Botanical Evaluation of Some Stevia (*Stevia rebaudiana*, Bertoni) Varieties under Different Nitrogen fertilizer Levels.

. A. A. Tantawy*; A. E. Attia **; Nareyman. N. Kenawy **. Agronomy Dep. Fac. of Agric., Minia University*Agricultural Research Center, Giza, Egypt. ** Correspondence author: <u>nareyman33@Gmail.Com</u>

Abstract

Two field experiments were carried out at agricultural research center Giza Egypt. During 2015/2016 and 2016/2017 seasons to study the effect of nitrogen fertilizer levels (20, 30 and 40 kg N/ fed/cut.) on some stevia varieties (china1, Egy1, spanti and shou2) growth characters in both seasons. The highest nitrogen rate of 40 kg. N /fed /cut was significant in all studied growth and yield characters and gave the highest values as compared with the other two nitrogen treatments in both seasons.

stevia varieties were significantly different in all studied growth and yield characters. Egy1 varieties gave the highest values of all studied growth and yield characters except for Plant height and number of branches per plant where spanti cultivar gave the highest values in the first and second seasons.

Concerning the effect of the interaction between nitrogen fertilizer levels and stevia varieties on growth character values, nitrogen fertilizer level of 40 kg N/ fed/cut applied to Egy1 varietie gave the highest values in all the three cuts studied except those of plant height and number of branches in both seasons.

Key words: stevia, nitrogen fertilizer, varieties.

Introduction

Stevia has zero calorie natural sweetener to substitute sugar form ingredients in the food habits of human being. leaves of stevia plant is heat and pH stable. The leaves of the plant have a pleasantly sweet and refreshing taste which is induced by diterpene glycosides (stevioside and rebaudiosides), a highpotency sweeteners and substitute to sugar, being 300 times sweeter than sucrose (Madan et al., 2010; Megeji et al., 2005; Singh and Rao, 2005; Soejarto et al., Yadav et al., 2011). Sugar obtained from leaves of Stevia containing compounds about 250 times as sweet as table sugar (Shock, 1982) and 300 times sweeter than sucrose (Noshiyama et al., 1991). It was first recognized by Bertoni who later studied it and found that the plant was new to science, which he renamed as Stevia rebaudiana, Bertoni Stevia rebaudiana, Bert. Stevia is a genus of about 200 species of herbs and shrubs in the sunflower family (Asteraceae), and originated from South America. (Soejarto 2002), It's a natural sweet herb native of northeastern Paraguay and today it is cultivated around the world (Savita et al., 2004). Stevia is a diploid plant, having 11 pairs of chromosome (Frederico et al., 1996) with critical day length of 13 hours (Zaidan et al., 1980) and its cultivation has spread worldwide. this line present investigation is initiated with the following objectives. To know the effect of different levels of nitrogen on growth and yield of stevia, tested Varieties effect on growth and yield of stevia and the interaction effects of different levels of nitrogen and tested Varieties s growth and vield of stevia.

Materials and methods

The present work was designed to study the variety and nitrogen levels on botanical and chemical traits of stevia (*stevia rebaudiana*, Bertani). Two experiments were carried out at Giza Experimental Station, Agricultural Research Center, Egypt during 2015/2016 and 2016/2017 growing seasons. The experimental treatments the combinations of three nitrogen levels and four tested varieties as follow:

Treatments

Two factors were studied as follow: A: nitrogen fertilizer levels (N)

N1 = 20 kg N fed/cut., N2 = 30 kg N fed/cut. and N3 = 40 kg N fed/cut.

B: Varieties (v):

V1 = China 1, V2 = Egy1, V3 = spanti and V4 = shou 2

Nitrogen fertilizer was in the form urea (46,5% N)and added in two equalra, rates the first rates was applied after 15 days from transplanting and the second dose was applied after 15 days from the first one. In the next cuts, the first dose was applied 15 days after cutting and the second rates was applied 15 days later. Potassium fertilizer was applied as potassium sulphate (48% K₂O) at the rate of 50kg/fed were during land preparation. Calcium superphosphate (15.5% P₂O₅) rate of 50kg/fed were during land preparation.

Field Experimental Design:

The experimental design used was a split plot design with three replicates. Fertilizer levels were arranged in the main plots and cultivars in the sub plots. The sub plot area was 10.8 m2 (6 ridges) 3.0 meters in length and 60 cm in width. Table A. Physical and Chemical analysis of experimental soils in 2015/2016and 2016/2017 seasons.

Analysis	Seasons	
	2015/2016	2016/2017
Mechanical analysis		
Coasre sand %	0.20	0.50
Fine sand %	12.16	14.2
Silt %	48.85	45.7
Clay %	38.99	36.5
Textual class	Cilt clay loam	Cilt clay loam
Chemical analysis		
Organic matter %	1.08	1.32
CaCo3 %	1.10	2.0
PH(1:2.5)**	8.10	8.0
Soluble Ca++ (meq /100 g soil)	11.2	16.2
Soluble Mg++ (meq /100 g soil)	10.7	14.7
Soluble Na + (meq /100 g soil)	8.3	11.7
Soluble K + (meq /100 g soil) γ	4.1	2.6
Soluble Co3(meq /100 g soil)		
Soluble Hco 3(meq /100 g soil)	3.5	5.6
Soluble Cl(meq /100 g soil)	13.3	17.9
Soluble So4(meq /100 g soil)	17.3	31.7
Available N(ppm)	11.00%	13.9%
Available P(ppm)	9.12%	11%
Available K(ppm)	35.86%	34.1%

Studied characters

-plant height (cm).

- number of main branches /plant.
- -Plant fresh weight (g)
- -Plant dry weight (g).
- Leaves fresh weight (g)/plant.

-Dry leaves weight (g)/ plant. Leaves were dried under shade and kept at 60C for one hour in oven.

- leaves fresh weigh yield (t/ cut / fed).

- Dry leaves yield (ton/fed. cut)

- Dry leaves yield (ton/fed. Seasons). Total of the three cuts

Statistical analysis:

All collected data were statistically analyzed according to technique of analysis of variance for split- plot design by " GENSTAT Version 12th 2009 " computer software package (VSN International, Hemel Hempstead, UK) to determine The differences among treatment means were compared by L.S.D. test at $P \le 0.05$ Payne, et al (2009). Combined analysis for the two seasons of experimentation was done according to the homogeneity of experimental error variance (Bartlett, 1937).

Results and Discussion

Effect of nitrogen fertilizer levels

Results in Table (1, 2, 3 and 4) indicate that plant height, number of main branches per plant, plant fresh weight, plant dry weight, leaves fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield were significantly affected by increasing nitrogen fertilizer levels in the first and second seasons. The highest nitrogen rate of 40 kg N /fed/ cut gave the highest values as compared where the other nitrogen treatments of all studied characters in both seasons

Treatment	Season	2015/2016											
	plant he	eight(cm)		Number /plant	of main	branches	Plant fre	sh weight (g)		Plant dr	y weight (g)		
	Cutl	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	
N1	56.62	38.8	24.83	9.67	11.25	9.57	194.5	72.5	51.12	59.68	25.0	16.66	
N2	61.07	55.2	28.79	11.50	11.79	12.96	259.0	132.9	70.46	79.39	45.0	22.48	
N3	64.83	73.5	34.33	11.83	14.42	14.75	387.5	178.7	98.0	107.48	51.8	27.94	
Mean	60.84	55.8	29.32	11.0	12.49	12.43	280.3	128.0	73.19	82.19	40.6	22.36	
L s d 0.05	4.141	3.78	3.476	1.716	1.5 81	2.795	30.33	12.32	12.211	6.471	1.981	4.366	

273

Table 1. Effect of nitrogen fertilizer levels on plant height, number of main branches per plant, plant fresh weight, plant dry weight of stevia in 2015/2016 season.

N1: 20 kg N fed/cut. , N2: 30 kg N fed/cut , N3: 40 kg N fed/cut.

Table 2. Effect nitrogen fertilizer levels on plant height, number of main branches per plant, plant fresh weight, plant dry weight of stevia in 2016/2017 seasons.

Treatment	2016/20	1 / Season										
	plant h	eight (cm)		Number	r of main br	anches /plant	Plant fre	sh weight (g)		Plant dry	weigh (g)	
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3
N1	43.57	34.58	36.12	12.94	10.92	14.72	209.0	47.57	124.8	63.13	15.80	33.52
N2	47.27	35.25	41.44	13.50	12.42	16.08	265.3	64.34	149.1	80.66	20.23	42.94
N3	56.47	39.82	46.8	15.25	14.25	18.00	371.4	91.78	218.5	107.72	27.10	53.82
Mean	49.1	36.55	41.46	13.33	12.53	16.27	281.9	67.90	164.1	83.83	21.04	43.42
L s d 0.05	4.95	4.334	3.63	0.896	2.026	1.583	22.68	10.481	10.61	5.385	2.33	3.413

N1: 20 kg N fed/cut., N2: 30 kg N fed/cut, N3: 40 kg N fed/cut.

 1^{-1}

Table 3. Effect nitrogen fertilizer levels on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia 2015/2016 season.

274

Treatment	2015/20	16 Season											
Treatment	Leaves	fresh weigl	nt /plant (g)	Dry plant(g	leaves y	weight per	Leaves cut / fe	fresh weight d	yield t/	Dry leav	es yield t/c	ut/ fed	Total yield t/ fed /year
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	
N1	111.0	34.0	30.9	31.32	9.87	9.07	3.323	1.020	0.931	1.250	0.357	0.48	2.087
N2	161.6	49.8	43.28	45.87	13.47	12.54	4.743	1.494	1.304	1.697	0.495	0.552	2.743
N3	257.2	84.0	60.38	65.47	21.43	15.43	7.696	2.524	1.824	2.179	0.705	0.756	2.743
Mean	176.6	55.9	44.84	47.56	9.87	12.35	4.615	1.679	1.353	1.709	0.519	0.6	2.824
L s d 0.05	25.88	6.9	7.579	3.95	1.16	2.4	0.689	0.205	0.230	0.223	0.032	0.079	0.2622

N1: 20 kg N fed/cut., N2: 30 kg N fed/cut, N3: 40 kg N fed/cut

Table 4. Effect nitrogen fertilizer levels on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia in 2016/2017 season.

	2016/20	17 Season											
Treatment	Leaves /plant(g	fresh weigh		Dry lea	ves weight	/ plant(g)	Leaves / fed	fresh weig	ht yield t /cut	Dry leav	ves yield t	t /cut/ fed	Total leaves yield ton/year
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	
N1	131.4	23.71	75.4	3 7.5	6.84	18.5	3.971	0.713	2.33	1.854	0.432	0.637	2.651
N2	177.3	29.73	93.0	50.98	8.22	28.1	5.385	0.889	2.79	1.900	0.629	0.911	3.088
N3	254.3	46.85	134.3	70.64	12.78	29.5	7.752	1.407	3.93	2.518	0.814	1.118	4.025
Mean	187.6	33.43	101.0	52.99	9.28	25.4	5.702	1.003	3.02	2.091	0.625	0.889	3.255
L s d 0.05	11.37	5.77	11.45	3.79	1.18	2.95	0.481	0.167	0.776	0.132	0.032	0.139	0.2538
N1: 20 kg N	fed/cut.,	÷	N2: 30 kg 1	N fed/cut,	N3: 4	10 kg N fed/	cut	·····	1.45.00-11				

Annals of Agric. Sci., Moshtohor, Vol. 56 (2) 2018

The highest plant height (cm) values were recorded for the three cuts respectively, in 2015/2016 and 2016/2017season by adding nitrogen rate of 40 kg N /fed/ cut. These results are in agreement with Maheshwar (2005). Number of main branches recorded for the three cuts in the first and second season. The highest nitrogen rate of 40 kg N fed/cut. gave the highest values of plant fresh weight (g) recorded for all cuts respectively in the first and in the second season. The maximum values of plant dry weight (g) recorded for the three cuts respectively in 2015/2016 and 2016/2017season were recorded when nitrogen rate of 40 kg N /fed/ cut was applied. The highest values of leaves fresh weight per plant were obtained under the highest nitrogen rate of 40kg N/fed /cut as compared with the other nitrogen treatments for the three cuts respectively in 2015/2016 and 2016/2017season. Dry leaves weight per plant recorded for the three cuts respectively in 2015/2016 and 2016/2017season were accomplished by adding nitrogen rate of 40 kg N /fed/ cut. Also, the highest nitrogen rate of 40 kg. N /fed/ cut produced the highest values of leaves fresh weight yield (t/fed) recorded for all cuts respectively in 2015/2016 and 2016/2017season in the second season. The current work is in agreement with Attia (2005). The maximum values of dry leaves yield (t /cut/ fed) recorded for the three cuts respectively in 2015/2016 and 2016/2017season after applying nitrogen rate of 40 kg N /fed/ cut. The current work is in agreement with Allam et al 2001 and Attia (2005). The highest nitrogen rate 40 kg. N /fed. produced the highest values of total leaves yield ton/year as compared with the other nitrogen treatments in the first and second seasons. On the other hand, the lowest nitrogen rate 20 kg. N/fed cut produced the lowest values of all studied characters in both seasons.

Discussion

Data showed that all stevia characters were significantly affected by nitrogen levels in both seasons.Nitrogen levels from 20to 30 and 40 kg .N/fed/ cut these increases may by attributed to the increase in meristemic activity as well as the production of ouxin which encourage cell elongation .on the other hand , nitrogen deficiency inhabit metabolism and c meristemic activity in plant. These results are in agreement with those obtained by Allam *et al* 2001 and Attia (2005).

Effect of Varieties

Data presented in Table (5, 6,7 and 8) indicate clearly that stevia varieties have significant different in Plant

height cm, number of main branches /plant, plant fresh weight (g), dry weight of plant (g), leaves fresh weight per plant (g), dry leaves weight, leaves fresh weight yield t/cut/ fed, dry leaves weight yield t/cut/ fed and total leaves yield ton/year in the first and second seasons. Egy1 varieties gave the highest values surpassing the other varieties except plant height, number of main branches /plant were Spanti varieties gave the highest values for these traits in the first and second seasons.

Egy1 varieties produced the highest values of plant fresh weight (g) in the first and the second season. The current work is in agreement with Nitu et al (2013) results. The highest values of plant dry weight were produced from Egyl- varieties in the three cuts respectively in the first and second season. Egyl varieties produced the highest values of leaves fresh weight (g) for all cuts respectively in the first season and second season. These results are in agreement with Asmaa Haraz (2016). The highest values of dry leaves weight (g) were produced from Egy1 varieties for the three cuts respectively in the first and second season. The current work results are in agreement with those found by Asmaa Haraz(2016) and Anami et al., (2010). Egyl varieties produced the highest values of fresh weight yield (t /cut/ fed) for the three cuts, respectively in the first and in the second season. These results are in agreement with Metivier and Viana (1979). The highest values of leaves yield (t / cut / fed) were produced from Egy1 varieties for the three cuts respectively in the first season and second season. These results are in agreement with Brandle and Rosa(1992), Shizhen and Wanzhong (1988) Chalapathi et al., (1999). Egy1 Varieties and produced the highest value of total leaves yield (t cut /year) respectively, in the first and second seasons.

Meanwhile, Spanti varieties produced the highest values of plant height for the three cuts respectively in the first and, in the second season. These results are in agreement with Asmaa Haraz(2016), Anami et al (2010), Chalapathiet al (1999) and Nitu et al (2013). Spanti varieties produced the highest values of number of main branches for the three cuts respectively, in the first and second seasons. These results are in agreement with those found by Anami et al (2010) and Nitu et al (2013)

Discussion

Such variation might reflect the efficiency of plant building metabolites or might be ascribed to genetical differences. These results are in agreement with those found by Asmaa Haraz(2016), Anamiet al (2010) and Nituet al (2013)

Botanical Evaluation of Some Stevia (Stevia rebaudiana, Bertoni) Varieties under.....

2015 /2016 Season Treatment Plant height (cm) Number of main branches /plant Plant fresh weight (g) Plant dry weigh (g) Cut2 Cut1 Cut2 Cut3 Cut2 Cut3 Cut1 Cut2 Cut3 Cut1 Cut1 Cut3 49.39 V1 12.42 350.2 72.02 51.2 31.78 10.00 11.67 149.5 103.90 22.26 58.40 V2 387.4 194.1 108.08 106.23 57.11 31.36 54.3 23.50 11.22 58.53 13.17 14.00 V3 74.44 67.2 18.78 15.94 174.73 104.0 48.71 57.96 35.50 16.39 37.00 14.78 7.33 208.9 63.96 60.66 19.44 . V4 52.00 ·50.4 25.00 8.00 6:33 64.6 20.24 280.3 128.0 73.19 82.19 22.36 11.00 12.49 12.43 40.6 Mean 60.84 55.8 29.32 5.135 3.055 1.555 1.029 18.94 8.49 5.580 L s d 0.05 4.619 7.10 2.866 1.175 1.178 V1: China 1 V2: Egy1 V3: Spanti, V4: S hou 2

276

Table 5. Effect Varieties on plant height, number of main branches per plant, plant fresh weight, plant dry weight of stevia in 2015/2016 season.

Table 6. Effect Varieties on plant height, number of main branches per plant, plant fresh weight, plant dry weight of stevia in 2016/2017season

Treatment	2016/201	7 Season										
	Plant hei	ght(cm)	1. 1	Number o	of main branch	nes /plant	Plant fre	sh weight (g)		Plant dry	weigh (g)	
	Cut1	Cut2	Cut3	Cutl	Cut2	Cut3	Cutl	Cut2	Cut3	Cut1	Cut2	Cut3
V1	45.73	39.22	42.40	12.94	11.67	15.56	292.8	79.13	165.2	92.54	25.02	45.03
V2	46.44	34.67	40.53	15.06	12.89	16.51	412.7	90.46	214.8	116.92	27.29	52.96
V3	60.61	42.52	47.67	16.99	18.56	22.0	227.1	56.83	146.3	69.57	18.21	41.4
V4	43.61	29.78	35.22	8.33	7.00	11.0	195	45.18	130.3	56.30	13.64	34.31
Mean	49.10	36.55	41.46	13.33	12.53	16.27	281.9	67.90	164.1	83.83	21.04	43.42
L s d 0.05	4.283	2.413	2.782	1.068	1.495	1.871	14.86	3.815	10.03	4.080	1.419	2.493

V1: China 1,

V2 Egy1:

,V3: Spanti,

V4 : Shou2

Annals of Agric. Sci., Moshtohor, Vol. 56 (2) 2018

ė,

Table 7. the of effect Varieties on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia in 2015/2016season.

						-	2015/2016	Season					
Treatment	Leaves	fresh weigh	/ plant (g)	Dry lea	ves weight/	plant (g)	Leaves fr	esh yield	t/cut/ fed	Leaves	yield t/cut/	fed	Total leaves
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	yiedt cut /year
V1	231.6	65.79	46.38	62.63	19.09	12.94	6.512	1.975	1.396	2.096	0.615	0.644	3.355
V2	244.2	100.2	68.63	63.39	48.29	17.97	7.72	3.011	2.074	2.247	0.894	0.752	3.894
V3	90.0	30.09	21.82	25.51	8.79	6.39	2.69	1.050	0.662	1.102	0.229	0.398	1.729
V4	140.5	27.56	42.52	38.69	7.07	12.09	4.23	1.206	1.279	1.390	0.337	0.59	2.316
Mean	176.6	55.91	44.84	47.56	14.92	12.35	4.615	1.679	1.353	1.709	0.519	0.6	2.824
L s d 0.05	19.38	5.43	5.52	5.491	2.62	1.39	0.482	0.167	0.163	0.331	0.045	0.039	0.3408
V1: China 1		V2: Egyl		V3: Sp	anti ,		V4 : Shou 2						

Table 8. the of effect Varieties on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia in 2016/2017 season.

							2016/20	17 Season					
Treat	Leaves	fresh weigh	/plant (g)	Dry lea	ves weight	/plant(g)	fresh we	igh yield t /	cut/ fed	Leaves	yield t/cut	t / fed	Total leaves
ment	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	yiedton/year
V1	207.3	37.69	106.1	60.68	10.89	25.20	6.234	1.134	3.18	2.495	0.757	0.892	3.717
V2	284.7	47.79	137.4	77.79	13.13	29.82	8.742	1.431	4.13	2.761	0.753	1.323	4.442
V3	133.4	23.78	71.7	38.41	6.61	18.6	3.714	0.712	2.22	1.578	0.513	0.545	1.889
V4	125.2	24.47	88.0	35.08	6.50	27.9	4.119	0.735	2.55	1.936	0.477	0.796	2.970
Mean	187.6	33.43	101.	52.99	9.28	25.4	5.702	1.003	3.02	2.091	0.625	0.889	3.255
L s d 0.05	12.73	2.673	8.41	3.506	0.893	2.159	0.369	0.078	0.671	0.231	0.044	0.152	0.294
V1: China 1		V2: Egy1	١	V3: Spanti	i,	V4	: Shou 2						

Annals of Agric. Sci., Moshtohor, Vol. 56 (2) 2018

277

Effect of interaction effect between nitrogen fertilizer levels and cultivars

Data in Table (9,10,11 and 12) shows that the interaction effect between nitrogen fertilizer levels and stevia varieties that were significant for plant height cm, number of main branches /plant, fresh weight (g), dry weight per plant (g), leaves fresh weight yield (ton/ fed), leaves yield (ton / fed) and total leaves yield (ton/year). In the first and second seasons, nitrogen fertilizer levels 40 kg N/ fed/cut and egy1 varieties gave the highest values in the three cuts for all studied characters except plant height and number of main branches where nitrogen fertilizer level of 40 kg N/ fed/cut and Spanti varieties gave highest values.

Adding 40 kg N /fed / cut to egy1 varieties recorded the highest values of plant fresh weight (g) for all cuts respectively in the first and the second season. the highest values of plant dry weight (g) were attained by treating Egy1 varieties with nitrogen rate of 40 kg N /fed / cut in all cuts respectively in the first and the second season. Adding 40kg. N /fed / cut to egy1 varieties recorded the highest values of leaves fresh weight / plant(g) for all cuts respectively in the first and the second season. The highest values of dry leaves weight/ plant (g) were obtained by treating Egyl varieties with nitrogen rate of 40 kg N /fed / cut for all cuts respectively in the first and respectively in the second season . At the same trend, adding 40kg. N /fed / cut to Egy1 varieties recorded the highest values of fresh weight yield (t /cut/ fed) for the three cuts, respectively in the first and second season. The of highest values of leaves yield (t / cut / fed) were obtained by treating Egyl varieties with nitrogen rate of 40 kg N /fed / cut for all cuts, respectively in the first and second season. The highest values of total leaves yield (t / cut / year) highest values were obtained by treating Egyl varieties with nitrogen rate of 40 kg N /fed / cut respectively, in the first and second seasons.

.Mean while, Spanti varieties treated with nitrogen rate of 40 kg N /fed / cut produced the highest values of plant height (cm) of the all cuts in the first and second season. Spanti varieties and nitrogen rate of 40 kg N /fed / cut produced the highest values of number of main branches for the three cuts, respectively in the first and second seasons.

Nitrogen fertilizer level of 20 kg N/ fed/cut added to Shou2 varieties gave the lowest values of plant height, number of main branches, fresh weight of plant(g), dry weight of plant (g), plant height cm, number of main branches, fresh weight of plant(g) and dry weight of plant (g) except plant height in cut 1 in the second seasons, while nitrogen fertilizer level of 20 kg N/ fed/cut and Spanti varieties gave the lowest value of leaves fresh weight per plant (g), dry leaves weight and total leaves yield (ton/year) while adding 20 kg. N /fed / cut to Shou2 Varieties recorded (cut 2 in the first season and cut 1 and cut 3 in the second season) the lowest values in plant height, respectively. While the lowest values of plant height were recorded when fertilization level of 20 kg .N/ fed /cut was applied to Shou2 varieties in the first and second seasons .respectively.

Botanical Evaluation of Some Stevia (Stevia rebaudiana, Bertoni) Varieties under.....

Table 9. Effect interaction effect between nitrogen fertilizer levels and Varieties on plant height, number of main branches per plant, plant fresh weight, plant dry weight of stevia in 2015/2016 season. 2015/2016 Season Plant height(cm) numberof main branches /plant Plant fresh weight (g) Plant dry weigh (g) treatment

279

	0.11	<u> </u>			<u> </u>	<u> </u>		6.13		<u> </u>	0.10	0.12
	Cutl	<u>Cut2</u>	Cut3	Cutl		Cut3						
NIVI	54.77	31.3	27.0	9.00	10.67	8.77	219.6	75.0	61.57	67.17	26.30	19.67
NIV2	53.90	32.7	20.67	10.0	12.00	10.0	262.5	103.2	75.67	77.27	34.9	24.72
N1V3	71.50	59.0	32.67	13.67	17.33	14.67	139.9	71.7	32.33	48.17	25.8	11.67
N1V4	46.33	32.0	19.0	6.00	5.00	4.67	155.8	40.1	34.90	46.13	12.8	11.03
N2V1	61.43	53.3	33.0	10.0	11.00	13.83	369.5	169.1	72.80	114.1	58.57	22.80
N2V2	61.67	52.3	24.83	11.00	12.83	16.00	334.0	181.8	97.37	101.3	58.5	30.87
N2V3	71.50	60.0	36.33	14.67	18.33	14.67	166.0	114.4	49.03	53.43	40.1	16.73
N2V4	51.33	55.0	21.0	10.0	5.00	7.33	166.3	66.4	62.63	48.73	22.7	19.53
N3V1	59.00	69.0	35.33	11.0	13.33	14.67	461.4	204.3	81.70	103.90	63.3	24.30
N3V2	61.67	78.0	25.00	12.33	14.67	16.00	565.7	297.2	151.20	140.13	78.0	38.93
N3V3	80.33	82.7	42.00	16.00	20.67	18.33	218.3	125.8	64.77	72.27	40.6	20.77
N3V4	58.33	64.3	35.00	8.00	9.00	10.00	304.5	87.3	94.33	87.1	25.2	27.77
Mean	60.84	55.8	29.32	11.0	12.49	12.43	280.3	128.0	73.19	82.19	40.6	22.36
L s d 0.05	7.507	10.95	4.99	2.185	2.121	2.827	36.70	15.75	12.988	9.049	4.773	4.393
1: 20 kg N fe	d/cut.,		N2: 30 kg	g N fed/cut,	N3: 40) kg N fed/cut.						
V1: China 1	V2 : Eg	yl	V3 : S	banti,	V4	: Shou 2						

Shou

Botanical Evaluation of Some Stevia (Stevia rebaudiana, Bertoni) Varieties under....

stevia	in 2016/201	7 season.				•					•	
	2016/20	17 Season										
	Plant h	eight(cm)		number	of main bra	nches /plant	Plant fre	sh weight (g)		Plant dry	weight (g)	
Treatmeant	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3
N1V1	37.00	40.33	39.67	9.83	10.33	13.67	219.7	63.30	108.2	69.60	20.7	28.17
N1V2	43.4	32.33	35.83	13.83	12.00	16.67	321.3	59.30	179.8	96.07	19.6	45.63
N1V3	53.5	42.33	37.0	15.63	15.67	20.33	196.7	35.83 ·	133.1	50.40	12.4	38.10
N1V4	40.33	23.33	32.0	5.67	5.67	9.67	125.2	31.9	78.2	36.43	10.6	38.10
N2V1	46.00	36.67	41.5	13.67	11.00	15.33	275.5	74.33	164.6	87.13	23.9	22.17
N2V2	50.5	35.00	39.27	15.00	13.00	16.67	404.5	77.7	187.1	117.7	24.6	51.23
N2V3	45.4	28.33	51.33	16.67	17.67	21.0	208.5	58.33	134.7	67.0	18.7	39.47
N2V4	55.67	28.33	33.67	8.67	8.00	11.33	172.8	47.0	110	50.80	13.7	30.1
N3VI	48.50	40.67	46.03	15.33	13.67	17.67	383.1	74.33	222.9	120.90	30.43	55.70
N3V2	50.5	35.00	46.50	16.33	13.67	17.67	512.3	134.4	277.4	137.0	37.7	62.27
N3V3	72.67	44.27	54.67	18.67	22.33	24.67	303.1	76.3	170:9	69.57	23.5	46.63
N3V4	48.5	37.67	40.00	10.67	7.33	12.00	287.0	56.7	202.6	56.30	16.7	50.67
mean	49.10	36.55	41.46	13.33	12.53	16.27	281.9	67.90	164.1	83.83	21.04	43.42
L s d 0.05	7.356	4.962	4.899	1.717	2.701	3.013	28.17	10.582	21.77	7.303	2.783	4.522
11.20 kg N fed/	out N	12. 20 kg N f	ad/out		N2. 40 kg	N fad/out						

Table 10. Effect interaction effect between nitrogen fertilizer levels and Varieties on plant height, number of main branches per plant, plant fresh weight, plant dry weight of

280

N1: 20 kg N fed/cut , N2: 30 kg N fed/cut , V1: China 1, V2: Egyl,

V3: Spanti,

N3: 40 kg N fed/cut. ,

V4 : Shou2

Botanical Evaluation of Some Stevia (Stevia rebaudiana, Bertoni) Varieties under.....

 Table 11. Effect interaction effect between nitrogen fertilizer levels and Varieties on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia in 2015/2016 season.

						2015/2016	Season						
treatmeant	Leaves	fresh weigh	/plant (g)	Leaves	weigh/plan	t (g)	L eaves fed	fresh weig	ht yield ton/	Leaves	yield ton /	fed	Total leaves viedt/ fed/vear
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	
NIVI	135.6	31.90	41.5	37.57	9.30	12.03	3.965	0.957	1.251	1.373	0.263	0.586	2.222
N1V2	144.3	55.50	50.33	40.67	16.40	14.93	4.433	1.668	1.513	1.7	0.690	0.619	3.009
NIV3	68.9	28.53	12.0	20.17	8.57	3.77	2.065	0.635	0.367	0.932.	0.172	0.242	1.346
N1V4	95.2	20.00	19.57	26.90	5.20	5.53	2.855	0.821	0.591	0.996	0.303	0.474	1.773
N2V1	237.7	73.47	45.83	67.43	21.00	13.33	5.900	2.207	1.377	2.314	0.588	0.479	3.380
N2V2	237.7	76.13	61.03	62.10	18.90	17.83	7.430	2.288	1.837	2.262	0.830	0.756	3.848
N2V3	85.4	26.73	21.93	22.77	7.90	6.30	2.536	0.670	0.667	0.837	0.221	0.383	1.443
N2V4	116.7	22.67	44.33	31.17	6.10	12.7	3.507	0.812	1.337	1.373	0.366	0.587	2.302
N3V1	321.7	92.00	51.80	82.90	26.97	13.47	9.673	2.763	1.560	2.601	0.995	0.867	4.463
N3V2	381.8	169.0	94.53	87.40	38.97	21.13	11.313	5.077	2.873	2.78	1.163	0.881	4.824
N3V3	115.6	35.00	31.53	33.60	9.90	9.10	3.470	0.670	0.952	1.537	0.296	0.566	2.399
N3V4	209.7	40.00	63.67	58.00	9.90	18.03	6.327	0.812	1.910	1.799	0.366	0.71	2.875
mean	176.6	55.91	44.84	47.56	14.92	12.35	4.615	1.679	1.353	1.709	0.519	0.6	2.824
L s d 0.05	34.83	9.59	10.02	8.663	4.0	2.79	0.8893	0.294	0.299	0.519	0.071	0.079	0.542
N1: 20 kg N f	ed/cut.,	N2: 3	0 kg N fed/c	ut,	N3: 40	kg N fed/cu	t.						

V1: China 1 V2: Egyl V3: Spanti, V4 : Shou2

281

 Table 12. Effect interaction effect between nitrogen fertilizer levels and Varieties on fresh weight per plant, dry leaves weight per plant, leaves fresh weigh yield, dry leaves yield and total leaves yield of stevia in 2016/2017 season.

 2016/2017 Season

282

treatmeant	Leaves	freshweigh	/plant (g)	dry leav	es weight/	plant (g)	Leaves fed	fresh yiel	d ton cut/	Leaves	yield ton c	ut / fed	Total leaves yiedt/ fed/year
	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	Cut1	Cut2	Cut3	
N1V1	140.8	29.0	61.4	40.67	8.50	12.03	4.230	0.873	1.84	2.077	0.541	0.453	2.701
N1V2	207.3	31.63	120.2	59.33	8.90	27.93	6.270	0.956	3.61	2.497	0.535	0.975	3.693
N1V3	97.4	16.33	46.83	27.63	4.80	12.0	2.487	0.488	1.77	0.831	0.299	0.407	1.351
N1V4	80.0	17.87	73.33	21.77	5.17	22.2	2.896	0.533	2.09	2.013	0.353	0.408	2.860
N2V1	193.1	35.33	111.2	58.03	10.07	31.13	5.803	1.057	3.34	2.324	0.781	1.053	3.735
N2V2	286.3	36.4	114.0	79.50	10.20	28.5	8.767	1.085	3.42	2.438	0.729	1.367	3.693
N2V3	118.3	22.67	80.4	34.57	6.03	21.6	3.367	0.677	2.15	1.104	0.569	0.480	1.351
N2V4	111.3	24.53	66.6	31.80	6.60	13.1	3.367	0.739	2.26	1.733	0.439	0.746	2.698
N3V1	288.1	48.73	144.6	83.33	14.10	32.4	8.670	1.473	4.35	3.085	0.949	1.170	4.716
N3V2	360.4	75.33	177.9	94.53	20.30	33.03	11.19	2.253	5.35	3.349	0.995	1.627	5.477
N3V3	184.3	32.33	88.0	53.03	9.00	22.33	5.290	0.970	2.75	1.578	0.671	0.747	2.552
N3V4	184.3	31.00	126.7	7.73	31.67	30.3	5.857	0.933	3.28	2.061	0.639	0.930	3.353
mean	187.6	33.43	101.	52.99	9.28	25.4	5.702	1.003	3.02	2.091	0.625	0.889	3.255
L s d 0.05	20.68	6.164	15.22	5.918	1.600	3.913	0.658	0.179	1.153	0.357	0.0695	0.248	0.4751
N1: 20 kg N fed	l/cut.,	.1	2: 30 kg N fe	d/cut,	N	3: 40 kg N	fed/cut.						

Annals of Agric. Sci., Moshtohor, Vol. 56 (2) 2018

References

- Attia. A. E (2005) Effect of some agronomic treatments on stevia (stevia rebaudiana,bertoni) yield and quality in egypt. Ph D thesis.Fac of AgricAin shams Univ. Egypt.
- Asmaa Haraz S, M (2016) Genetic improvement through selection of Stevia rebaudiana under Egyptian conditions. M.Sc.thesis, Fac of AgricSaba Basha. Alexandria Univ. Egypt.
- Allam, A. I., Nassar, A. M. and Besheit, S. Y., 2001. nile.enal.sci.eg/ Arc Journal/uga.htm
- Anami, E. T, J. P. Poletine, M. C. Gonçalves-Vidigal, P. S. V. Filho, G. F. Lacanallo, M. V. Kvitschal and A. Gonela (2010). Characterization and genetic divergence in *Stevia rebaudiana*(Bert.)Bertoni clones based in agronomical and morphological characteristics. Journal of Food, Agriculture & Environment.8 (3&4): 4 6 3 - 4 6 9.
- Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the London. Series A-Math. Phys. Royal Society of Sci., 160(901): 268 282.
- Brandle, J.E. and N. Rosa (1992). Heritability for yield, leaf-stem ratio and stevioside content estimated from a landrace cultivar of *Stevia rebaudiana*. Candian Journal of Plant Science.72(4): 1263-1266.
- Chalapathi, M. V., S.Thimmegowda, G. G. E.Rao, N. Devakumar and J.Chandraprakash (1999).Influence of fertilizer level on growth, yield and nutrient uptake of ratooncrop of stevia (*Stevia rebaudiana*). Journal of Medical and Aromatic Plant Science.21 : 947-949.
- Frederico, A.P., P.M. Ruas, M.A. Marinmorlaes, C.F. Ruas and J.N. Nakajima (1996).Chromosome studies in some *Stevia* (*Compositae*) species from southern Brazil. Brazilian Journal of Genetics.19 (4): 605-609
- Madan, S., Ahmad, S., Singh, G.N., Kohli, K., Kumar, Y., Singh, R., and Garg, M. 2010. *Stevia rebaudiana*(Bert.)Bertoni - A Review. Indian Journal of Natural Products and Resources.1: 267–286.
- Maheshwer .H.M. (2005) Effect of different levels of nitrogen and dates of planting on grwth and yield of stevia (*Stevia rebaudiana* Bert.) M.S Of Sci (Agri) .Unive of Agril Sci Dharwad
- Metivier, J and A. M. Viana (1979). Determination of microgram quantities of stevioside(sweetening compound) from leaves of stevia rebaudiana by

two-dimensional thin layer chromatography. Journal of Experimental Botany.30 (117): 805-810.

- Megeji, N.W., Kumar, J.K., Singh, V., Kaul, V.K., and Ahuja, P.S. 2005. Introducing *Stevia rebaudiana*, a natural zero-calorie sweetener. Current Science. 88: 801–804.
- Metivier, J and A. M. Viana (1979). Determination of microgram quantities of stevioside(sweetening compound) from leaves of stevia rebaudiana by two-dimensional thin layer chromatography. Journal of Experimental Botany.30 (117): 805-810
- Nitu, S, M. Punit and Ch. Ad (2013).Genetic Variability for Morphological Characters and Glycosides in Stevia (*Stevia rebaudiana*Bertoni).Indian Journal of Plant Genetic Resources. 26(3): 243-244.
- Noshiyama, P., Alurrez, M. and Vieira, L. E. 1991.Determination of soluble sterioside and carbohydrates in leaves of Stevia rebaudiana by near infrared reflectance spectroscopy. Argentina Biol. Tech., 34: 361-74.
- Payne, R. W., D. A. Murray, S. A. Harding, D. B. Baird and D. M. Soutar (2009). Gen Stat for Windows (12th Edition) Introduction. VSN International, Hempstead, UK.
- Shizhen, S and W. Wanzhong (1988). The Variation of Stevia rebaudianaBertoni Quantity Character and Relations to The Yield. Journal ActaAgronomia. 14(2): 167-173.
- Savita, S. M., K. Sheela, A.G.S. SharanSunanda and P. Ramakrishna (2004). Stevia rebaudiana
 A Functional Component for Food Industry.Journal of Human and Ecology. 15 (4): 261-264
- Shock, C. C., 1982, Rebaudi'sstevia : Natural noncaloric sweetness. Cal. Agri., 36 : 4-5.
- Singh, S.D., and Rao, G.P. 2005. Stevia: The herbal sugar of 21st century. Sugar Tech. 7: 17-24.
- Soejarto D. (2002).Botany of Stevia and Stevia rebaudiana.In:Kinghorn A (Ed), Stevia: The genus Stevia. Taylor & Francis, London, UK
- Yadav, A.K., Singh, S., Dhyani, D., and Ahuja, P.S. 2011. A review on the improvement of stevia (*Stevia rebaudiana*(Bertoni)).Canadian Journal of Plant Science. 91(1): 1–27.
- Zaidan, L.B.P., S.M.C. Dietrich and G.M. Felippe (1980).Effect of photoperiod on flowering and stevioside content in plants of *Stevia rebaudianaBertoni*. Japanase Journal of Crop Sci (49): 569-574

التقيم النباتى لبعض أصناف الاستيفيا تحت مستويات مختلفة من التسميد الازوتى

ابوبكر عبد الوهاب طنطاوي* احمد السيد عطية ** ناريمان نايف قناوي** كلية الزراعة جامعة المنبا**مركز البحوث الزراعية – الجبزة

اجريت الدراسة في محطة بحوث الجيزة مركز البحوث الزراعية موسمي 2015- 2016 و2016-2017 لدراسة تاثير التسميد النتروجينى (20 ، 30و 40 كجم نتروجين/ فدان / حشة) وبعض الاصناف (2 shou 2. spantil china 1،Egy) وتفاعلهما علي الصفات تحت الدراسه في الموسمين.

 • اعطت معدلات التسميد الازوتي اختلافات عاليه المعنويه لجميع الصفات تحت الدراسة عند مستوي معنويه 5 % اعطي معدل تسميد 40 كجم نتزوجين/ فدان / حشة اعلي القيم لجميع الصفات مقارنة بالمعاملات الاخري في الموسمين .

•أوضحت النتائج وجود فرق معنوبة كبيرية بين جميع الاصناف لجميع صفاتٌ النمو والمحصول عند مستوي معنويه 5% وسجل الصنف 1 Egy اعلى القيم لجميع الصفات ماعد طول النبات وعدد الافرع في الموسمين مقارنه بالاصناف الاخري .

•أوضحت النتائج أيضا ان النفاعل بين اضافة معدل40 كجم نتروجين/ فدان / حشة والصنف Egy1 اعطى االنفاعل بينما اضافة معدل 40 كجم نتروجين للحشة والصنف Egy 1 اعلى القيم لجميع الصفات ماعد طول النبات وعدد الافرع في الموسمين .