

Animal and Poultry Production

http:/www.journals.zu.edu.eg/journalDisplay.aspx?Journalld=1&queryType=Master

IMPACT OF WATER QUALITY ON THE BLOOD PARAMETERS OF NILE TILAPIA IN DIFFERENT FISH FARMS

Mohammed A. Al-Zahaby^{1*}, A.M. Shalaby¹, G.F. Abd-El-Rahman² and M.S.A. Ayyat²

1. Fish Physiol. Dept., Cent. Lab. Aquacult. Res., Abbasa, Sharkia, Egypt

2. Anim. Prod. Dept., Fac. Agric., Zagazig Univ., Egypt

Received: 01/01/2017; Accepted: 26/01/2017

ABSTRACT: Fish have high flexibility to live in diverse environmental conditions, since it have vast capability to be adjusted in adverse conditions. Such adjustments include increase of RBCs count, hematocrit (Hct) ratio and hemoglobin (Hb) concentrations, since blood is a perfect mirror apparently reflects health status of the fish. In the present studies, the blood picture of Nile tilapia reared in ponds of four different fish farms; (A) of Central Laboratory for Aquaculture Research (CLAR), supplied mostly with under-groundwater, (B) private fish farm supplied with agricultural drainage water, (C) of World Fish Center (WFC) irrigated with fresh water from Ismailia canal and (D) private fish farm supplied with sewage water from Bahr El-Bagar drain. It was found that, the erythrocyte's count of fish raised in fish farm (C) of WFC is the highest (1.859±0.091 10⁶/µl) at summer in between other investigated fish farms. The same trend was also shown for haematocrit (Hct) %, its highest value $(22.765 \pm 0.813\%)$ was recorded in tilapia of farm (C) at summer. These may be attributed to the adverse ecological parameters that influence on health status of the fish like dissolved O₂, pH, temperature and chemical pollutants present in the other fish farms. On the contrary, the haemoglobin (Hb) content showed its highest value (8.99±0.743g/dl) in fish of fish farm (D) supplies with water from Bahr El-Bagar drain, at spring. Regarding to the erythrocyte indices; mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) were varied in fish of the investigated fish farms. Their highest values (162.539 ± 8.508 µ3, 69.790 ± 6.212 Pg and 43.420±3.736 g/dl, respectively) were documented in fish farm (D) at autumn. These haematological indices are critical and serving as indicators of anemia. Nonetheless, the lowest values of these indices $(128.247\pm 5.860 \ \mu^3, 36.835\pm 2.620 \ Pg$ and $28.449\pm 1.277 \ g/dl$, respectively) were confirmed in fish farm (C) especially at winter, displaying almost healthy fish status.

Key words: Aquaculture, Nile tilapia, blood parameter, water pollution.

INTRODUCTION

Fish is very beneficial for human health, as according to American Heart Association (AHA) it is recommended for human twice a week (Kris-Etherton *et al.*, 2002). It is of the high quality animal protein source, having essential fatty acids, which are much greater in fishes than in terrestrial animal food source (Weaver *et al.*, 2008). So, it is the dominant source of animal protein in many developing countries (FAO, 2009). Despite the fact that Egypt have abundant water bodies, nearly about 13.57 million faddans of different water qualities including the long coastline of the Mediterranean and Red Seas, as well as River Nile with its two main branches and tributaries, ten lakes of brackish and/or saline water in addition to the great lake of fresh water behind the High Dam, the Egyptian fish production already is not enough to cover local consumption of Egyptians, so the resolution is in aquaculture production (FAO, 2004).

^{*} Corresponding author. Tel.: +201004407050 Email address: alzahaby85@yahoo.com

Aquaculture is the fastest growing sector in the field of fisheries and is considered as the only available for reducing the gap between production and consumption of fish in Egypt (Saleh, 2007). Aquaculture had been early known in Egypt back about to 3,000-2500 BC (Bardach *et al.*, 1972).

Regardless the rapid overpopulation of Egyptians the supply of aquaculture production has increased considerably faster, so the Egyptian per capita raised and reached about 16 Kg, just over the international average except that of china (Feidi, 2003; FAO, 2010). Since in 2012 Egyptian aquaculture production jumped to about 1,017,738 tonnes to constitute nearby 75.54% of the total Egyptian fish production (FAO, 2014).

Nile tilapia is the most important and promising aquaculture fish species in Egypt, representing more than 80% of total tilapias production (Sadek, 2011). Egypt ranked the second in cultured tilapia's production directly after China (Macfadyen et al., 2012). Generally, Nile tilapia is the predominant cultured fish species worldwide even it is the only cultured tilapia species today (El-Sayed, 2013). This fish species is characterized by many features that make it more suitable for farming, it tolerates a varied range of environmental conditions, so minimal managements just needed for its culturing, consequently its farming is expanding world-wide (Nandlal and Pickering, 2004). It is characterize by fast-growing, palatability and high protein content, and acceptance of artificial feed directly after hatching (El-Sayed, 2006). Their musculature tissue does not contain any bones and has a scanty amount of fat (Shaheen, 2013). Nowadays, Oreochromis niloticus is the main cultured fish species in Egypt (Samy-Kamal, 2015).

The availability of water for aquaculture is the foremost limitation of its expansion. Egypt depends mainly for about 97% of its water supply on the Nile River which has threatened latter by abstraction and pollution (Allam, 2004). In addition to River Nile considerable groundwater aquifers as well as non-conventional water resources including agricultural drainage, sea water distillation, brackish water and municipal wastewater reuse are also playing non neglected role as water resources in Egypt (MWRI, 2005).

So in the present study, the impact of water quality in four fish farming of different water supply; fresh Nile water, ground water, agricultural drainage water and sewage water on the blood parameter of cultured Nile tilapia (*Oreochromis niloticus*) were discussed.

MATERIALS AND METHODS

In the present study, Nile tilapia (Oreochromis niloticus) cultured in four fish-farms irrigate with different water sources as the followings. Fish production farm (A) of Central Laboratory for Aquaculture Research (CLAR) supplied with under-groundwater (75%) and agricultural drainage water (25%). A private fish-farm (B) supplied with agricultural drainage water from Al-Bahnasawy drain and Fish-farm (C) of World Fish Center (WFC) irrigated with fresh water from Ismailia canal originating from the Nile River. All of these three fish farms are found in Abbasa, Abou-Hammad District, Sharkia Governorate, Egypt. However the fourth fish farm (D) is a private fish-farm at Shader Azzam, Port Said Governorate, supplied with sewage water from Bahr El-Bagar drain.

Fish Sampling

Nile tilapia (*Oreochromis niloticus*) specimens, about ten specimens, were collected in random pattern monthly around the year from March 2013 to February 2014. The monthly obtained data were transacted later to become seasonally. Immediately, from the selected live fish samples, blood was drained from the caudal vein by sterile syringe in vials using Ethylenediamine-tetra-acetic acid dipotassium salt dihydrate (EDTA) as anticoagulant.

Erythrocyte Count (RBCs)

Accurately, in 0.5 ml of the blood anticoagulated by EDTA by using a double haemocytometer, the erythrocyte count, expressed in million/ μ l³, was obtained as described by Dacie and Lewis (1984).

Haematocrit Value (Hct)

It was determined by centrifuging the directly withdrawn heparinized blood, in the

micro-haematocrit tube as recommended by Britton (1963), the haematocrit value (Hct) can be calculated by measuring the lengths of the layers and applying the following equation:

Hct = Vol. of cellular part/Whole vol. of blood sample \times 100...... (%)

Haemoglobin Content (Hb)

It was estimated by the colorimetric method using Boehringer Mannheim Kits and a spectrophotometer as described by (Vankampen, 1961).

Erythrocyte Indices

Erythrocyte status is also described by another derived three indices (Houston, 1990):

Mean cell volume (MCV)

Is the average volume of the red blood cells and derived from equation: MCV = Hct \times 10 / RBCs (10⁶/µl) ... µ³

Mean cell haemoglobin (MCH

Is the average haemoglobin content and calculated by equation: $MCH = Hb \times 10/RBCs$ (10⁶/µl) .Pg

Mean cell haemoglobin concentration (MCHC)

Is calculated by the equation: $MCHC = Hb \times 100 / Hct \dots (g/dl)$

Statistical Analyses

All values are given as Mean \pm SE. Statistical differences among the means were calculated using ANOVA and Duncan's Multiple Range Test and considered statistically significant at p-values < 0.05 (Duncan, 1955). Estimations were statistically analyzed using student's t-test (2 ways) with the help of SPSS 17 software package for Windows.

RESULTS

The Erythrocyte Count (RBCs)

Erythrocyte's count of fish is of valuable interest. Its abnormal value is associated with fish disease and malformed conditions. In Nile tilapia of the present study, the erythrocyte counts were significantly differed (P < 0.05) in between fish farms. Its minimum value (1.418 ± 0.090 $10^{6}/\mu$ l) was recorded in fish of fish farm (D) receipted water from Bahr El-Baqar drain but its maximum one (1.859 ± 0.091 $10^{6}/\mu$ l) noticed in specimens of fish farm (C) supplied with fresh Nile water. Erythrocyte counts were also significantly varied, with the same (P < 0.05) too, between seasons, even in the same fish farms and ranged between (0.78±0.17 $10^{6}/\mu$ l) as the most minimum value recorded in fish farm (D) at autumn and (2.37±0.54 $106/\mu$ l) as the most maximum one documented in fishes of farm (C) at winter (Table 1).

However, in the other two farms, (A) supplied with almost underground water and (B) supplied with agriculture drainage water, the mean erythrocyte counts were in-between (1.499 \pm 0.092 and 1.425 \pm 0.096 10⁶/µl, respectively) as shown in Table 1.

Blood Hemoglobin Content (Hb)

In the current studies, the values of blood hemoglobin content (Hb) of Nile tilapia were non- significantly differed among investigated fish farms (P > 0.05) with a minimum (5.617 \pm 0.290 g/dl) and maximum (8.990±0.743 g/dl) values noticed in fishes reared in fish farms (A) and (D), respectively. Similarly, the blood hemoglobin content was non-significantly varied (P > 0.050) in between seasons regardless fish farms, where the lowest (Hb) content (5.587 \pm 0.329 g/dl) was detected at autumn and highest one (7.642±0.535 g/dl) was recorded at spring. Reviewing the general data, a vast fluctuation was recorded between the individual (Hb) readings, the minimum (3.86±0.42 g/dl) was noticed in fish farm (B) at autumn and the maximum $(9.68 \pm 1.07a \text{ g/dl})$ was noticed in fish farm (D) at spring as illustrated in Table 1.

Blood Hematocrit (Hct)

In the current studies it was found that, the hematocrit (Hct) values of the cultivated Nile tilapia were significantly differed (P < 0.050) in all fish farms among different seasons. Its minimum (11.67 \pm 0.61%) and maximum (25.86 \pm 2.67%) ratio were given at autumn and summer, respectively in the same fish farm fish farm (B) irrigated with agriculture drainage water. The average value of haematocrit around the whole year were also significantly diverged (P < 0.050) and ranged between 20.195 \pm 0.826%

	Parameter	Erythrocyte count	Hemoglobin content	Hematocrit value
Variable		(10 ⁶ /µl)	(g/dl)	(%)
		Fish farm et	ffect	
Fish farm A		1.499 ^b ±0.092	5.617 ^b ±0.290	20.195 ^a ±0.826
Fish farm B		1.425 ^b ±0.096	6.695 ^b ±0.688	20.541 ^ª ±1.248
Fish farm C		1.859 ^a ±0.091	6.518 ^b ±0.412	22.765 ^a ±0.813
Fish farm D		1.418 ^b ±0.090	8.99 ^a ±0.743	21.792 ^a ±1.104
Significance		0.000	0.061	0.017
		Season eff	ect	
Spring		1.638 ^a ±0.061	7.642 ^a ±0.535	22.542 ^{ab} ±0.545
Summer		1.703 ^a ±0.081	6.794 ^{ab} ±0.620	23.578 ^ª ±1.501
Autumn		1.152 ^b ±0.133	5.587 ^b ±0.329	16.565°±1.017
Winter		1.538 ^a ±0.131	7.044 ^{ab} ±0.751	20.333 ^b ±0.723
Significance		0.000	0.145	0.000
	Int	teraction between seas	on and fish farm	
	Spring	$1.78 e^{bcd} \pm 0.15$	5.09 ^{cd} ±0.45	$23.05 \ ^{abcd} \pm 0.90$
Fish farm	Summer	$1.84^{abc} \pm 0.09$	$6.09^{abc} \pm 0.94$	$21.81^{abcd} \pm 3.59$
Α	Autumn	$0.99 e^{f} \pm 0.07$	$5.85^{abc} \pm 0.58$	15.86 ^{efg} ±0.34
	Winter	$1.27 \ ^{cdef} \pm 0.05$	$6.18^{abc} \pm 0.59$	$18.00 ef \pm 1.00$
	Spring	$1.70^{bcd} \pm 0.10$	9.54 ^a ±0.84	$21.82 \ ^{abcde} \pm 1.19$
Fish farm	Summer	$1.51 e^{bcde} \pm 0.07$	$4.70^{bc} \pm 0.83$	25.86 ^a ±2.67
В	Autumn	$0.99 e^{f} \pm 0.40$	3.86 ^c ±0.42	11.67 ^g ±0.61
	Winter	$1.19^{\text{def}} \pm 0.03$	$7.43^{abc} \pm 2.57$	$18.80 ^{bcdef} \pm 0.66$
	Spring	$1.71 {}^{bcd} \pm 0.11$	$5.01 t^{bc} \pm 0.44$	$20.20^{\text{abcde}} \pm 0.83$
Fish farm	Summer	2.05 ^{ab} ±0.09	$8.19^{ab} \pm 0.95$	24.91 ^{ab} ±2.09
С	Autumn	1.61 ^{bcd} ±0.19	$6.74^{abc} \pm 0.37$	22.86 ^{abcd} ±1.01
	Winter	2.37 ^a ±0.54	$6.02^{abc} \pm 0.46$	24.67 ^{abc} ±0.33
	Spring	$1.47 \ ^{bcde} \pm 0.11$	9.68 ^a ±1.07	23.85 ^{abcd} ±1.05
Fish farm	Summer	$1.32 e^{cdef} \pm 0.26$	8.63 ^{ab} ±1.87	$18.49 {}^{cdef} \pm 4.44$
D	Autumn	$0.78 f \pm 0.17$	5.73 ^{abc} ±0.56	13.33 ^{fg} ±1.20
	Winter	$1.76 \ ^{bcd} \pm 0.08$	8.63 ^{ab} ±0.93	$22.50^{\text{ abcd}} \pm 0.29$
Significance		0.024	0.002	0.000

Table 1. Erythrocyte count (10⁶/ml), hemoglobin content (g/dl) and hematocrit value (%) in the blood of Nile tilapia specimens reared in the investigated fish farms in different seasons

* Significance versus group: P<0.05

(minimum), and 22.765 \pm 0.813% (maximum) in fish farms A and C, respectively. However, the seasonal hematocrit (Hct) average values were ranged between 16.565 \pm 1.017% and 23.578 \pm 1.501%, at autumn and summer, respectively also with significant differences (P < 0.050) as illustrated in Table 1.

Red Blood Cell Indices

Mean cell volume (MCV)

Mean cell volume (MCV) is the average volume of red blood cells and expressed as cubic microns (μ^3) . It is calculated from hematocrit (Hct) and the erythrocyte count (RBC). Low MCV indicates microcytic (small RBC size) but high MCV indicates macrocytic (large RBC size).

In the current studies, statistical non-significant variations (P > 0.05) of MCV parameter were documented for different fish farms at various seasons, even among the same fish farm, individually. The lowest MCV value (115.26 \pm 24.84 μ^3) was documented in fish farm (C) at winter, but the highest value (179.45 \pm 21.87 μ^3) was recognized in fish farm (D) at autumn. MCV values of the reared Nile tilapia in the four fish farms around the year were trended as (D)> (B)> (A)> (C) with significant variation (P < 0.05). MCV values in between different seasons regardless fish farm were also significantly differed (P < 0.05) as shown in Table 2.

Mean cell hemoglobin (MCH)

The mean cell hemoglobin (MCH), is quantified the amount mass of hemoglobin per red blood cell and it expressed as picograms (pg) per cell. Presently, MCH was fluctuated between (29.24±8.65 Pg) in fish farm (C) at winter and (77.00±12.44 Pg) in fish farm (D) at autumn with non-significant variation (P > 0.050). However, MCH values were significantly differed (P<0.050) within the different fish farms with lowest annual value (36.835±2.620 Pg) and highest (69.790±6.212 Pg) for fish farms (C) and (D) respectively. Nevertheless, the MCH levels were non-significantly differed (P > 0.050) in between values calculated for different seasons irrespective fish farms (Table 2).

Mean cell hemoglobin concentration (MCHC)

MCHC indicates the amount of hemoglobin per red cell volume. It expressed as g/dl of red blood cells. Currently, MCHC was also differed significantly (P < 0.050) among all seasons in the examined four fish farms. Its minimum value $(22.43\pm6.14 \text{ g/dl})$ was realized in fish farm (B) at summer but its maximum reading (54.72±15.28 g/dl) was given in fish farm (D) at summer also. The values of this erythrocyte index were varied also significantly (P < 0.050) in-between its annual values of different fish farms. Its highest value (43.420±3.736 g/dl) was recorded in fish of fish farm (D) but its lowest one (28.449±1.277 g/dl) was noticed in fish farm (C). In contrast, the MCHC values non significantly differed between seasons regardless fish farms (P > 0.050) with lowest value 32.783±4.028 g/dl at summer and highest one $(35.460\pm4.227 \text{ g/dl})$ at winter (Table 2).

DISCUSSION

Fish have enormous flexibility to live in diverse environmental conditions; some species have vast capability to be adjusted in adverse conditions of temperature, pressure, salinity and oxygen availability. Such adjustments include ventilation frequency and heart rate in addition to increase of erythrocyte's count, hematocrit and hemoglobin concentrations (Val, 1996). Red blood cells count and their hemoglobin content together afford the foremost mechanism of oxygen carrying capacity of the blood (de Souza and Bonilla-Rodriguez, 2007). On the other hand, since fish lives collectively in water and only a thin epithelial membrane of gills and skin separates the blood of the fish from water of different qualities, so every unfavorable water quality should be reflected on the fish blood (Hlavek and Bulkely, 1980). Blood is a perfect mirror apparently reflects what occur inside fish body and can help to evaluate the health status of the fish (Shehata and Shehata, 1994). So, number blood parameters such as of erythrocytes counts, hemoglobin content and hematocrit percentage are used as warning alarm of adverse water quality (Shalaby, 1997; Fernandes and Mazon, 2003). Blood parameters are closely related to environmental and biological fish response, in addition to their easy for determination and therefor they are widely used for testing health problems of fish (De Pedro et al., 2005).

Table 2. Blood indices; Mean cell volume (MCV, μ³), Mean cell hemoglobin (MCH) and Mean cell hemoglobin concentration (MCHC, %) of Nile tilapia specimens reared in the different investigated fish farms in different seasons

x 7 · 1.1	Parameter	$\frac{1}{MCV} (\mu^3)$	MCH (Pg)	MCHC (g/dl)
Variable		Fish farm e	ffect	· · · · · · · · · · · · · · · · · · ·
Fish farm A		143.241 ^{ab} ±6.332	42.342 ^b ±3.766	29.288 ^b ±1.949
Fish farm B		153.060 ^ª ±7.002	50.315 ^b ±4.860	34.901 ^b ±3.411
Fish farm C		128.247 ^b ±5.860	36.835 ^b ±2.620	28.449 ^b ±1.277
Fish farm D		162.539 ^a ±8.508	69.790 ^a ±6.212	43.420 ^ª ±3.736
Significance		0.032	0.001	0.004
		Season eff	ect	
Spring		146.638 ^{ab} ±6.115	51.157 ^a ±4.323	34.151 ^ª ±2.255
Summer		139.837 ^b ±7.531	41.967 ^a ±4.574	32.783 ^a ±4.028
Autumn		163.054°±8.252	57.524 ^a ±4.881	34.702 ^a ±1.890
Winter		139.018 ^b ±5.475	49.680 ^a ±6.603	35.460°±4.227
Significance		0.034	0.138	0.912
	In	teraction between seas	on and fish farm	
	Spring	140.57 ^{abc} ±11.80	31.32 °±4.28	22.49 °±2.08
Fish farm	Summer	117.02 °±15.73	32.61 °±3.63	$28.68 \text{ bc} \pm 3.17$
Α	Autumn	164.29 ^{abc} ±9.14	62.39 ^{abc} ±8.98	$37.40^{\text{abc}} \pm 4.44$
	Winter	141.95 ^{abc} ±4.99	49.32 ^{abc} ±5.39	34.95 ^{abc} ±3.79
	Spring	130.27 ^{abc} ±5.98	56.29 ^{abc} ±3.82	4366 ^{ab} ±3.21
Fish farm	Summer	169.43 ^{ab} ±14.46	33.23 °±7.27	22.43 °±6.14
В	Autumn	166.11 ^{abc} ±23.95	54.58 ^{abc} ±10.14	33.06 ^{bc} ±3.25
	Winter	158.08 ^{abc} ±2.41	62.79 ^{abc} ±21.88	40.30 ^{abc} ±14.58
	Spring	120.48 ^{bc} ±4.45	30.07 °±2.70	24.79 ^{bc} ±1.80
Fish farm	Summer	122.59 ^{bc} ±10.43	39.44 ^{abc} ±3.39	32.77 ^{bc} ±2.51
C	Autumn	152.18 ^{abc} ±14.77	46.41 ^{abc} ±7.42	29.84 ^{bc} ±2.11
	Winter	115.26 ° ±24.84	29.24 °±8.65	24.44 ^{bc} ±2.16
	Spring	174.03 ^a ±12.22	72.86 ^{ab} ±8.98	41.55 ^{abc} ±4.60
Fish farm	Summer	135.86 ^{abc} ±7.82	69.72 ^{ab} ±15.75	54.72 ° ±15.28
D	Autumn	179.45 ^a ±21.87	77.00 ^a ±12.44	43.03 ^{abc} ±2.39
	Winter	128.60 ^{abc} ±7.13	49.16 ^{abc} ±5.24	38.44 ^{abc} ±4.43
Significance		0.098	0.152	0.024

* Significance versus group: P<0.05

Nile tilapia, Oreochromis niloticus, reared in the present four investigated fish farms showed variable levels of blood parameters. Concerning the erythrocyte's count, it was found that, its highest value $(1.859\pm0.091 \ 10^{6}/\mu l)$ noted in fish farm (C) supplied with fresh water from Ismailia canal which was higher also than the values recorded for the same fish in other localities by Shalaby et al. (2006), Ghiraldelli et al. (2006) and Giron-Perez et al. (2008) and just lower than those reported by Sweilum (2006) and Silva et al. (2009). Nonetheless, the lowest count $(1.418\pm0.090 \ 106/\mu L)$ was observed in fish farm (D) supplied with water from Bahr El-Bagar drain followed by $(1.425\pm0.096 \ 10^6/\mu l)$ that of fish reared in fish farm (B) irrigated from agriculture drainage water then (1.499±0.092 106/µl) of fish reared in fish farm (A) of CLAR used underground water.

The same trend was also reported for hematocrit percentage, as its highest value (22.765 \pm 0.813%) and lowest value (20.195 ± 0.826%) were recorded in fish farm (C) and (A), respectively and all lying within the values given by Ghiraldelli et al. (2006), Giron-Perez et al. (2008) and Silva et al. (2009) for the same fish in different localities with little differences. On the contrary, the hemoglobin blood content showed its highest value (8.99±0.743g/dl) in fish cultivated in fish farm (D) and the lowest (5.617±0.290 g/dl) was in fish reared in fish farm (A), followed by value (6.518±0.412 g/dl) of fish farm (C) comparable to values recorded by Shalaby et al. (2006) and Giron-Perez et al. (2008). The highest levels of erythrocyte number $(1.703\pm0.081 \ 10^6/\mu l)$ and hematocrit ratio (23.578±1.501%) were recorded in summer in comparison to other seasons. This was ratified by Sharma et al. (2015) and may be due to the higher water temperature and consequently high metabolic rate. Since, fish is ectothermic so, its hematological parameters are triggered primarily by water temperature and oxygen availability in addition to malnutrition and environmental stress (Acar et al., 2013; Pradhan et al., 2014).

The reduction of erythrocyte count, haematocrit ratio and hemoglobin content of Nile tilapia reared in the fish farm (D) in the present study can be attributed to haemodilution of blood due to damage and bleeding of fish organs (Movotny and Beeman, 1990) and/or the blood hemorrhage (Heath, 1995). This reduction of blood parameter was also detected in infected fish (Caruso et al., 2002) or that exposed to pesticides (Sweilum, 2006). It may also take place under the effect of high concentrations of ammonia (Adam and Agab, 2007; El-Sheriff and El-Feky, 2008) Chemical pollution also induced changes in blood cells of fish (Ebrahimi and Taherianfard, 2011). These deviations of fish blood parameters may be resulted in stimulation of the protective mechanisms against pollution (Ghiraldelli et al., 2006; Cazenave et al., 2009). Otherwise, Mlay et al. (2007) demonstrate that, the ecological factors especially dissolved O_2 , pH, temperature directly affect hematological parameters. Similarly, the progressive fall of blood parameters of Nile tilapia, also displayed under the effect of unfavorable concentration of heavy metals (Zaghloul, 2008). These were realized in fish farm (D) of the current study, where its water and sediment metal pollution index reached the highest level (0.212 and 68.95, respectively) in addition of its highest level of ammonia concentration (0.747±0.089 mg/l) noticed at autumn both.

Regarding to the erythrocyte indices; mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC) of Nile tilapia, they were varied in the four investigated fish farms. Their highest values $(162.539 \pm 8.508 \ \mu 3, 69.790 \pm 6.212 \ Pg$ and 43.420 ± 3.736 g/dl), respectively were documented in fish farm (D). Nevertheless, their lowest values (128.247 \pm 5.860 μ 3, 36.835 \pm 2.620 Pg and 28.449 ± 1.277 g/dl), respectively were verified in fish farm (C), all not far from values given by Shalaby et al. (2006), Giron-Perez et al. (2008) and Alsaid et al. (2014) for the same fish in different localities. The inverse correlation among hematological indices (PCV, MCV and MCH) of Oreochromis niloticus, of the present study, and water quality parameters are a result of the much higher count of RBCs in fishes reared in water of better qualities; this was also predicted by Adam and Agab (2007). Since, the RBCs count acts as denominator to calculate the hematological indices.

Far away from of this, blood indices (MCV, MCH and MCHC) are particularly important for the diagnosis of anemia in most animals (Coles,

1986). Anemia may by hemolytic, conveyed the less release of erythrocytes from haemopoietic tissues (Svobodova et al., 1994). Otherwise, the recorded decrease of MCV may lead to another type of anemia known microcytic anemia which means smaller size of erythrocyte than the normal. However, the decrease of (MCHC) and (MCH) may pave the way for hypochromic anemia which means a decrease in the fish blood color, as a result of decrease in erythrocyte hemoglobin (Zuckerman, content 2007). Hypochromic anemia as well as the microcytic one was assumed by DaCuna et al. (2011) following the decrease of erythrocytes count (RBCs) and hemoglobin content (Hb) as well as erythrocytes size (Hct) as measured by the MCV, MCH and MCHC indices. The values of these indices recorded in the current study indicated that any one of the mentioned types of anemia not detected in Nile tilapia reared in any of the investigated fish farm, since indices values were almost equal to those recorded in different localities by many authors. Pradhan et al. (2014) proved that, hematological indices are the most critical ones serving as indicators of fish health.

REFERENCES

- Acar, U., A. Turker, M. Bulut, O. Yıldırım, S. Yılmaz and O.S. Kesbic (2013). The effect of dietary soybean meal on growth, nutrient utilization, body composition and some serum biochemistry variables of two banded seabream, *Diplodus vulgaris* (Geoffroy Saint-Hilaire, 1817). Iran J. Fish Sci., 12 (4): 749–758.
- Adam, H.M. and H. Agab (2007). Effect of poly aluminum chloride (PAC) on some blood constituents of the Nile tilapia (*Oreochromis niloticus*). 11th Conf. Egypt. Soc. for Develop. Fish. Resour. and Human health. Cairo, 47.
- Allam, M.N. (2004). Participatory irrigation water management in Egypt: review and analysis. In: Hamdy A., Tüzün M., Lamaddalena N., Tod orovic M. and Bogliotti C. (Eds.). Participatory water saving management and water cultural heritage. Bari: CIHEAM, 123-131.

- Alsaid, M., A.F. Abuseliana, H.H. Daud, N.M. Mustapha, S.K. Siti Khairani Bejo, Y.M. Abdelhadi, and R.H. Hamdan (2014). Haematological, biochemical and clinical signs changes following experimental infection of *Streptococcus agalactiae* in Red Hybrid Tilapia (*Oreochromis* sp.). Aquacul. Indonesiana, 15 (2): 86-93.
- Bardach, J.E., J.H. Ryther and W.O. McLarney (1972). Aquaculture: The Farming and Husbandry of Freshwater and Marine Organisms. New York, John Wiley and Sons Inc., 868.
- Britton, C.J. (1963). Disorders of the Blood. 9th Ed. I.A. Churchill, Ld. London, 42.
- Caruso, D., O. Schlumberger, C. Dahm and J.P. Proteau (2002). Plasma lysozyme levels in sheat fish (*Silurus glanis* L.) subjected to stress and experimental infection with *E. tarda*. Aqua. Res., 33 : 999-1008.
- Cazenave, J., C. Bacchetta, M.J. Parma, P.A. Scarabotti and D.A. Wunderlin (2009). Multiple biomarkers responses in *Prochilodus lineatus* allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environ. Pollut., 157: 3025-3033.
- Coles, E.H. (1986). Veterinary clinical pathology. Philadelphia: Saunders, 615.
- Dacie, J.V. and S.M. Lewis (1984). Practical Hematology. 6th Ed. New York: Churchill, 22.
- DaCuna, R.H., G.R. Vázquez, M.N. Piol, N. Guerrero, M.C. Maggese and Lo Nostro, F.L. (2011). Assessment of the acute toxicity of the organochlorine pesticide endosulfan in *Cichlasoma dimerus* (Teleostei, Perciformes). Ecotoxicol. Environ. Safety, 74: 1065–1073.
- De Pedro, N., A.I. Guijarro, M.A. Lopez-Patino, R. Martinez-Alvarez and M.J. Delgado (2005). Daily and seasonal variations in haematological and blood biochemical parameters in the tench, *Tinca tinca* Linnaeus, 1758. Aquac. Res., 36: 1185-1196.
- de Souza, P.C. and G.O. Bonilla-Rodriguez (2007). Fish hemoglobins. Braz. J. Med. Biol. Res., 40 (6): 769-778.

- Duncan, D.B. (1955). Multiple Ranges and Multiple F- tests. Biometrics Fisheries Res., 11: 1-42. Doi., 10.2307/3001478.
- Ebrahimi, M. and M. Taherianfard (2011). Pathological and hormonal changes in freshwater fishes due to exposure of heavy metal pollutants. Water Air Soil Pollut., 217: 47-55.
- El-Sayed., A.-F.M. (2006). Tilapia culture. Edited by CABI Publishing, Cambridge, USA, 274.
- El-Sayed, A.-F.M. (2013). On farm feed management practices for Nile tilapia (*Oreochromis niloticus*) in Egypt, In: M.R. Hasan, M.B. New (Eds.), On farm feeding and feed management in aquaculture, FAO Fisheries and Aquaculture Technical Paper No. 583, FAO, Rome, FAO, 101-129.
- El-Sheriff, M.S. and A.M. El-Feky (2008). Effect of ammonia on Nile tilapia (*Oreochromis niloticus*) performance and some hematological and histological measures. 8th Int. Symp. Tilapia in Aquaculture (ISTA VIII), Cairo, 13.
- FAO (2004). Food and Agriculture Organization of the UN for a world without hunger. Fishery Country Profile - The Arab Republic of Egypt, Characteristics, Struc. and Res. Sector.
- FAO (2009). Food and Agriculture Organization of the UN for a world without hunger. The State of World Fisheries and Aquac., 2008. FAO, Rome.
- FAO (2010). Food and Agriculture Organization of the UN for a world without hunger, Fisheries and Aquac. Dept., Fishery and Aquac. Profiles of Arab Republic of Egypt, Part II Narrative (2010).
- FAO (2014). Food and Agriculture Organization of the UN for a world without hunger. The State of World Fisheries and Aquaculture 2012, Opportunities and challenges, Food and Agric. Organization of The United Nations, Rome, FAO.
- Feidi, I.H. (2003). Impact of international fish trade on food security in Egypt. Final report of the Expert Consultation on International

Fish Trade and Food Security, Casablanca, Morocco.

- Fernandes, M.N. and A.F. Mazon (2003). Environmental pollution and fish gill morphology. In: Val AL and Kapoor BG, eds. Fish adaptation. Sci., Enfield, 203-231.
- Ghiraldelli, L., M.L. Martins, M.M. Yamashita and G.T. Jeronimo (2006). Ectoparasites influence on Hematological parameters of Nile tilapia and Carp cultured in State Catarina, south Brazil. J. Fish. Aquatic Sci., 1(3): 270-276.
- Giron-Perez, M.I., M. Montes-Lopez, L.A. Garcia-Ramirez, C.A. Romero-Banuelos and M.L. Robledo-Marenco (2008). Effect of sub-lethal concentrations of endosulfan on phagocytic and hematological parameters in Nile Tilapia (*Oreochromis niloticus*). Bull Environ. Contam. Toxicol., 80: 266–269.
- Heath, A. (1995). Water Pollution and Fish Physiology (2nd Ed.). Boca Raton, Florida, USA, CRC Press, Inc., 245.
- Hlavek, R.R. and R.V. Bulkely (1980). Effects of malachite green on leucocyte abundance in rainbow trout, *Salmo gairdneri* (Richardson). J. Fish Biol., 17: 4-31.
- Houston, A.H. (1990). Methods for Fish Biology. Blood and circulation, 9: 237-334.
- Kris-Etherton, P.M., W.S. Harris and L.J. Appel (2002). AHA Nutrition Committee. Fish consumption, fish oil, omega-3 fatty acids and cardiovascular disease. Circulation, 106: 2747-2757.
- Macfadyen, G., A.M. Nasr-Allah and M. Dickson (2012). The market for Egyptian farmed fish. WorldFish Cent., Egypt, 1-48.
- Mlay, P.S., M. Seth, S.T. Balthazary, R.T. Chibunda, E.C.J. Phiri and O.B. Balemba (2007). Total plasma proteins and hemoglobin levels as affected by worm burden in freshwater fish in Morogoro, Tanzania. Livestock Res. for Rural Develop., 19:2.
- Movotny, J.F. and J.W. Beeman (1990). Use of a fish health problem in assessing the health and condition of juvenile Chinook salmon. Progressive Fish-Culturist, 52: 162-170.

- MWRI (2005). Ministry of Water Resources and Irrigation. Integrated water resources, management plan, Public disclosure authorized by Arab Republic of Egypt, 1-81.
- Nandlal, S. and T. Pickering (2004). Tilapia fish farming in Pacific Island countries. Volume one. Tilapia hatchery operation. Noumea, New Caledonia: Secretariat of the Pacific Community. Printed at Quality Print, Suva, Fiji, 1-32.
- Pradhan, S.C., A.K. Patra and A. Pal (2014). Hematological and plasma chemistry of Indian major carp, *Labeo rohita* (Hamilton, 1822). J. Appl. Ichthyol., 30: 48–54.
- Sadek, S.S. (2011). An overview on desert aquaculture in Egypt. In V. Crespi and A. Lovatelli, eds. Aquaculture in desert and arid lands: development constraints and opportunities. FAO Fisheries and Aquaculture Proceedings No. 20. Rome, FAO., 141-158.
- Saleh, M.A. (2007). Freshwater fish seed resources in Egypt, pp. 241-255 In: Bondad-Reantaso, M.G. (ed.). Assessment of Freshwater Fish Seed Resources for Sustainable Aquaculture. FAO Fisheries Technical Paper. (501). Rome, FAO, 628.
- Samy-Kamal, M. (2015). Status of fisheries in Egypt: reflections on past trends and management challenges. Rev. Fish Biol. Fisheries, 25:4.
- Shaheen, A.A. (2013). An industry assessment of tilapia farming in Egypt. (Edited by: Seisay, M. and Nouala, S.) African Union. Int. Afr. Bureau for Anim. Res. (AU-IBAR).
- Shalaby, A.M.E. (1997). Biochemical and physiological studies on metal contamination in the common carp, *Cyprinus carpio L.* Ph.D. Thesis, Fac. Sci. Zagazig Univ., 27.
- Shalaby A.M.E., Y.A. Khattab and A. Abdel-Rahman (2006). Effects of garlic, Allium sativum, and Chloramphenicol on growth performance, physiological parameters and survival of Nile tilapia, Oreochromis niloticus. J. Venom Anim. Toxins and Trop. Dis., 12 (2): 172-201
- Sharma, N.K., M.S. Akhtar, N.N. Pandey, R. Singh and A.K. Singh (2015). Sex specific seasonal variation in hematological and

serum biochemical indices of *Barilius* bendelisis from Central Himalaya, India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., 1-13.

- Shehata, M.B. and T.M. Shehata (1994). Effect of different feeding regimes on blood constituents and performance of fish. Egypt. J. Comp. Pathol. Clin. Pathol., 7 (2): 489-496.
- Silva, B.C., M.L. Martins, A. Jatoba, C.C. Buglione Neto, F.N. Vieira, G.V. Pereira, G.T. Jeronimo, W.Q. Seiffert and J.L.P. Mourino (2009). Hematological and immunological responses of Nile tilapia after polyvalent vaccine administration by different routes. Pesq. Vet. Bras., 29 (11): 874 - 880.
- Svobodova, Z., B. Vykusova and J. Machova (1994). The effects of pollutants on selected hematological and biochemical parameters in fish. In: Müller, R., Lloyd, R. (Eds.), Sublethal and Chronic Effects of Pollutants on Freshwater Fish. FAO Fishing News Books, Great Britain, 39-52.
- Sweilum, M.A. (2006). Effect of sublethal toxicity of some pesticides on growth parameters, haematological properties and total production of Nile tilapia (*Oreochromis niloticus* L.) and water quality of ponds. Aquac. Res., 37: 1079-1089.
- Val, A.L. (1996). Surviving low oxygen levels: Lessons from fishes of the Amazon. In: Val AL, Almeida-Val VMF, Randall DJ (eds.), Physiology and biochemistry of the fishes of the Amazon. Manaus, INPA, 59-73.
- Vankampen, E.J. (1961). Determination of hemoglobin. Clin. Chem. Acta., 6: 538-544.
- Weaver, K.L., P. Ivester, J.A. Chilton, M.D. Wilson, P. Pandey and F.H. Chilton (2008). The content of favorable and unfavorable polyunsaturated fatty acids found in commonly eaten fish. J. Ame. Dietetic Ass., 108: 1178-1185.
- Zaghloul, Kh.H. (2008). Ecotoxicological recovery of agricultural drainage water impact on *Clarias gariepinus* in El-Fayoum Governorate, Egypt. 4th Conf. Egypt. Soc. Exper. Biol., October 6 Univ. Feb. Cairo, 16.
- Zuckerman, K. (2007). Approach to the anemias. In: Goldman L. and Ausiello D., eds. Clinical Med. 23rd ed. Philadelphia, Saunders, 26.

2382ig J. Agric. Res., Vol. 44 No. (2) 2017 (2) 2017 581 تأثير نوعية المياه على دلالات الدم لأسماك البلطى الذيلى فى المزارع السمكية المختلفة محمد الأحمدى الذهبى' - علال محمد عيسى شلبى' - جمال الدين على عبدالرحمن' - محمد صلاح الدين عياط' ١- قسم التفريخ وفسيولوجيا الأسماك- المعمل المركزى لبحوث الثروة السمكية- العباسة- الشرقية- مصر ٢- قسم الإنتاج الحيوانى - كلية الزارعة - جامعة الزقازيق - مصر

تتميز الأسماك بمرونة هائلة للعيش في الظروف البيئية المتنوعة والقدرة العالية على تعديل إمكانياتها الفسيولوجية ومنها دلالات الدم، كعدد خلايا الدم الحمراء (RBCs)، نسبة الهيماتوكريت (Hct) ومحتوى الهيموجلوبين (Hb) للظروف البينية المعاكسة، فالدم مرآة تعكس ما تؤل إليه الحالة الصحية للأسماك، ويهتم هذا البحث بدراسة دلالات الدم ومؤشراته لأسماك البلطي النيلي المرباه في أربعة مزارع سمكية مختلفة: (A) مزرعة المعمل المركزي لبحوث الأسماك بالعباسة والمزودة بمياه جوفية (٢٥%) و ثانية مزرعة خاصة (B) مزودة بمياه صرف زراعي والثالثة (C) مزرعة المركز العالمي للأسماك (WFC) والمزودة بمياه النيل العذبة من ترعة الإسماعيلية ثم أخيراً الرابعة (D) والتي تمد بمياه صرف صحى من مصرف بحر البقر، وأظهرت نتائج الدراسة أن عدد خلايا الدم الحمراء لأسماك البلطي النيلي المرباه في أحواض مزرعة المركز العالمي للأسماك (WFC) هو الأعلى على الإطلاق (١,٨٥٩ ± ١,٠٩١/الميكرولتر المكعب) بين المزارع الأخرى الخاضعة للدراسة خاصة في الصيف، وقد لوحظ الاتجاه نفسه بالنسبة لهيماتوكريت Hct دم أسماك مزرعة المركز العالمي للأسماك (٢٢,٧٦٥ ± ٠,٨١٣) وهو أيضًا الأعلى في فصل الصيف كذلك، ويمكن أن يرجع ذلك إلى الخصائص السلبية لمياه مزارع الأسماك الأخرى مثل تركيز الأكسيجين الذائب، درجة الحرارة والحموضىة وكذلك الملوثات الكيماوية والتي تؤثر على الحالة الصحية للأسماك المرباة، على العكس فمحتوى الهيموجلوبين (Hb) والذي أظهر أعلى قيمة (A,۹۹ ± ٧،٧٤٣ جم / ديسيلتر) في الأسماك المرباه في مزرعة الأسماك (D) والتي تمد بالمياه من مصرف بحر البقر، وفيما يتعلق بمؤشرات خلايا الدم الحمراء مثل متوسط حجم الخلية (MCV)، متوسط كم الهيموجلوبين في الخلية(MCH) ومتوسط تركيز هيموجلوبين في خلية (MCHC) فقد وجد أنها متنوعة في المزارع السمكية المختلفة، هذه المؤشرات الدموية حاسمة وتأخذ كمؤشر لفقر الدم وعلاجه، فقد كان أعلى قيمها (١٦٢,٥٣٩ ± ٨,٥٠٨ ميكرون مكعب و ٦٩,٧٩٠ ± Pg ٦,٢١٢ و ٤٣,٤٢٠ ± ٣,٧٣٦ جم/ديسيلتر على التوالي) تم توثيقها في مزرعة الأسماك الخاصة (D) والتي تمد بالمياه من مصرف بحرالبقر خاصة في فصل الخريف، ومع ذلك فأدنى قيم هذه المؤشرات (Pg ۲,٦٢٠ ± ٣٦,٨٣٥ ميكرون مكعب ، ٣٦,٨٣٥ ± ٣٦,٢٢٠ ± ٢٨,٤٤٩ ± ١,٢٧٧ جم/ ديسيلتر على التوالي كان في مزرعة المركز العالمي للأسماك (C) خاصة في فصل الشتاء والدال على الوضع الصحي الجيد نوعاً لهذه الأسماك.

> المحکمــون : ۱ ـ أ.د. صبرى صــادق الصيرفى ۲ ـ أ.د. صفــاء محمــود شـرف

أستاذ بيولوجيا الأسماك – كلية العلوم – جامعة بنها أستاذ فسيولوجيا الأسماك – كلية الزراعة – جامعة قناة السويس