Isolation and characterization of avian reovirus (Egypt/ARV/Giza 2011) associated with arthritis in broiler breeder flocks
Latifa, Bekheet (1); Hussein, H.A. (2); Elsafty, M.M. (3); Tantawy, L.A. (4) and Helal, A.M. (5)
(1) Specific Pathogen Free Eggs Project, Koum Oshiem, El-Fayoum Governorate; (2) Virology Department, Faculty of Veterinary Medicine, Cairo University; (3) Central Laboratory for Evaluation of Veterinary Biologics, VSVRI, Abbasia, Cairo. (4) Animal Health Researches Institute, AHRI, Dokki, Giza.

Abstract
Samples of tibiotarsal tendons, tendon sheaths and fluids around ruptured tendons were collected from broiler breeder flock of 28 weeks old in Giza governorate, showed symptoms of arthritis, lameness and swelling in the hock joints. Trial for isolation of avian reovirus (ARV) was done by inoculation in embryonated chicken eggs (ECE). After propagation and titration of the isolated virus, it had been antigenically characterized by agar gel precipitation test (AGPT) and fluorescent antibody technique (FAT). Pock lesions on the chorioallantoic membrane (CAM) was negatively stained and examined by electron microscope, also histopathological examination was carried out. Molecular characterization was performed by reverse transcriptase polymerase chain reaction (RT-PCR). The results confirm the isolation of avian reovirus from the suspected flock.

Key words: avian reovirus, arthritis, CAM and pock

Introduction
Avian reoviruses belong to genus Orthoreovirus of family Reoviridae (Mertens, 2004). Reoviruses have a double capsid structure comprised of an outer capsid of ~85 nm in diameter and an inner core of ~45 nm in diameter, which accommodates 10-segmented genomic dsRNA (Zhang et al., 2005). The 10 segments encode for at least 12 viral proteins, 8 structural proteins and 4 nonstructural proteins. σC is one of the most important polypeptides among ARV proteins that induces ARV-specific neutralizing antibodies which makes such protein a target and marker in studies on ARV genetic variations as well vaccine development (Martinez-Costas et al., 1997 and Shapouri et al., 1995). The avian reovirus can induce several manifestations in chickens including arthritis, lameness and swelling in the hock joint (Jones and Guneratne, 1984), inclusion body hepatitis (McFerran et al., 1976), enteritis (Dutta and Pomeroy, 1969), hydropericardium (Bains and MacKenzie, 1974), myocarditis (Davis et al., 2012), central nervous system disease (Van de Zande and Kuhn, 2007) and runting-stunting syndrome or malabsorption syndrome (MAS) (Goodwin et al., 1993). ARVs could be inoculated on CAM as it is a successful route for ARV isolation and the main pathological changes are appearance of pock lesions on CAM (Schwartz et al., 1976). The electron microscope has been used as a powerful tool in the characterization of ARV either by negative stain or thin section electron microscopic examination (Goldsmith, 2014). ARVs were classified into 11 serotypes (Wood et al., 1980), based on antigenic characterization using serological tests like agar gel precipitation test (AGPT), virus neutralization test (VNT), enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Molecular-based techniques including reverse transcriptase polymerase chain reaction (RT-PCR) (Bruhn et al., 2005), nested PCR (Liu et al., 1997), multiplex PCR (Caterina et al., 2004), real-time PCR (Ke et al., 2006), PCR followed by restriction fragment length polymorphism (RFLP) (Lee et al., 1998), and in situ hybridization (ISH) (Liu and Giambro, 1997), have been used to detect ARVs. Phylogenetic studies classified isolates of ARVs into various groups and lineages also provided evidences showing frequent reassortments among the circulating lineages which responsible for variation in the ARV genome segments. Previous studies on comparison of sequences of ARVs were focused on σC-encoding gene (Liu et al., 2003). The aim of the present study is to isolate and characterize ARV associated with arthritis in broiler breeder chickens.

Material and methods
Samples of tibiotarsal tendons, tendon sheaths and fluids around ruptured tendons were collected from chickens of broiler breeder farm of 28 weeks old located in Giza governorate, suffered from rupture of Achilles tendon, swelling in joints and lameness, showed 10% morbidity 0.2% mortality. The chickens were vaccinated with reovirus...
S1133 live vaccine at 38 days old and inactivated ARV vaccine at 18 weeks and booster at 22 weeks old. Homogenate of the samples was prepared in phosphate buffer saline (PBS) pH 7.2 with antibiotic (200 IU/ml of penicillin and 100μg/ml of dehydro-streptomycin) followed by three times freezing and thawing then centrifuged at 5000 r.p.m. for 15 minutes at 4°C. The supernatant was further passed through 0.45 μl filter membrane. The filtrate was used for virus isolation by inoculation on the chorioallantoic membrane of specific pathogen-free embryonated chicken eggs (SPF-ECE) at 11-13 days old. The inoculated eggs were incubated at 37°C and 80% humidity for 5 days with daily candling then the CAMs were harvested (Tantawy, 1999). Propagation of the isolated virus on CAM was carried out for 6 passages in (SPF-ECE) (Wood et al., 1980). Virus titration test was performed in SPF-ECE according to (Neelima et al., 2003) using filtrate of the harvested CAM from the sixth passage that showing pock lesions and the virus titer was calculated by Karber method (Finney, 1978). For the antigenic characterization of the isolated virus, AGPT (Tantawi et al., 1984) and FAT (Adair et al., 1987) were conducted using specific monoclonal antibodies against ARV. Transmission electron microscopic examination was applied on filtrate of pock lesion preparations (Goldsmith, 2014). Images were captured by CCD camera model AMT. Histopathological examination of pock lesions on the harvested CAM was carried out according to Tantawy, (1999). RT-PCR was employed for molecular characterization of the isolated virus using primers designed by Xie et al. (1997). These primers were specific to the conserved fragment of sigma C gene and amplify fragment with molecular size of 532 bp. Sequences of the utilized primers were as follows:

<table>
<thead>
<tr>
<th>Primer (Sense)</th>
<th>Primer (Antisense)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'GGTGCGACTGCTGTATTTGGT AAC 3'</td>
<td>5' AA TGGAACGAT AGCGTGTGGG 3'.</td>
</tr>
</tbody>
</table>

Results

Isolation, propagation and titration of ARV
Infected CAM of the inoculated eggs showed thickening, opaqueness and swelling forming pock lesion in the third passage. Number of pock lesions increased and markedly appeared between fourth to sixth passages figure (1). The titer of the isolated virus was $10^6.1$ EID$_{50}$/ml.

Antigenic characterization of the isolated virus by AGPT and FAT
AGPT showed positive result using specific monoclonal antibodies figure (2). Examination of frozen sections of pock lesions by fluorescent microscope using specific monoclonal antibodies revealed specific fluorescent foci in the sections confirming the antigenic characterization of the isolated virus figure (3).

Figure (1) showed marked appearance of pock lesion on CAM of ECE in the fifth passage of the virus.

Figure (2) AGPT showed line of precipitation.
Figure (3) FAT showed positive fluorescent foci on CAM section.

Electron microscopic examination
Appearance of virus particles in aggregates with apparent damage to the outer capsid of the virus with size reached about 45 nm figure (4).

histopathological examination of harvested CAMs
The ectodermal layer of CAMs showed mild to moderate hyperplasia associated with hypertrophy and vacuolation of cells. Very characteristic oesinophilic intracytoplasmic inclusion bodies were also noticed in ectodermal cells figure (5) and (6). Focal necrosis of ectoderm was observed. The mesoderm showed pronounced edema with congested blood vessels, in addition to inflammatory cells and fibroblasts. Few blood vessels occluded with inflammatory cells. The endoderm showed mild hyperplasia with focal necrosis.

Figure (5) & (6) showed the intracytoplasmic inclusion bodies in sections of peck lesions.

RT-PCR
Electrophoresis of the amplified products in agarose gel revealed the expected band with correct molecular size confirming the molecular characterization of the isolated virus figure (7).
Discussion

ARV could be isolated from different organs like kidney, thymus, ceecal tonsils, spleen, pancreas (Van Loon et al., 2001), liver, intestine, heart, joints and tendons (Lu et al., 2015). In the current study, chickens of broiler breeder farm were suffered from rupture of Achilles tendon, swelling in joints and lameness. Samples were collected from the affected joints and tendons as the virus still for long time in the joints and tendons for at least 285 days post infection (Kerr and Olson, 1969). ARV isolation could be performed in tissue culture or in the SPF-ECE. There are different routes were used for inoculation of the virus in SPF-ECE including yolk sac, allantoic sac and chorioallantoic membranes. The most suitable conditions for propagation of the avian reovirus vaccinal strain were on the emberyonated chicken eggs and the preferable route for inoculation was on the chorioallantoic membrane (Hassan et al., 1993). In this study, ARV was isolated on the CAM of SPF-ECE and after number of passages; characteristic lesions of reovirus including opaque and thick pocks appeared on the CAM figure (1). Performing the infectivity test revealed that titer of the isolated virus reached $10^{6.1}$ EID$_{50}$/ml after fourth passages. Antigenic characterization of the isolated virus revealed the appearance of line of precipitation in AGPT between the isolated virus and the antibodies specific to ARV confirmed the isolation of ARV figure (2). Similar results were obtained by Tantawi et al., (1984) who isolated and characterized two infectious tenosynovitis producing viruses from tendon sheaths and synovial fluids of broiler and broiler breeder flocks in Egypt in 1983. Also, Similar results obtained by Kheir El-Din and El-Sanoussi (1986) who isolated reovirus from broiler breeder chickens suffered from retardation of growth, diarrhea and abnormal gate. The isolated viruses were characterized by AGPT. Fluorescent foci in the frozen sections of the obtained pock lesions on the harvested CAM were observed confirming the antigenic characterization of the isolated virus figure (3). Negative staining of the isolated virus and examination under the electron microscope demonstrated the presence of the characteristic aggregates of the virus particles with apparent damage to the outer capsid figure (4). Size of the virus particles reached about 45 nm and that similar to previous studies achieved by others like Walker et al. (1972); Mustaffa-Babjee et al. (1973) and Tantawy, (1999). The collected CAMs of the inoculated SPF-ECE were macroscopically opaque, thickened and oedematous with engorged and tortuous blood vessels. White pock lesions of different sizes appeared on the CAMS, some of them were small minute (pin-headed) and the others looked large prominent specially at sit of inoculation figure (1). Several researchers have been reported these lesions even by inoculation of local isolate of ARV or vaccinal strain as Tantawi et al., (1984) and Tantawy, (1999). Histopathological changes of the pock lesions were characteristic to ARV with appearance of oesinophilic intracytoplasmic inclusion bodies in the ectodermal layer which considered pathognomonic to ARV and that ensure the replication and maturation of the virus in the cytoplasm of the affected cells. The virus invaded the CAM leading to appearance of another changes like hypertrophy, hyperplasia, vacuolation of the cells and focal necrosis in the ectodermal layer also edema with congested blood vessels and inflammatory cells in the mesoderm. The observed lesions are agree with previous study performed by the reference vaccinal strain of ARV which showed the same picture as
be performed depending on the S1 genome segment (Lu et al., 2015) or the S2 genome segment (Zhang et al., 2006) or S3 genome

the study reports the isolation and characterization of ARV associated with arthritis in broiler breeder chickens and the isolate was designated as Egypt/ARV/Giza 2011 and further studies are needed for sequencing of the amplified gene followed by the phylogenetic analysis to know situation of the current isolate in between the vaccinal strains and/or the field isolates from different countries.

References

-Liu, J. and Giambrone, J.J. (1997). In situ detection of reovirus in formalin-fixed
of avian reovirus: evidence for genetic diversity and reassortment of the S-class
geno~ segments and multiple co-circulating
Isolation and molecular characterization of newly emerging avian
-Martinez-Costas, J.; Grande, A.; Varela, R.; Garcia-Martinez, C. and Benavente, J.
(1997). Protein architecture of avian reovirus
S 1133 and identification of the cell attachment
protein. J. Viral. 71,59-64.
-McFerran, J. B.; McCracken, R. M.; Connor,
T. J. and Evans, R. T. (1976). Isolation of Viruses from Clinical Outbreaks of Inclusion
Body Hepatitis. Avian Pathol. 5, 315-324.
-Mustaffa-Babjee, A.; Spradbrow, P.B. and
-Neelima, S.; Ram, G.C.; Kataria, J.M. and
induces an inhibitory effect on
lymphoproliferation in chickens. Veterinary Research Communications. 27:73-85.
-Roussan, D.A.; Shaheen, I.A.; Khawaldeh,
G.Y.; Totanji, W.S. and Al-Rifai, R.H.
(2012). Simultaneous detection of astrovirus,
rotavirus, reovirus and adenovirus type 1 in
boiler chicken flocks. Polish Journal of
Veterinary Science, Vol (15), No (2), 337-344.
-Schwartz, L. D.; Gentry, R. F. and
tenosynovitis in commercial white Leghorn
chickens. Avian Dis. 20, 769-773.
-Shapouri, M. R. S.; Kane, M.; Letarte, M.;
Bergeron, J.; Arella, M. and Silim, A.
(1995). Cloning, sequencing and expression of
paraffine embedded chicken tissues using a

studies on SPF fertile eggs inoculated with
viral strains. Faculty of Veterinary Medicine, Cairo University.
caused by a new avian reovirus strain: a
-Van Loon, A.A.; Koopman, H.C. W.;
Mumczur, K.J.; Szeleszczuk, O.; Karpinska, E.;
associated with malabsorption syndrome in
chickens. Veterinary Quarterly. Volume
-Walker, E.R.; Friedman, N.O. and Olson,
N.O. (1972). Electron microscopic study on an
avian reovirus that causes arthritis. J. Ultrastructure Research. 41, 67-79.
-Wood, G. W.; Nicholas, R. A. J.; Hebert, C. N.
comparisons of avian reoviruses. J. Comp.
Pathol. 90, 29-38.
-Xie, Z.; Fadl, A.A.; Grishick, T. and Khan,
RNA using the reverse transcription
polymerase chain reaction. Avian Disease
41:654-660.
-Zhang, X.; Tang, J.; Walker, S. B.; O'Hara,
D.; Nibert, M. L.; Duncan, R. and Baker, T.
S. (2005). Structure of avian orthoreovirus
virion by electron cryomicroscopy and image
-Zhang, Y.; Liu, M.; Shuidong, O.; Hu, Q.L.;
Detection and identification of avian, duck and
goose reoviruses by RT-PCR: goose and duck
reoviruses are part of the same genus
151: 1525-1538.
مصادر التغذية المختلفة

赏名: فوسفيروس ريو الدجاج (20011) (الوحدة الأولى)

مصادر التغذية المختلفة

1. بهيج، حسن، (1) منير الصبحي، (2) ليلي الطاير، (3) أحمد هلال

2. مشروع التغذية البديلة في المزارع المكونة لأفرع الفيروسات. كلية الطب البيطري، جامعة القاهرة

الم]()

مساعي المركزي للرقابة على المستحضرات الطبية البيطريّة معدة بحوث الامتصاص واللقاءات البيطرية. الدراسات الطبية، القاهرة (1)

جهة بحوث صحة الحيوان. الذّكرى لجوزة

تم جمع عينات من أوراقي النسيج والاعشاب والسوائل حول الأورام المزمنة من قطاع مصادر التغذية عند عمر 28 أسبوع في محافظة الجيزة حيث كانت تظهر أعراض التهاب المفاصل، العرق ووفرة في مفاصل العرق و و قد تم اجراء محاولة لعزل فيروس ريو الدجاج بالعشوائي في النبضات السوداء و بعد تمرير الفيروس و معاهله تم عمل توصيف التطور للفيروس باستخدام اختبارات العناصر و التعادل الفيروسي. وقد اظهرت النتائج وجود نباتات على النبضات الساقطة البديلة للفيروس المعثر وقد تم اخذ عينات منها و صبغها من_side و قسمها تحت الميكروسكوب الإلكتروني و أيضا تم عمل فحص التغطيات المرضية في نسخة النبضات الساقطة المحترفة للفيروس المعثر. كما تم عمل توصيف الجزيئي بواسطة اختبار تفاعل البذور المستقل للمجموعة البشري و قد أسفرت النتائج التأكيد على عزل فيروس ريو الدجاج من القطع المشتبه به.