significant L; Lath			L; Lathyru.	hyrus odoratus G; Gamma - ray				

Table 10. Effect of physical (gamma rays) and chemical (NMU) mutagen on leaf length of *Lathyrus odoratus* treated seeds in the M_1 and M_2 generations during (2012/2013 and 2013/2014) seasons

Leaf length								
Gamma rays (kr)	\mathbf{M}_{1}	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂			
0 kr	4.443	4.223	0.00 ppm	4.41	4.25			
1 kr	4.613	5.13	30 ppm	4.543	5.483			
5 kr	4.31	4.816	60 ppm	4.486	4.516			
10 kr	4.39	4.336	90 ppm	4.56	4.383			
15 kr	4.426	4.093	120 ppm	4.45	4.273			
20 kr	4.376	4.353	150 ppm	4.533	4.35			
F. test	N.S	N.S	F. test	NS	NS			
LSD 5%	_	_	LSD 5%	_				
LSD 1%			LSD 1%					

NS = Not significant

Table 11. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on leaf length of *Lathyrus odoratus* treated seeds in the M₁ and M₂ generations during (2012/2013 and 2013/2014) seasons

······································	Muta	gen		Comparison				
Gamma		Chemical		· Gamma		Chemical		
M ₂ .L.g	* 15.225	M ₂ L.c	* 63 750	M ₂ .L.g	* 45.38	M ₁ .L.g	NS 2.980	
$M_1.L.g$	10.220	M ₁ .L.c	051150	M ₁ .L.c M ₂ .L.c	NS	M ₁ .L.c M ₂ L.c	*	
				M ₂ L.g	1.404	M ₁ .L.g	21.387	
M1; First mutated generationC; Chemical mutagenNS; Not significantL; Lathyrus odoratus		M ₂ ; Sec *; Signi	ond mutated g ficant at 0.05	eneration G; Gamn	na - ray			

£1,----

Effect of Gamma Irradiation and N-Nitroso-N-Methyl Urea on Flowering Parameters

Days to Flowering

Results in Table 12 explain that the mutagenic treatments (gamma rays and NMU) in M_1 and M_2 -generations recorded highly significant effect on flowering data of *Lathyrus odoratus*. However, the earliest day to flowering (117.826 days) and (120.586 days) was recorded by the treatments of 5 kr gamma rays and 30 ppm NMU in M_2 -generation. A significant delay of flowering was found at the treatments of 20 kr gamma rays and 150 ppm NMU in M_2 -generation.

Comparing the variability by those treatments produced in M_1 and M_2 -generation with gamma rays and NMU (Table 13) were insignificant on flowering date on *Lathyrus* odoratus.

The previous results are in line with those found by El-Ashry *et al.* (1992) on *Lathyrus odoratus*, Khan *et al.* (2006) on *Vigna radiate*, Khalaf (2008) on *Amaranthus*, Naik and Murthy (2009) on *Guizotia abyssinta*, Dhakshanamoorthy *et al.* (2010) on *Jatropha curcas* L and Mostafa (2011) on sunflower plant as for the effect of physical and chemical mutagens on flowering date.

Number of flowers / plant

Data of Table 14, reveal in M_1 –generation that gamma rays treatments had insignificant effect on the number of flowers/plant, but it was highly significant in the M_2 - generation gammarays and M_1 and M_2 -generation of NMU treatments on the number of flowers / plant.

Comparing the variability by those treatments (Table 15) produced by gamma –rays and NMU was insignificant in all generations.

The results are in agreement with those found by, Khalaf (2008) on Amaranthus caudous, El-Tony (1999) on Tagetes erecta and Ibrahium et al. (2009) on Lathyrus odoratus.

Effect of Gamma Irradiation and N-Nitroso-N-Methyl Urea on Some Chemical Constituents

Leaf chlorophyll content (SPAD-502)

In the M_1 and M_2 –generations (Table 16), gamma-rays treatments had significant and highly significant effect on leaf chlorophyll content in *Lathyrus odoratus*, but in the M_1 and M_2 -generation, no significant effect on leaf chlorophyll content was observed with NMU in *Lathyrus odoratus*.

Comparing variation (Table 17) significant mean squares resulted from gamma rays and NMU in M_1 -generation, However, higher significant between M_1 genration gamma rays and M_1 generation NMU such variation, it was observed for gamma rays and NMU in M_2 generation on leaf chlorophyll content.

This result agreed with those obtained by Rybinski (2003) on *Lathyrus sativus*, Karthika and Lakshmi (2006) on soybean, Abo El-Kheir (2004) on *Brassica oleracea* as well as Hussein (2005) on *Anethum graveolens*.

Flowers anthocyanin content

Results in Figs. 1 and 2 show that the mutagentic treatments effect gamma – rays and NMU in M_2 -generation which had insignificant effect on flowers anthocyanin content (mg/100g) in *Lathyrus odoratus* petals.

When comparing the variations mean square as result of this effect, it was insignificant. That means no differences of the effect on flowers anthocyanin content of all the cases compared. These results agreed with these reported by, Odeigah *et al.* (1998) on *Vigna unguiculata* L.

Effect of Gamma Irradiation and N-Nitroso-N-Methyl Urea on Mutation Characteristics in the M2-Generation

Plant height (dwarfness)

The treatment of 20-kr. gamma rays caused plant dwarfism (8.57 %) in Table 18 and Figs. 3 and 4. In addition, the treatment of 30 ppm NMU caused plant dwarfism (mutation rate 2.66% in Table 18 and Figs. 3 and 5).

Growth habit (compact plant)

The treatment of 1 kr gamma rays caused compact plant (2.26% in Table 18 and Figs. 6 and 7). While, The treatment of 60 ppm NMU caused compact plant (2.94% in Table 18 and Figs. 6 and 8).

These results agreed with those reported by Combacedes *et al.* (1992). They found that a range of gamma rays from 10 to 60 Gy was applied

Table 12.	Effect of physical (gamma rays) and chemical (NMU) mutagen on days to flowering of
	Lathyrus odoratus in the M_1 and M_2 generations during (2012/2013 and 2013/2014)
	seasons

	Days to flowering								
Gamma ray (kr) M1 M2 Nitroso methyl urea M1 M (NMU) (ppm)									
0 kr	124.653	125.806	0.00 ppm	124.21	126.63				
1 kr	122.72	117.826	30 ppm	120.203	120.586				
5 kr	127.036	126.636	60 ppm	128.353	125.516				
10 kr	129.646	133.79	90 ppm	136.323	137.276				
15 kr	133.26	135.133	120 ppm	137.493	137.333				
20 kr	138.526	139.723	150 ppm	139.016	138.983				
F. test	**	**	F. test	**	**				
LSD 5%	3.322	3.092	LSD 5%	3.898	5.17				
LSD 1%	4.754	4.423	LSD 1%	5.462	7.398				

****** = Highly significant at 0.01.

1

Table 13. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on flowering date of Lathyrus odoratus in the M1 and M2 generations during (2012/2013 and 2013/2014) seasons

Mutagen				Comparison				
Gamma		Chemical		Gamma		Chen	nical	
M ₂ .L.g	NS 1.826	M ₁ L.c	NS 1.011	M ₂ .L.g	NS 1.025	M ₁ .L.c	NS 1.780	
M ₁ .L.g		M ₂ .L.c		$\frac{M_1.L.c}{M_2.L.g}$ $\frac{M_2L.c}{M_2L.c}$	NS 1.037	$\frac{M_1.L.g}{M_2L.c}$ $\frac{M_1.L.g}{M_1.L.g}$	NS 1.759	
M ₁ ; First mutated generation NS; Not significant		C; Chemical mutagen L; Lathyrus odoratus			M ₂ ; Second G; Gamma r	mutated genera ay	tion	

Table 14. Effect of Physical (gamma rays) and chemical (NMU) mutagen on number of flower per plant of Lathyrus odoratus in the M1 and M2 generations during (2012/2013 and 2013/ 2014) seasons

Number of flowers per plant								
Gamma ray (kr)	M ₁	M ₂	Nitroso methyl urea (NMU) (ppm)	Mı	M ₂			
0 kr	99.306	98.02	0.00 ppm	100.906	99.65			
1 kr	107.466	99.633	30 ppm	99.026	104.563			
5 kr	105.323	99.616	60 ppm	92.63	103.01			
10 kr	103.643	86.766	90 ppm	92.613	101.726			
15 kr	99.713	84.68	120 ppm	90.57	98.38			
20 kr	93.933	81.796	150 ppm	90.923	94.793			
F- test	NS	**	F- test	**	**			
LSD 5%	-	2.378	LSD 5%	5.2	3.139			
LSD 1%	-	3.402	LSD 1%	7.439	4.493			

****** = Highly significant at 0.01.

NS = Not significant

Table 15. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on number of flower per plant of *Lathyrus odoratus* treated seeds in the M₁ and M₂ generations during (2012/2013 and 2013/2014) seasons

Mutagen				Comparison					
Gamma		Cher	Chemical		Gamma		nical		
M ₂ .L.g	NS 2.809	M ₁ L.c	NS 1.561	M ₂ .L.g	NS 5.441	M ₁ .L.g	NS 1.240		
M ₁ .L.g		M ₂ .L.c		$\frac{M_{1}.L.c}{M_{2}.L.9}$	NS 3.484	M ₁ .L.c M ₁ L.g	NS 1.936		
M ₁ ; First mutated generation NS : Not significant		C; Chemic L; Lathyru	al mutagen s odoratus	M ₂ ; Second G; Gamma	mutated genera – ray	tion			

Table 16. Effect of physical (gamma rays) and chemical (NMU) mutagen on leaf chlorophyll content (SPAD-502) of *Lathyrus odoratus* in the M₁ and M₂ generations during (2012/2013 and 2013/2014) seasons

Leaf chlorophyll content								
Gamma ray (kr)	M ₁	M ₂	Nitroso methyl urea (NMU) (ppm)	M ₁	M ₂			
0 kr	47.67	47.993	0.00 ppm	39.75	50.41			
1 kr	40.81	48.47	30 ppm	38.77	48.083			
5 kr	40.886	47.513	60 ррт	39.00	47.66			
10 kr	44.363	47.00	90 ppm	40.76	47.01			
15 kr	38.583	41.923	120 ppm	39.66	46.993			
20 kr	41.033	37.72	150 ppm	38.226	47.423			
F- test	*	**	F- test	NS	NS			
LSD 5%	4.328	3.555	LSD 5%					
LSD 1%	6.193	5.089	LSD 1%					
* = Significant at 0.05		** = Hig	nly significant at 0.01.					

Table 17. Comparison of variations resulted from (gamma rays) and (NMU) mutagens on leaf chlorophyll content (SPAD-502) of *Lathyrus odoratus* in the M₁ and M₂ generations during (2012/2013 and 2013/2014) seasons

Mutagen				. Comparison				
Gamma		Chemical		Gamma		Chemical		
M ₂ .L.g	NS	M ₂ L.c	NS	M ₂ .L.g	*	M ₁ .L.g	*	
	1.778		2.074		23.635		13.287	
M ₁ .L.g		M ₁ .L.c		$M_1.L.c$		$M_1.L.c$		
-				M ₂ .L.g	*	M ₁ L.c	NS	
					11.391		6.403	
				M ₂ L.c		M ₂ .L.g		
M ₁ ; First mutated generation		M ₂ ; Secor	nd mutated ge	neration	C; chemical	mutagen		
NS. Not signi	ificant	L: Lathyr	us odoratus		* Significar	tat 0.05 G.	Gamma-ray	

Fig. 1. Effect of physical (gamma rays) mutagen on flower anthocyanin content (mg/ 100 g) of Lathyrus odoratus in M₂ generation during (2013-2014)

Fig. 2. Effect of nitroso methyl urea (NMU) mutagen on flower anthocyanin content (mg/ 100 g) of Lathyrus odoratus in M₂ generation during (2013-2014)

Table 18. Number of survival plants and mutation frequency and percentage of *Lathyrus odoratus* plants as affected by physical (gamma-rays) and chemical (NMU) mutagens in the M₁ and M₂-generations

Effect of [gamma –rays (krd)]					Effect of [NMU (ppm)]				
Treat.	M ₁ No. of plants	(%) .	M ₂ No. of plants	(%)	Treat.	M ₁ No. of plants	(%)	M ₂ No. of plants	(%)
0 kr	85 (0)	0	82 (0)	0	0 ppm	86 (0)	0	82 0	0
1 kr	84 (0)	0	79 (1)	2.26	30 ppm	79 (2)	2.53	75 (6)	8.00
5 kr	82 (2)	2.43	76 (4)	5.26	60 ppm	73 (4)	5.47	68 (7)	8.82
10 kr	78 (3)	3.84	68 (5)	7.35	90 ppm	70 (2)	2.85	64 (7)	10.93
15 kr	62 (5)	8.06	53 (10)	18.86	120 ppm	68 (0)	0	63 (4)	6.34
20 kr	44 (2)	4.54	35 (9)	25.71	150 ppm	65 (1)	1.53	58 (4)	12.06
Average	2.40	3.77	5.80	11.88	Average	1.80	2.47	6.2	9.23

£ .--

dwarfness

Fig. 3. Control .

Fig. 6. Control

caused in inducing plant

Fig. 7. Treatment of 1 kr. Fig. 8. Treatment of 60 ppm NMU caused Gamma rays caused compact plant compact

Fig. 9. Control

Fig. 12. Control

Fig. 10. Treatment of 10 kr. Gamma Fig. 11. Treatment of 120 ppm rays' inducing mutation in the stem structure fasciata

Fig. 13. Treatment of 15 kr. Gamma Fig. 14. Treatment of 90 ppm rays caused leaf shape (mutation rate 9.43%)

NMU inducing fasciata mutations

NMU caused leaf shape (mutation rate 7.81%).

to apical and nodal microcuttings of five species of lonicera (L. xbrownii Dropmore Scarlet L. Periclymenum Serotinal, L. heckrotii, Gold flame, L. nitida and L. fragrantissima). From 1700 plants produced from irradiated buds, only those from L. nitida were observed during two years. Among 200 of these plants, some compact and slender mutants were detected.

Stem structure (fasciata)

The treatment of 10 kr. gamma rays induced mutation in stem structure (fasciata) (7.35% in Table 18 and Fig. 9 and 10). Also, the treatment of 120 ppm NMU induced mutation in the fasciata (mutation rate 4.76% in Table 18 and Figs. 9 and 11).

These results agreed with the most effective treatments for increasing the leaves mutation were 1.0% EMS +10 kr by Anjalika *et al.* (2005). They also found that five mutants in the leaf shape were indentifed in *Catharanthus roseus*, while 2×10^{-3} m NaN₃ + 1.0% EMS gave 15 mutant in the leaf shape of *Dimorphotica ecklonis*.

Chlorophyll mutation

The treatment of 5 kr. gamma rays induced chlorophyll mutation (5.26% in Table 18). However, the treatment of 90-ppm NMU induced chlorophyll mutation (3.12% in Table 18).

Leaf structure (Leaf shape)

The treatment of 15 kr. gamma rays caused leaf shape (9.43% in Table 18 and Figs. 12 and 13). Moreover, the treatment of 90 gpm NMU caused in change leaf shape (mutation rate 7.81% in Table 18 and Figs. 12 and 14).

Flowers (flower color)

The treatment of 15 kr. gamma rays induced mutation in flower color (9.43% in Table 18). The treatment of 30 ppm NMU caused in mutation in flower color was produced (mutation rate 5.33% in Table 18).

Flower cluster length

The treatment of 20 kr. gamma rays induced mutation in flower cluster length (2.85% in Table 18). The treatment of 150-ppm NMU induced mutation in flower cluster length (mutation rate 5.17% in Table 18).

Conclusion

Finally, it can be concluded that gamma rays irradiation and N-Nitroso -N- Methyl Urea (NMU) are powerful mutagens for the induction of mutations in *Lathyrus odoratus* plant and cause some mutation as plant dwarfism with seeds treated by 20 kr gamma rays or 30 ppm NMU, fasciata with 10 kr gamma rays or 120 ppm NMU, chlorophyll mutation with 5 kr gamma rays or 90 ppm NMU, leaf shape with 15 kr gamma rays or 90 ppm NMU and flowers color with 15 kr gamma rays or 30 ppm NMU and flowers cluster length with 20 kr gamma rays or 150 ppm NMU in M₂ generation.

REFERENCES

- Abo El-kheir, O.M. (2004). Effect of gamma irradiation and some nutrients elements on growth, yield and storagebility of Broccoil (*Brassica oleracea*). Ph.D. Thesis, Fac. Agric., Moshtohor, Benha Univ., Egypt.
- Allkin, R., J.D. Goyder, A.F. Bisby and J.R. White (1986). Names and synonym of species and subspecies in the Vicieae Database Project, 7:1-75.
- Anjalika, M.R., N. Banerjee and S. Mandal (2005). Structural and functional parameters of mating and seed germination in mutants of *Catharanthus roseus* (Apocynaceae). J. Appl. Biosci., 31(2): 145-149.
- Ariraman, M., S. Gnanamurthy, D. Dhanavel, T. Bharathi and S. Murugan (2014). Mutagenic effect on seed germination, seedling growth and seedling survival of Pigeon pea (*Cajanus cajan* (L.) Millsp). Int. Letters of Nat. Sci., 16: 41-49.
- Badr, M., B.A. Abdel-Maksoud and S.S. omer (2004). Growth, flowrering and induced variability in *Gomphrena globosa*, L. Plant grown from dry and water-soaked seeds treated with gamma-rays. Alex. J. Agric. Res., 49 (1):49-70
- Badr, M., M. Khattab, T.Y. Al-Keay, M. Al-Keay, M. Yaqout, M.A.H. Nouh and M. Raslan (1990). Flowers, Ornamental Plants and Garden Design. 4th Ed. Dar Fagr Al-Islam. Glym, Alex., Egypt (In Arabic).

- Combacedes, J., M. Duron, L. Decourtye and R. Jalouzot (1992). Methodology of *in vitro* gamma irradiation from Lonicera species Mutant description and biochemical characterization. Acta Hort., 320: 119-126.
- Dhakshanamoorthy, D., R. Selvaraj and A. Chidambaram (2010). Physical and chemical mutagenesis in *Jatropha curcas* L. to induce variability in seed germination, growth and yield traits. Rom. J. Plant Biol., 55 (2): 113-125.
- Dilta, B.S., Y.D. Sharma, Y.C. Gupta R. Bhalla and B.P. Sharma (2003). Effect of gamma rays on vegetative and flowering parameters of chrysanthemum. J. Ornamental Hort. New Series, 6 (4): 328-334.
- El-Ashry, A.I., M.A. Zagloul and E. Al-Ghait (1992). Physiological studies on *Lathyrus* odoratus 2. Effect of gamma- irradiation on the growth and flowering of *Lathyrus* odoratus L. Bull. Suez Canal Univ. Appl. Sci., 1: 506-521.
- El-Tony, F.H. (1999). Effect of gamma irradiation, methyl sulphonate and their combination on growth, flowering and induced variability in *Tagetes erecta* L., M. Sc. Thesis, Fac. Agric., Alex. Univ., Egypt.
- Encheva, J., F. Tsvetkova and P. Ivanov (2003). A comparison between soma clonal variation and induced mutagenesis in tissue culture of sunflower line 2-8-A (*Helianthus annuus* L.) Helia, 26 (38): 91-98.
- Francis, F.J. (2000). Anthocyanins and betalains composition: composition and applications. Cereal Foods World, 45: 208-213.
- Fuleki, T. and F.J. Francis (1968). Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food Sci., 33: 72-77.
- Gaswanto, R., M. Syukur, B.S. Purwoko and S.H. Hidayat (2016). Induced mutation by gamma rays irradiation to increase chilli resistance to begomovirus. Agrivita, 38 (1): 24-32.
- Goyder, D.J. (1986). The genus *Lathyrus* in; kaul A.K. and Combes D. (Eds). Lathyrus and

Lathyrism. Third World Medical Research Foundation. New York, 334: 3-7.

- Hussein, A.S. (2005). Physiological studies on growth yield and Volatile oil of Dill *Anethum* graveolens L. Ph.D. Thesis, Fac. Agric., Cario Univ., Egypt.
- Ibrahium, H.E., F.M.H. Swaefy and A.M.H. Youssef (2009). Effect of gamma irradiation and gibberellic acid on growth and flowering of *Lathyrus odoratus* L. plants. Egypt. J. Hort., 36 (2): 347-357.
- Ilbas, A.I., Y. Eroglu and H. Eroglu (2005). Effects of the application of different concentrations of NaN₃ for different times on the morphological and cytogenetic characteristics of barley (*Hordeum vulgare* L.) seedlings. J. Integrative Plant Biol., 47 (9): 1101-1106.
- Karthika, R. and B.S. Lakshmi (2006). Effect of gamma rays and EMS on two varieties of soybean. Asian J. Plant Sci., 5 (4):721-724.
- Khalaf, W. (2008). Effect of gamma irradiation on growth, flowering on induced variability in *Amaranthus caudatus* L. M.Sc. Thesis, Fac. Agric, Alex. Univ., Egypt.
- Khan, S., R.M. Wani and K. Parveen (2006). Quantitative variability in mungbean induced by chemical mutagens. Legume Res., 29 (2): 143-145.
- Kupicha, F.K (1983). The infrageneric structure of Lathyrus. Notes by Bot. Gard. Edinb., 41 (2): 209-244.
- Li, R., A.H. Bruneau and R. Qu (2010). Morphological mutants of St. Augustine grass induced by gamma ray irradiation. Plant Breed., 129:412-416.
- Mahmoud, F.A.N. (2002). Effect of gamma irradiation and some agrochemicals on germination and flowering of *Delphinium ajacis* and *Matthiola incana* plants. M. Sc. Thesis, Fac. Agric., Moshtohor. Zagazig Univ., (Banha Branch) Egypt.
- Mostafa, G.G. (2011). Effect of sodium azide on the growth and variability induction in *Helianthus annuus* L. Int. J. Pl. Breed. and Genet., 5 (1): 76-85.

- Mostafa, G.G. (2015). Effect of some chemical mutagens on the growth, phytochemical composition and induction of mutations in *Khaya senegalensis*. Int. J. Pl. Breed. and Genet., 9 (2): 57-67.
- Naik, P.M. and H.N. Murthy (2009). Effects of gamma and ethyl methane sulphonate treatments on agronomical traits of niger (*Guizotia abyssinia* Cass). Afr. J. Biotechnol., 8 (18): 4459-4464.
- Odeigah, P.G.C., O.A. Osanyinpeju and O.G. Myers (1998). Induced mutations in cowpea (*Vigna unguiculata*) Leguminosae. Revista Biologia Tropical, 46 (3): 579-586.
- Plitman, U., R. Gabay and O. Coben (1995). Innovations the tribe Vicieae (Fabaceae) from Israel J. Pl. Sci.,43:249-258.
- Quecini, V., A.S. Berenschot, M.I. Zucchi and A. Tulmann-Neto (2008). Mutagenesis in

Petunia hybrid Vilm. and isolation of a novel morphological mutant. Braz. J. Plant Physiol., 20 (2):95-103.

- Rybinski, W. (2003). Mutagenesis as a tool for improvement of traits in grass pea (*Lathyrus* sativus L.). Lathyrus Lathyrism Newsletter 3 (1): 27-31.
- Snedecor, G.W. and W.G. Cochran (1980). Statistical Methods.7th Ed., Iowa State Univ., Press, Ames., Iowa, USA.
- Wi, S.G., B.Y. Chung, J.H. Kim, M.H. Baek, D.H. Yang, J.W. Lee and J.S. Kim (2005). Ultrastructural changes of cell organelles in Arabidopsis stem after gamma irradiation. J. Pl. Biol., 482: 195-200.
- Yadava, U.L. (1986). A rapid and nondestructive method to determine chlorophyll in intact leaves. Hort. Sci., 21:1449-1450.

التغيسرات المسور فسولوجية والزهرية في بسلة الزهور باستخدام بعض المطفرات الفيزيانية والكيميائية

ياس عب² السلام عبد المجيد ' ـ محمد أحمد إبر اهيم عبد القادر ' ـ عبد الرحمن العريان عوض ' ـ بهان محمود خليل ' ١ - قسم بحوث تربية الفاكهة ونباتات الزينة ـ معهد بحوث البساتين ـ مركز البحوث الزر اعية ـ القاهرة ـ مصر ٢ - قسم البساتين ـ كلية الزر اعة ـ جامعة الزقازيق ـ مصر

أجريت تجربة بالمزرعة التجريبية لقسم بحوث تربية الفاكهة ونباتات الزينة – مركز البحوث الزراعية في مصر خلال موسمی ۲۰۱۳/۲۰۱۲ و ۲۰۱٤/۲۰۱۳ لدراسة تأثير تعريض البذور لأشعة جاما بجرعات (صفر و ۱ و ٥ و ۱۰ و١٠ و٢٠ كيلو راد) ونقع البذور في تركيزات من نيتروزو ميثيل يوريا بتركيزات (صفر و٣٠ و٢٠ و٢٠ و١٢٠ جزء في مليون) على نباتٌ بسلة الزُّهور، في تصميم قطاعات كاملة العشوائية في ثلاثُ مكررات، أظهرت نتائج الجيل الطفري الأول انخُفاضاً في النسبة المئوية لإنبات البذور، ارتفاع النبات، عدد الأوراق، عدد الأزهار ومحتوى الأوراق من الكلور وفيل بزيادة الجرعات والتركيز ات من المطفر ات الفيزيانية والكيميانية، بينما كان تأثير المطفر ات على طول الورقة ومحتوى الأزهار من الأنثوسيانين غير معنوي في الجيلين الطفريين الأول والثاني، بينما أدت المعاملة بالجرعات العالية من أشعة جاما والتركيزات من النيتروزو مُيثيلٌ يوريا إلى تأخير ميعاد التزهّير في الجيل الطفري الأول والثاني، وانخفضت النسبة المنوية لإنبات البذور في الجيل الطفري الثاني، كما أدت الجرعات والتركيزات المنخفضة إلى زيادة في كل من ارتفاع النبات، عدد الأفرع، عدد الأوراق، عدد الأز هار ومحتوى الأوراق من الكلوروفيل في الجيل الطفري الأول والثاني، وأظهرت مقارنة التباين لمتوسط المربعات اختلافاً غير معنوى بين أشعة جاما والنيتروزو ميثيل يوريا في الجيل الطفري الأول والثاني لكل من النسبة المئوية لإنبات البذور، عدد الأفرع، عدد الأوراق، ميعاد التزهير وعدد الأزهار، بينما كان التباين مرتفعاً بين أشعه جاما والنيتروزو ميثيل يوريا في الجيّل الأول والثاني لكل من إرتفاع النبات وطول الورقة ومحتوى الأوراق من الكلوروفيل، كما أظهرت النتائج المتحصّل عليها في هذه الدّراسة أن الجرعات والتركيزات المختلفة من المطفرات يمكنها إحداث تغييرات في ارتفاع النبات (نباتات متقزمة ومندمجة) وتفرع القمة النامية والطفرات الكلور وفيللية وشكل الورقة وطول الحامل الزهري لنبات بسلة الزهور

> المحكمون : ١ ـ أ.د. علي عبدالمقصود الحصري ٢ ـ أ.د. حسب عسودة عسواد

أستاذ المحاصيل – كلية الزراعة بمشتهر – جامعة بنها. أستاذ المحاصيل – كلية الزراعة – جامعة الزقازيق.